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Abstract 

A new, definitive, reliable and fast iterative method is described for 

-+-
determining the geometrical properties of a shock (i. e. SBn' n, Vs and MA), 

the conservation constants and the self-consistent asymptotic magnetofluid 

variables, that uses the three dimensional magnetic field and plasma 

observations. The method is well conditioned and reliable at all SBn angles 

regardless of the shock strength or geometry. Explicit proof of 

I uniqueness' of the shock geometry solution by either analytical or 

graphical methods is given. The method is applied to synthetic and real 

shocks, including a bow shock event and the results are then compared with 

those determined by preaveraging methods and other iterative schemes. A 

complete analysis of the confidence region and error bounds of the solution 

is also presented. 
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1. Introduction 

The identification of an observed discontinuity as a shock rests on 

certifying a sequence of conditions (described below) which can only be 

rigorously expressed by specifying the geometrical orientation and speed of 

propagation of the discontinuity [Burlaga, 1971; Greenstadt et al., 1984J. 

Within the various classes of shocks, there are diverse geometrical, 

theoretical and observational regimes which further differentiate shocks 

into quasi-perpendicular versus quasi-parallel, subcritical versus 

supercritical, laminar versus turbulent and resistive versus dispersive 

[Greenstadt et a1., 1984; Edminston and Kennel, 1985; Kennel et a1., 1985]. 

To specify which of these shock regimes a given set of observations 

illustrates is the initial task for the increasingly quantitative shock 

studies made possibly by the ISEE and Voyager instrunentation. Furthermore 9 

the importance of the shock geometry in relation to the origin of particle 

reflection and acceleration of thermal particles near shocks has been 

emphasized by Sonnerup [1969]. Gosling et a1. [1982]. Armstrong et al. 

[1985] 9 Forman and Webb [1985], Wu [1984] and Goodrich and Scudder [1984] 

among others. Direct spacecraft measurements only determine these 

geometrical properties implicitly; they must be empirically inferred by 

solving what we shall describe below as the "Rankine-Hugoniot (RH) problem". 

This problem consists of taking the spacecraft observations (or time series) 

of density, velocity and magnetic field across a shock and finding a 

suitable Galilean frame where the discontinuity is time-stationary and where 

defensibly conser'ved quantities can be defined such as the normal mass flux. 

tangential stress, normal component of the magnetic field and tangential 

electric field together with the upstream and downstream asymptotic 



magnetofluid states. The solution of the RH problem is a non-trivial 

problem involving specifying eleven, non-linearly intertwined, free 

variables. The angle of shock propagation 9Bn relative to the asymptotic 

upstream magnetic field B and the strength of the discontinuity 

characterized by the various Mach numbers can only be obtained after this 

frame shift, conservation constants and asymptotic states are determined. 

Once such a frame shift and states are found, a sequence of supplementary 

tests can be performed to determine if the discontinuity is a shock. In 

many respects it is easier to deny that a discontinuity is a shock than to 

guarantee that it is one. 

The single spacecraft determination of shock normals on planetary and 

interplanetary shocks have been previously studied by Colburn and Sonnett 

[1966], Chao [1970], Lepping and Argentiero [1971], Lepping [1972], 

Abraham-Shrauner [1972], Abraham-Shrauner and Yun [1976], Chao and Hsieh 

[1984] and Acuna and Lepping [1984] among others. Four basic methods of 

single spacecraft shock normal determination are widely used. These are 

magnetic coplanarity (MC), velocity coplanarity (VC), the least squares 

method of Lepping and Argentiero (LA) and the mixed data methods of 

Abraham-Shrauner (AS). All these methods use a subset of the RH 

conservation equations. The subset of the RH equations that restate 

conservation of mass flux, normal component of the magnetic field, 

tangential component of the momentum fl ux and tangential component of the 

electric field do not discriminate between four MHD discontinuous classes 

such as contact d i scontin ui ty, rotational d i scontinui ty, tangenti al 

discontinui ty and shock. Except for the Lepping and Argentiero method and 

the procedure described in this paper, the other approaches have used an 

even smaller subset of the above set to estimate the shock normal, speed and 
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geometry. These different methods have often revealed disparate :-esul ts in 

the shock parameters estimated for the same set of observations. One of the 

difficulties on relying in some of these methods is that their use requires 

that one predefine the asymptotic magnetofluid variables by an "ad hoc" 

pre-averaging procedure. It is not clear in the presence of waves or random 

fluctuations that this kind of "ad hoc" procedure can describe the 

self-consistent asymptotic states of a shock. Alternatively, iterative 

schemes such as the LA method have tried to resolve this problem by solving 

directly for the asymptotic magnetofluid variables. These variables are 

subsequently used together with the magnetic coplanarity and mass flux 

conservation expressions to determine the shock normal and speed. Although, 

this approach is self-consistent, the LA method has the unfortunate 

difficulty that its 11-dimensional space of unknown magnetofluid variables ( 

P1' P2' V2 - v1• 81 and 82 ), which span the parameter space, is large and 

irreducible. Besides, this 11-dimensional space of variables is highly 

non-linear, giving rise for concern of the 'uniqueness I of the selected 

solution. Up to the present time, the problem of 'uniqueness' of the 

solution determined has remained completely unaddressed. Notice that 

methods that preaverage the data obviate questions of uniqueness by de facto 

algebraic computation. 

Another method used in the estimation of shock parameters has been the 

use of observations from two or more spacecraft [Chao, 1970; Ogilvie and 

Bur laga, 1969; Russell et al. t 1983a .b ] • Since situations where shock 

observations at more than one spacecraft are uncommon, we shall limit our 

discussion to comparisons with single spacecraft methods. In the situation 

where such observations are available we shall report the results of 

parameters determined from such multiple spacecraft methods. 
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This paper presents anew, fast iterative approach and solution to the 

RH problem to determine the shock parameters by means of a non-linear least 

squares method. An essential concept of this new method is that there exist 

a simple set of 'natural' variables that is separable. The new set 0 f 

variables 

constraint equations form a vector basis that spans the 11 dimensional space 

of unknown parameters to be determined. B¥ the term 'natural' we mean that 

choice of variables for which 'uniqueness' (or lack thereof) of the selected 

val ue is demonstrable ei ther analytically (for linear variables) or 

graphically (for non-linear variables). Similarly, by separable we mean 

that the full set of 'natural' variables can be obtained through a 

self-consistent sequence of least squares problems each of which contains a 

small dimensional subspace (1. e. less than 2) of the complete set of 

unknown paraneters. The existence of such an ordered sequence of smaller 

dimensional problems is a consequence of the fact that the RH equations 

which represent the model can be written in various forms permitting some of 

the unknown parameters to appear either explicitly or implicitly in the 

equations for the same set of observations. A further advantage of this 

approach over previous methods is that the number of linear variables of the 

unknown parameter space is large (i. e. seven) resulting in only four 

non-linear parameters of the full 11 dimensional space which require 

graphical 'uniqueness' investigation. By virtue of this separability we can 

explore the 'uniqueness' (or lack thereof) of all the possible minima that 

encompasses the optimal solutions of the RH equations. It is clear that the 

set of RH equations can support in addition to the shock solution other 

types of discontinuous solutions such as rotational, tangential and contact 

discontinuities which are inherent to the system of equations [Landau and 
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Lifshitz. 1960; Burlaga, 1971; Akhiezer et al., 1975J. After a thorough 

inspection of each of these minima and using a series of supplementary tests 

we can determine the most likely physical shock solution (if it exists) to 

the problem. Among the necessary conditions that an observed discontinuity 

must satisfy to be identified as a possible shock are: a)that in the 

selected Galilean frame, there should exist a defensibly non-vanishing mass 

flux, b)that there is a density and total electron plus ion temperature (if 

available) jump in the same sense across the discontinuity, c) that there 

should be a decrease of the normal component of the fluid velocity in the 

direction the density increases and c)that the predicted thermal normal 

pressure must increase with the density and should be comparable within the 

noise with the observed pressure (if available). 

In addition to providing explicit proofs of 'uniqueness' (or lack 

thereof). the method converges equally fast for quasi-parallel or 

quasi-perpendicular shocks (for which extant methods converge extremely 

slowly requiring one/half day of VAX 111780 computing time to determine a 

solution). This new approach rarely takes more than a few seconds of 

computing time to correctly determine the shock parameters, the 

Ranki ne-Hugoniot conservation constants. as well as to graphically support 

the 'uniqueness' of the shock geometry selected. The method uses the 

observed plasma velocity and density as well as magnetic field measurements 

on both sides of the observed shock. The sequence of problems consists of 

initially determining the shock normal polar angles (t. e) and the shock 

speed V s using the Rankine-Hugoniot equations and the plasma and magnetic 

field data given by p, V and B on both sides of the shock by a non-linear 

least squares method. Once the optimal shock normal angles and speed have 

been determined • their value~ are used in conjunction with the data to 
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uniquely define the conserved constants. These constants are the mass flux 

Gn , the normal component of the magnetic field Bn , the tangential components 

of the momentum flux St and the tangential components of the electric field 

Et in the frame of the observations. Finally, we use the determined shock 

normal, speed and conservation constants in conjuntion with the data back in 

the RH equations to predict the self-consistent asymptotic states of the 

magnetofluid in the upstream and downstream sides of the shock. We also 

estimate the error bounds and the region of confidence for the shock 

parameters. 

This paper is organized in the following manner. Section 2 presents a 

brief description of the RH conservation equations and their representation 

in an arbitrary reference system. The separable sequence of the least 

squares scheme for the solution of the shock geometry is presented in 

section 3. In section 4 we discuss the applications and results of this 

approach on simulated and real shocks. The results are then compared with 

those obtained by different techniques. Finally, a summary and conclusions 

of the results obtained is presented in section 5, with possible suggestions 

for future work. 

2. Rankine-Hugoniot Conservation Equations: The Model 

The determination scheme for the shock normal, shock speed, conservation 

constants and asymptotic states rests on a series of assumptions: 1)these 

parameters can be determined from the model equations of the 

Rankine-Hugoniot system; 2)there exist such a frame in which the shock is 

time-stationary; 3) the observations used in their determination constitute 

an ensemble of asymptotic states as predicted by the conservations 



equations. This last assumption means that we are able to remove 

information associated with the shock (transition) layer. 

The conservations equations evaluated in the shock frame of reference 

(represented here by asterisk) for an isotropic plasma medium are [Boyd and 

Sanderson, 1969]: 

lI[ pV * 
n 

] :: 0 (1) 

* V * BnBt 
(2) A[ pVn - ,---- ] :: 0 t 

411" 

A[ -+ -+ * B (n x V
t 

) 
n - V n 

* + B (n x t) ] :: 0 (3) 

.H B • + ] :: 0 (4) n 

(B2 _ B 2) 
*2 1'1[ p + n ] 0 (5 ) + pV :: 

811" 
n 

*2 p B2 B (v* • B) * V !f Y n 
M pVn -- + pVn ----+-- ) - ] :: 0 (6 ) 

2 (y-1) P 411" p 411" 

* where p is the plasma mass density. Vn is the plasma bulk velocity 

+ * . component along the normal to the shock surface, Vt 1S the flow velocity 

tangential to the shock sur face, Bn and Bt are the associated normal and 

tangential components of the magnetic field, P is the total kinetic 

pressure, n is the normal unit vector and y is the adiabatic constant. The 

+ 
subscripts nand t imply projection operators defined for any vector A as An 

T + T T 4o-~ 
:: Aon and At :: AO(~-nn) where ~ is the unit tensor. The symbol A means that 

the quantity within brackets is to be evaluated after ('2') and before ('1') 
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the shock transition layer as indicated by the time arrow and then 

substracted (i. e. to" = "2 - "1). Equation (1) represents the mass flux 

conservation equation. (2) is the momentllD flux conservation equation for 

the tangential components. (3) is the continuity equation for the tangential 

electric field. (4) is the continuity of the normal component of the 

magnetic field. (5) is the conservation of the normal momentum flux and 

+ +* finally. (6) is the energy flux conservation equation. Note that B = B for 

a Galilean frame shift. If the plasma is anisotropic. equations (5) and (6) 

will change. In general the normal pressure term in (5) is represented by 

+ + 
n.~·n where ~ is the full pressure tensor. However for an isotropic plasma. 

• + + the tensor is dlagonal and the expression n·~·n reduces to P. These system 

of equations can be simply expressed by means of a Galilean transformation 

into an arbitrary fr ame of reference (as for example the one where the 

observations are made) by the transformati'on 

~ = ~* + ~ s 

where V s = V s n represents the shock velocity and V is the plasma flow 

velocity in the frame of reference of the observations. 

It is clear from looking at these equations that they cannot be used 

+ 
without knowledge of the shock normal n. the shock speed Vs as well as the 

quanti ties p. V. S. P and the constant y on each side of the shock. 

Equations (5) and (6) will not be used in our calculations. Although in 

some experiments the total kinetic pressure tensor (i. e. electron plus ion 

pressure) is known and in principle equation (5) could be used. this is not 

al ways so in all cases. Furthermore. in order for us to make a fair 

compar i son of our method wi th other s such as for ex ampl e the LA method. we 
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shall restrict our system of conservation equations to (1) - (4) since they 

are statements of proper conservation quantities within the approximation E2 

The Rankine-Hugoniot equations (1) - (4) wr i ten in an arbitrary 

reference system using (7) are: 

Ii[Gn ] = Ii [p (V - V s 
n) + 

• n] = 0 (8 ) 

Ii [Bn] = Jl[~ • n] = 0 (9 ) 

(~·n) 
6[St] t.[p(V • 

+ V ++ ~ ++ (10) = n ... V ) ( • (~-nn» ( • q-nn» ] = 0 
S 

41T 

+ n x 
+ n x 

1.: ++ 
( JjO q-nn» ] = 0 ( 11) 

* ;t" + + ;t"* ~ 
where we have used Vn = (v - Vsn)on and vt = vt since v e(I-nn) vanishes 

s = 
in any arbitrary frame of reference. The variables Gn • Bn' St and Et 

represent the conservation constants corresponding to mass flux. normal 

magnetic field. tangential momentum flux (stress) and tangential electric 

field. respectively. These equations represent a system of eight equations 

since (10) and (11) are vectorial expressions in an arbitrary system. In 

our notation the vector n = (n x ' ny • n z ) can be expressed in any orthonormal 

system of coordinates where the observations are made t e. g. the 

heliocentric coordinate system (R. T. N). In addition to these equations we 

also have the normalization condition 

which acts as a constraint equation and allow us to reduce the space of 
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unknown parameters by one variable. This is accomplished by expressing the 

normal components in spherical coordinates as 

n = cos9 x 

n = cos~ sin9 y where 0 < ~ < 2n, and 0 < 9 < n ( 12) 

nz = sin~ sin9 

Generally this selection of the sense of the shock normal direction is 

arbitrary. With these conditions the variables of the system are the two 

angles (~, 9), the shock speed Vs and the magnetic field and plasma 

parameters. This final set of eight equations forms the basic system of 

equations that we use to determine the shock geometry by least squares. 

3. Application of the Sequence Method to the Rankine-Hugoniot Problem 

In this section we shall present the sequence of least squares problems 

that are used to determine the shock geometry using the model equations (8) 

- (11) described above. The basic RH problem can be stated as follows: 

given a typical ensemble of observations (i. e. a time series) of density p, 

velocity V and magnetic field B with random noise and/or waves superposed, 

characteri zing disturbed states about a possible asymptotic (undisturbed) 

states and about a discontinuous change in fluid variables, estimate the 

optimal shock normal, shock speed, the conserved quantities across the shock 

and the appropriate compatible combination of magnetofluid variables that 

characteri zes the sel f-consistent asymptotic states of the observed 

discontinuity. As initially posed, this problem requires the solution in an 

11-dimensional space. In the subsequent sections it is shown that we can 
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reduce this multidimensional problem to a self-consistent sequence of least 

squares problems of smaller dimensions (i. e. less than or equal 2) each of 

which has a solution that can be demonstrated to be optimal. if not 

I unique' • 

a. Shock normal and speed determination 

The first problem in the sequence is the calculation of the shock 

normal h and the shock speed Vs using equations (8) - (11) and the 

observations of density, velocity and magnetic field at both sides of the 

shock. We use a further simplification of the system of equations (8) -

(11) by solving for the shock speed V s in equation (8) since it enter s 

linearly in the equation. From equation (8) we get 

.... 
• n (13) 

which is the usual form for the shock speed. Substituting (13) into 

(9)-(11) we get a system of seven equations in terms of density p, velocity 

"" • .+-V. magnetlc field B and the shock normal polar angles ($. e). If we now let 

the density. velocity and magnetic field to be given by the observations. 

then the final set of seven equations only contains two unknown parameters 
;t; .... .... 

In our notation we define the model function r'(x; p) = 0 as a 

vector of seven components formed by the final derived expressions. We also 

define the vectors x = (P1' V1' ~1' P2' v2• ~2) and P = ($. e) to represent 

the observations at both sides of the shock and the unknown parameters to be 

determined, respectively. Since r,(x; p) is a vector formed by the seven RH 

equations and we have a set of N pairs (i. e. both sides) of observations we 

now define a vector function F(;; p) = { F i I (;i; p) } of si ze N I = 7 x N 
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which is the model function that represents all the observations since the 

+ + + 
index i varies fron one to N. The function F(x; p) can be expanded locally 

i T 1 . p+(o) = (",(0), a(o» as n ay or serIes about some initial parameter set ~ 

t = rex; p(o» + --
+ 

AP + (14) 
ap p (0) 

Equation (14) can be expressed in matrix notation as follows 

+ + 
~ Ap = AY (15) 

where At = f - F(x; p(o» is a vector of length N' where Y is the null 

vector (i. e. Yi = 0, i = 1, N') indicating that the conservation equations 

must be satisfied exactly. Equation (15) is called the normal equation of 

least squares. In this equation we also have defined ~ as a matrix of size 

N' x M (where M=2 the nunber of unknown parameters) formed by the partial 

derivatives of the seven model Rankine-Hugoniot equations with respect to 

+ 
the unknown parameters p = (t, e) evaluated at the initial guess. These 

derivatives have been evaluated analytically and verified by nunerical 

integration. 

For the sake of simplicity, we shall present the details of the least 

squares methodology of the solution of equation (15) in Appendix A. 

However, to summarize the results, the final solution of this equation is 

obtained by an iterative scheme that minimizes the norm of the residuals or 

2 +T + + + + 
the variance X (" a) = r r where r = (~Ap-AY). Once this minimll1l has 

+1 + + 
been obtained the optimal solution p = p + Ap is recovered. From this 

+* * * + optimal solution p = (, , e ) we can now recover the normal n using 

equation (12). We can easily demonstrate by graphical methods the 
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+* * * 'uniqueness' of the solution p = (~ • e ) because there are only two free 

parameters. In this circumstance we can construct a plot of the contours of 

2 the logx (a, .) function versus the angles a and. in the range 0 ~ a ~ w 

and 0 ~ ~ < 2w. Typical examples of the topology of these contour plots are 

displayed in Figures 2a-c for simulated shocks and Figures 5a-c for real 

shocks. These plots exhaustively illustrate the location in the polar shock 

normal angles (<I>. a) where the logX 2
(a, .) is a minimum. The gradient 

search selected location will correspond to a possible solution of the 

problem. However, if more than one minimum is present. each must be studied 

independently to determine the ( •• a) direction that is most consistent with 

the supplementary tests which characterizes a shock solution. If this 

situation occurs, additional information (as discussed in section 4) is 

required to ascertain the appropiate physical shock solution. Once the 

+ 
normal n is obtained, equation (13) and the data are used to determine the 

optimal shock speed Vs. 

The solution for V s can be presented also as a one dimensional least 

squares problem. However, because V senter s linearly in equation (13), it 

can be shown that the least squares problem has an analytic solution for the 

shock speed. 

X2(V ) = 
s 

To show this we write the least squares objective function 

N 
L 

i=1 

+ 
• n - V )2/ 2 s (J 

where the fir st term in parentheses corresponds to the shock velocity as 

determined from the observations and (J is the standard deviation of the 

shock speed obtained from the data. The value of n used in this calculation 

is the one obtained in the first part of this section. If we now take the 
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first and second derivative of X2(V ) with respect to V it can be easily 
s s 

shown that the point Vs where the minimum occurs is given by 

N 
- 1: 

N i= 1 

+ 
e n 

This is the only solution to the linear least squares problem in one 

dimension and its uniqueness can be analytically demonstrated by determining 

that the second derivative of x2(V s ) function is positive. The procedure in 

Appendix A gives similar results since both approaches are mathematically 

equivalent. 

b. Determination of the Rankine-Hugoniot Constants 

We now proceed to determine the RH conservation constants. For this 

calculation it is convenient to rewrite the equations (8) - (11) in terms of 

the conservation constants as follows: 

G p( 
+ + 

- V = V e n n s ( 16) 

B e + 
B = n n (17 ) 

(Ben) 
~t p(V - Vsn) 

+ v ++ ~ ++ = e n ( e <!-nn» ( e <!-nn» 
4n 

(18 ) 

(19 ) 

where the conservation constants Gn , Bn , ~\ and Et have been previously 

defined and c is the speed of light. An inspection of equations (16) - (19) 

indicates that these constants appear linearly and independently in the 

equations. This means that if we take the plasma and magnetic field in the 

right-hand side of equations (16) - (19) to be given by the measurements on 
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both sides of the shock, then the solution for the conservation constants 

reduces to a linear least squares problem whose solution can be obtained 

analytically. The method of obtaining these constants is similar to that 

previously used in the determination of the shock speed. 

optimal conservation constants are given by 

2N 

-+-
• n - V ) s 

B = - E (8. • ~) n 
2N i=1 

1 

2N 
St (Vi 

-+-
= -- E [ Pi • n - V ) 

2N i=1 
s 

1 2N 
CEt 

-+- -+- -+--+- 8 = - E [nx(V. . (I-nn»)( . 
2N i=1 1 

= 1 

(Vi • (~-~~) ) 

-+- -+-• n) - (v.· 
1 

(8 .• ~) 
1 (B. • 
41f 

1 

-+-
- V ) ~x (8.· n 

S 1 

Therefore the 

(20) 

(21) 

-+--+-
q-nn» ] (22) 

q-~n» ] (23) 

These optimal solutions of the conservation constants are unique, 

corresponding to an absolute minimum of the objective x2 function, since 

they result from a linear least squares problem whose second derivative can 

be shown to be positive. 

c. Determination of the self-consistent Rankine-Hugoniot asymptotic states 

In this section we proceed to determine the compatible RH asymptotic 

states. This is the final problem in the least squares sequence presented. 

Substitution of equations (16) and (17) into the vector equations (18) and 

(19) yi eld a set of six equations in terms of the conservation constants, 

the shock normal and the shock speed. After some algebraic manipulations t 

these six equations can be solved together to obtain the vector expressions 
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B 
+ n (~ x CE

t
) GnSt 

+ p 
41r 

+ + 
V(p) = + n ( G /p + V ) (24 ) 

G 2 B 2/(41r) n s 
n - p n 

p( BnSt + G n (~ x cEt » 
S(p) 

+ B (25) = G 2 Bn 2 /(41r) 
+ n n 

n - p 

An inspection of these equations indicates that both the velocity and 

the magnetic field are functions only of the unknown density since the shock 

normal, speed and conservation constants have been previously determined. 

This implies that we only need to solve for the density at each side of the 

shock to predict the compatible Rankine-Hugoniot states. Two other 

important conditions that resulted naturally from (24) - (25) by taking the 

+ 
dot product of these equations with the shock normal n are 

~ • E = 0 t (26) 

which means that in the frame of the observations, the product of the normal 

vector with the tangential momentum flux and electric field must vanish. 

This is not a surprising result since in the frame of the shock by 

defini tj on these cond i tions must al so be sati sfied • 

singular for values of 

41rG 2 
n 

p = 0, p = --~-
B 2 
n 

These equations are 

The first condition (p = 0) represents an unphysical solution since for the 
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existance of a shock the density at both sides must also exist. The second 

condition is more subtle and corresponds to solutions for which the 

asymptotic inflow speed is equal to the intermediate mode speed 

M ' A = 

+ + r;-;:---; ... 
Here we have defined V A = B/" (41fp) as the Al fven velocity. 

corresponds to a rotational discontinuity and not a shock. 

(27) 

This solution 

Notice that this 

is not inconsistent with the solution of the RH equations since a rotational 

discontinuity is also a solution to these equations. An inspection of the 

above equations shows that for any fast shock solution to exist the density 

2 2 must lie in the range 0 < p < 41fGn IBn. In order for this regime to be 

physical requires that the mass flux G should be experimentally non-zero. n 

For values of p > 41fGn 2/Bn 
2 the normal Alfven Mach number (MA') is less than 

unity and this could indicate that either the disturbance is a slow shock or 

is not a shock at all. To assess whether the solution corresponds to a slow 

shock, additional information such as the temperature of both electrons and 

ions of the plasma :is required. Another important consequence of this 

condition is that for perpendicular shocks (i. e. Bn = 0) the singularity 

goes to infinity. This. of course, implies that only fast shock solution can 

exist in such conditions which is clearly compatible with MHD since slow 

shocks and rotational discontinuities becomes tangential discontinuities as 

San approaches 90° [Landau and Lifshiftz. 1960J. 

To show the appUcation of the least squares method to the system of 

equations (24) - (25) we again define a vector function F(x; p) representing 

the six equations given by (24)-(25) and one additional equation given by 
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the density observations as follows: 

;t; + + 
r(x.; p) = 

1 

+ + 
B.-B(p) 

1 
(28) 

The parameter ii = (p, V, B)i represents the plasma and magnetic field 

observations at either the upstream or downstream sides of the shock. We 

also define the index i which varies from 1 to the number of data points N. 

+ 
The variable p = (p) represents the unknown parameter to be obtained. As in 

+ + + 
the case of the shock normal angles, the function F( xi; p) can be expanded 

in Taylor series (as in equation (14» about an initial guess density value 

p(o) = (p(o» to give the expression 

which again represents the normal equation of least squares. In this case 

we define ~ as a matrix of size NI x 1 (where NI = 7 x N) formed by the 

+ 
partial derivatives of the seven model equations representing velocity V, 

magnetic field Band density P. ev al uated at the initial guess. To avoid 

numerical errors, these derivatives have been calculated analytically and 

+ 
verified by a numerical quadrature. We also define Ay as follows 
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v. _ V(p(o» 
1 

+ 
bY :: 

representing the di,fference between the observations and the model 

par ameter s • 

The solution of the normal equation (29) is presented in Appendix A, 

* however as in the shock normal angles situation 9 the final solution p :: 

* (p ) of (29) is obtained by an iterative scheme that minimizes the variance 

2 +T + • X (p) :: r r of the reslduals. The determination of these asymptotic states 

can be divided in two parts. First, obtain by a least squares method the 

asymptotic state of the upstream sJde of the shock using the plasma and 

magnetic field observations. the previously determined shock normal, speed 

and the estimated conservation constants. By a similar procedure, the 

asymptotic states of the downstream side of the shock are determined. This 

approach is self-consistent since both sides of the shock yield the same 

conservation constants. shock normal and shock speed. To ascertain the 

I uniqueness' of the non-linear least squares iterative solution we can 

simply graphically investigate the topology of the logX2( p) function as a 

functl.on of p at each side of the shock transition. In Figures 3a-c and 

Figures 6a-c we present examples of this function for simulated and real 

shocks. respectively. The sol id and dashed I ines represent the function 

lOgX 2 q)') versus density p (::pl/') in the upstream and downstream sides, 

respectively. Because of the particular choice of the model equations (24) 
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- (25) which are singular for values of p=O and p = 41l'Gn2/Bn2, the /(p) 

function has been pre-conditioned to discriminate against tangential, 

contact and rotational discontinuities. These RH solutions will correspond 

to the maximum of the x2( p) funtion for the singularity p = 41l'G 2/B 2. n n 
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4. Applications And Comparisons With Other Methods 

In this section we present the application and results of our method to 

both simul ated and real shocks. We further compare the results obtained 

wi th those calculated by other techniques using the same data set. The 

simulated shocks were deSigned from the RH conservation equations [Tidman 

and Krall, 1971]. These shocks were constructed by prescribing the normal, 

the conservation constants, the shock speed and 0En the angle between the 

shock normal and the upstream magnetic field. Once these parameters are 

specified the profiles of density. velocity and magnetic field were 

obtal.ned. In an attempt to simulate the presence of waves or random noise 

in the data of an observed shock, the profiles of density, velocity and 

magnetic field were randomi zed independently. For simplicity, the random 

fluctuations superposed on these profiles were chosen to have a vanishing 

"time-average" wi.th a relatively small amplitude (",10%). The final profiles 

were then used to evaluate and recover the shock parameters. We have 

selected a perpendicular (0 Bn = 90°), parallel (0 Bn = 0°) and oblique (SBn = 

45°) synthetic shock as samples to test the method. We have also estimated 

the shock parameters for two real interplanetary shocks seen by the Voyager 

1 and 2 spacecrafts and a planetary bow shock crossing from the ISEE-1 

spacecraft. Comparison of our results with other methods including the two 

spacecraft method for the bowshock crossing are also presented. 

a. Synthetic Shocks 

Figur es 1a-c show plots of the magnitude and components of the magnetic 

field and the plasma bulk velocity. together wl.th the plasma density in an 
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arbitrary cartesian coordinate system of a perpendicular, parallel and 

oblique simulated shocks respectively. These shocks are designed to have a 

9Bn = 90°, 0° and 45° respectively wi th a shock speed of 500 km/sec. The 

+ +* 
perpendicular shock profile satisfies the condition BIP = constant and V = 
constant/p where the density profile is arbitrarily chosen to be 

where P+ = (p 2 + P1)/2 and P = (P 2 - P1)/2, T controls the slope of the 

shock profile, to indicates the shock location and P1' P2 are the asymptotic 

* densities. The parallel shock velocity profile was chosen to be V = 

constant/p and the magnetic field to be a constant across the transition 

zone. The density profile is chosen similar to the above expression for the 

per pend ic ul ar case. Al though the synthetic shocks were constr ucted 

following Tidman and Krall [1971], we could have also designed them using 

equations (24) and (25) since they are equivalent. The oblique shock was 

designed following a new algorithm recently developed by Whang et al. [1985] 

which allow the construction of shocks for arbitrary 9Bn angles (except 0° 

and 90°) given the plasma and magnetic field parameters in the upstream 

side. 

The vertical lines in Figures 1a-c indicates the data interval selected 

at both sides of the transition to evaluate the shock parameters. We now 

draw attention to the fact that there is no specific procedure on how and 

where the data should be selected. The only known requirement is that the 

data selected should not contain information about the transition layer, 

because in this region the RH conservation equations are not valid. 

However, there is no clear prescription on how far away from this layer or 
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how much data can be used to determine the shock geometry. Nonetheless, 

once the data interval, representing an ensemble of possible upstream and 

downstream states. has been decided; there is no restriction in either 

selecting equal or unequal number of data points at each side of the 

transition layer. Alternatively. since our method converges rapidly, we can 

select various data intervals with different number of data points to obtain 

an ensemble of solutions of the shock geometry. Then, we can investigate the 

inter section of all the sol utions, wi thin their error bounds. to 

statistically assess the shock geometry. 

The 'uniqueness' contour plot for the shock normal solution is presented 

for all the three cases in Figures 2a-c respectively. These figures show 

the contour levels of the logarithm of the x2 objective function formed from 

all the data selected at both sides of the shock and the RH conservation 

equations. versus all the possible shock normal polar angles e and $ as 

described in section 38. Also indicated are shaded regions corresponding to 

the lowest levels of the logi function, indicating the 95% confidence 

interval where the solution of the iterative scheme is located. Details 

about how to define such confidence intervals have been previously discussed 

by Scheffe [1959] and Bard [1974] and are presented in Appendix A. The 

topology of the 'uniqueness ' sur faces of the perpendicular (Figure 2a) and 

the oblique shocks (Figure 2c) seems to be similar. Both surfaces show the 

solution to lie inside a "ridge" where the value of the contour levels are 

the smallest. However the topology of the parallel shock (Figure 2b) not 

only indicates the presence of a "ridge" but it shows a pair of "holes" at 

conjugate (i. e. anti-collinear) angles. It is important to note that the 

"holes" and "hills" shown in these topologies always appear in conjugate 

pairs due to the sign ambiguity in the shock normal solution. These 
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topologies seems to be typical of the type of shock in study, however this 

should be substantiated by a statistical study. 

A search for a solution through all the holes shown in these figures 

indicates that not all of them correspond to the proper shock solution of 

the problem. To assess the proper shock-like solution, four conditions must 

be considered. First, we should certify a defensibly non-vanishing mass 

flux Gn (i. e. 16Gn/Gni < 1). Secondly, we must compare the quality of the 

asymptotic magnetofluid states predicted with the corresponding observed 

variables and determine whether such predictions are wi thin the standard 

deviations of the measurements. Thirdly, using the asymptotic magnetofl uid 

variables we determine the Al fven Mach nunber (MA = M A' COS9Bn ). If the 

quality of the asymptotic states is acceptable and the diagnosis of the 

problem indicates a fast shock solution, then the normal Alfven Mach nunber 

must be theoretically greater than unity. However, if the normal Al fv~n 

Mach number is computationally smaller than uni ty, suggesting the 

possibility of a slow shock, we must consider the relative mass flux error 

16Gn/Gni and the additional temperature information to correctly assess the 

final sol ution • Finally, using the RH equation (5) we may predict the 

thermal pressure junp across the shock given Dy 

where the subscripts "d" and "u" represent the downstream and upstream sides 

respectively. Note that the prediction of the scalar normal pressure jump 

across the shock is independent of an assumption of an equation of state. 

To evaluate AP we use the predicted asymptotic magnetofluid variables. If 
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6P yield a negative pressure value t then the "hole" selected cannot 

correspond to a shock. 

The shock normal solution obtained by the pre-averaged and iterative 

schemes are al so presented in Figures 2a-c. These solutions are ind icated 

by various symbols corresponding to the method indicated in Tables 1a-c. In 

situations where different methods yield the same solution or very near each 

other, the symbol indicator corresponding to each technique will point with 

an arrow to the proper location in the contour plots to avoid overcrowding 

the solutions. 

To determine e:tther the SEn angle defined by SEn = cos-1 (Buon/lsul). the 

Alfven Mach number MA (= MAl COS6 Bn), or the pressure jump condition, it is 

necessary to ev al uate the asymptotic states. By evaluating the optimal 

density state at each side of the shock. the sel f consistent asymptotic 

velocity and magnetic field are I uniquely' determined. Figures 3a-c show 

the I uniqueness' of the solution for the evaluation of the asymptotic states 

in all three cases. These figures indicate the levels of the logX2(p) 

objective function formed from the data selected at both sides of the shock 

* and the model equation (28) versus the normalized density p = pip as 

described in section 3c. 

represents 2 the logx (p) 

In Figures 3a-c the solid and dashed curves 

for the upstream and downstream side of the 

* transition layer, respectively. The normalization density p corresponds to 

the final predicted value determined by the iteration scheme at each side of 

the shock. For the three types of simulated shocks presented, these curves 

only contain a single minimum corresponding to the value correctly 

determined by the iteration scheme. The fact that only onle minimum exists 

at a density value p* in the range 0 < p < 4nGn2/Bn2 indicate, not only the 

'uniqueness' of the shock-like solution for the density. but also for the 
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• • asymptotic velocity V(p ) and magnetic field ~(p ) as described in equations 

(24) and (25). Note also that Figures 3a-c show the singular behavior of 

the x2
(p) function when p = O. We previously have established the existance 

of another singularity p = 41TG 2/B 2 in section 3c which indicates the n n 

transition from fast to slow shock. This singularity also exists in these 

2 • cases, but they are located far away from the X (p ) minimum and off the 

figur es. 

The general results for the three synthetic shocks are summarized in 

Tables 1 a-c. These tables contain the resul ts obtained from the 

pre-averaged and iterative methods for the geometrical characteristics of 

the shocks. For comparison, the first column contains the exact solution of 

the shock geometry of the synthetic shocks and the last column indicated by 

VS shows the solution obtained by our method. The first nine rows show the 

geometrical parameters that describe the shock geometry. The next fourteen 

rows show the asymptotic magnetofluid variables used by the pre-average 

methods and those determined from the iterative schemes. Finally, the last 

two rows give a measure of the efficiency of the iterative schemes in 

obtaining a solution. 

For the perpendicular shock (Figure 2a) the solution of our iterative 

scheme gives a aBn = 90.0° ± 2° and a shock speed of about 503 ± 17 kin/sec. 

The final solution is located at a = 20° ± 0.1° and. = 160° ± 14.7° as 

indicated by the dark circle inside the shaded region (95% confidence 

interval) along a ridge in Figure 2a. At this location the final value of 

2 the 10gX is -0.33. The path followed by the descending iterative gradient 

scheme has been indicated by the connected circles. Because of the sign 

ambiguity in the shock normal, a second solution exists at conjugate angles 

a = 160° ± 0.1° and. = 340° ± 14.7°. This second solution represents the 
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normal vector opposite (anti-collinear) to the one indicated in Table 1a and 

has a V of opposite sign to its mirror image. Both solutions are perfectly s 

val id t however in general the proper sign of the solution is decided by 

compensating the sign of the scalar shock speed Vs with the obtained normal 

to form the vector shock velocity Vs :: vii. Besides our solution we also 

show in Figure 2a the solution obtained by other methods. The general 

results of the analysj.s for this perpendicular shock are presented in Table 

1a. A comparison with other methods of the results suggests that except for 

the LA method whose convergence to a solution was extremely slow and for the 

MC method, which did not reproduce the known solution accurately enough. all 

other procedures yield reasonable results relative to the exact solution. 

The reason the MC method gave a poor solution seems to be related to the 

fact that the MC equation 

-I> 

n :: ± 

becomes singular for perpendicular shocks. The convergence in the LA method 

was too slow because at each step in the iteration process it depends on the 

same expression of magnetic coplanarity (MC) [Lepptng and Argentiero, 1971]. 

Besides, we noticed that the LA method is allowed to search for solutions in 

unphysical regions where, for example, the density is predicted negative. 

In consequence t this kind of unconstrained scheme slows down the iteration 

process and permits the gradient search to take large steps that may well 

violate the initial local Taylor series expansion. Recently Acuna and 

Lepping [1984] attempted to speed up the convergence rate of the LA method. 

Although some increase in the rate of convergence was obtained, this has not 

controlled and constrained the search in unphysical regimes. One important 
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aspect which arises from the results in Table 1a is that both the AS method 

given by 

and the VC method given by 

yield accurate solutions for the perpendicular shock geometry. Although the 

VC method is an approximate technique, in the case of high Mach number 

perpendicular shocks, it is theoretically expected to produce the proper 

solution as argued by Abraham-Shrauner and' Yun [1976]. 

Another aspect which resulted from the analysis of the contour s in 

Figure 2a is the existence of two unphysical minima located at conjugate 

pair of angles e = 900 ± 100 and • = 700 and 2500 ± 100
• This class of 

minima are almost always present in the contours. Their location are nearly 

orthogonal to the proper optimal solution. These solutions yields MA' < 1 

and the magnetofluid variables determined from them are in very poor 

agreement with the plasma and magnetic field observations. Moreover, these 

solutions violate the pressure jllllP condition across the shock layer. An 

inspection of these unphysical shock solutions suggests that they seem to 

belong to either the family of the tangential, contact or rotational 

discontinuities since the mass flux is nllllerically extremely small. 

A similar analysis has been performed for a synthetic parallel shock as 

shown in Figure 1b. The plots in Figures 2b and 3b show the 'uniqueness' of 
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the shock normal solution and the magnetofluid variables for this shock. 

Superposed on Figure 2b we show the locus of the descending path of the 

iterative scheme and the solutions by other methods. The general results of 

the analysis of these shocks are tabulated in Table 1b. The results of our 

iterative scheme yi. eld BBn :: 0.03° ± 5° with a shock speed of 500 ± 12 

km/sec. The final solution of the parallel shock is indicated by the dark 

circle in Figure 2b at the polar angles e :: 20° ± 11.8° and ~ :: 160° ± 34.6° 

located in one of the isolated sh~ded "holes". At this location the final 

2 value of logX is 1.28. Similarly there is a conjugate solution at e :: 

160.1° ± 11.80 and «p :: 3400 ± 34.6° corresponding to the opposite sign of 

the shock normal. Both solutions are physical since they predict a positive 

pressure jump across the layer. For this case the LA method did not 

converge wi thin a reasonable time. Fur thermore, neither the MC method nor 

the AS method predicted the correct solution for this shock because of the 

singular behavior that both methods have as the BBn approaches 0°. The 

location of the Me and AS .solutions, shown in Figure 2b, indicates that they 

reside in a deep shaded 'ridge', where the x2 function is small and where 

the unphysical solution exists. On the other hand the VC method gave good 

resul ts that lies wi thin the 95% confidence level of the minimum. However 

this agreement may be fortuitous because in the design of the parallel 

shock, the normal was chosen to be along the direction of the flow velocity 

which is a basic assumption of the VC method. 

The analysis of the oblique shock in Figure 1c yield a solution of BBn :: 

45.20 ± 8° and a shock speed of 499.8 ± 19 km/sec. This final solution is 

indicated in Figure 2c by the dark circle along the shaded "ridge" at the 

polar angles e :: 20.8° ± 1.0 0 and «P :: 159.3° ± 46.0°. A conjugate solution 

is also present at e :: 159.2° ± 1° and ~ :: 339.3° ± 46.0°. The results of 
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Figure I a. Magnetic field and plasma data plots of a synthetic perpendicular shock. Vertical 
lines indicates the data interval selected for the shock geometry analysis at 
both sides of the layer. The horizontal axis represents time in arbitrary units 
and the shock time is 0.5. 
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Figure I b. Magnetic field and plasma data plots of a synthetic parallel shock. Vertical1ines 
indicates the data interval selected for the shock geometry analysis at both 
sides of the layer. The horizontal axis represents time in arbitrary units and 
the shock time is 0.5. 
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Figure I c. Magnetic field and plasma data plots of a synthetic oblique shock. Vertical 
lines indicates the data interval selected for the shock geometry analysis at both 
sides of the layer. The horizontal axis represents time in arbitrary units and 
the shock time is 0.5. 
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Figure 2a. Contour plots of the log X2 (e, ¢) function versus the shock normal polar angles 
(8, ¢) indicating the 'uniqueness' of the shock geometry for a synthetic perpen­
dicular shock. Superimposed on these figures we indicate the location of the so­
lution by magnetic coplanarity (MC) '*', velocity coplanarity (YC) '+', Abraham­
Shrauner (AS) 'S, Lepping-Argentiero (LA) '0' and our solution (YS) '.'. 
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Figure 2b. Contour plots of the log X2 (0, ¢) function versus the shock normal polar angles 
(0, ¢) indicating the 'uniqueness' of the shock geometry for a synthetic parallel 
shock. Superimposed on these figures we indicate the location of the solution by 
magnetic coplanarity (MC) '*', velocity coplanarity (YC) '+', Abraham-Shrauner 
(AS) '/::", Lepping-Argentiero (LA) '0' and our solution (YS) '.'. 

34 



>­
::E 

UNIQUENESS ~F NORMAL 

3 3 0 14-+++ ..... + .. \.; .... +_ .... + ...... , ... .., ..... + ....... , ... ·I~··~··.,.+·· 

~ 210 
1.1.. -
g» 180 J-jo·BHftlj'fi·{--{·i-liI·+··fL:::+-i .. 

"'0 -
150 

90 

30 

60 120 
8 (deg.) FROM X 

180 

Figure 2c. Contour plots of the log X2 (8, ¢) function versus the shock normal polar angles 
(8, ¢) indicating the 'uniqueness' of the shock geometry for a synthetic oblique 
shock. Superimposed on these figures we indicate the location of the solution 
by a magnetic coplanarity (MC) '*', velocity coplanarity (VC) '+', Abraham­
Shrauner (AS) '1:::.', Lepping-Argentiero (LA) '0' and our solution (VS) '.'. 
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Table la. Results of the analysis of the synthetic perpendicular shock. 

PRE-IVERXCED R[TRO~ - ITERXTIVE seRERES 
Ell act Magnetic Velocit.y Abrahlll'll- Lepp1nl- Vinu-

Solution Copllinllrity Copltlnllri ty Shrlluner Aruntlero Scudder 
Me( .) ve{.) AS( 6) L.A(D) VS{I) 

~(dl!g) 90.0 90.0 90.0 90.0 90.0 

v s (KIIlI s) 500.0 351.2 502.6 502.6 502.7 

6'l s (KI'IlI s) ~17. 1 

n 0.9397 0.6566 
x 0.9397 0.9397 0.9397 

n -0.3214 -0./l693 -0.3214 -0.321 q -0.32111 
y 

n z 
0.1170 -0.5905 0.1170 0.1170 0.1170 

IIlln(deg) t2.1 

H" 6.1 /l.1I 6.3 6.3 6.3 

AP(ev/cc) 262.2 110.9 279.8 279.8 281. 3 

" , (Pllrt/cc) 2.00 2.02 2.02 2.02 2.02 

V xl (Krolz) 3211.9 327.9 321.9 327.9 321.7 

'ly1 (KIII/z) -112.5 -112.1 -112.1 -112.1 -112.1 

V
z1

(Km/s) 110.9 110.11 /la.s 110.8 110.8 

Bx,(nT) 0.55 0.511 0.514 0.51! 0.55 

By,(n!) t. II 1 1.110 1.110 1.110 1.111 

1\:,(nT) -0.51 -0.51 -0.51 -0.51 -0.51 

n2(Plllrt/cc) 6.0 6.0 6.0 6.0 6.01 

'l
x2

(Kmls) 1422.9 423.7 1123.7 1123.7 1123.8 

V Y 2(Km/3) -11111.6 -1··.9 -11111.9 -14Q.9 -1115.0 

V
2
,2(KIII/s) 52.6 52.7 52.7 52.7 52.8 

Bx2 !n!) 1.611 1.63 t.63 1. 63 1.63 

!\r2(nT) 11.211 11.21 Q.21 11.21 11.20 

Bz2( n!) -1.511 -1. 53 -1.53 -1.53 -1.53 

No. iter )10 11 
5 

T c (!lee) )10
11 

1113.6 
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Table 1 b. Results of the analysis of the synthetic parallel shock. 

PRE-AVERAGED METHODS !TEKAT!V£ !~REME! 
Ell set "-,neUe Velocity Ab"sh_- Leppin,- Y1nu-

Solution Cophns"U.y Cophns"U. y Sti"sune" A",entte"o Scudder 
IC(· ) Ve(.) AS( ') LA(Q) VS(') 

'&n(de,) 0.0 89.9 0.0 89.9 0.03 

" (le.I.) 500.0 1.33 501.6 -1.3 500.1 

IV. (le.I.) t".7 

n 0.9397 -0.2395 
II 

0.9397 0.2396 0.91100 

Ii -0.32111 -0.38110 y -0.32111 0.381111 -0.3207 

fi 0.1170 0.8917 0.1170 -0.8915 0.1166 , 
lOn(de,) t28.~ 

"A 11.87 0.01 5.02 0.01 11.89 

W(ev/ce) 313.3 -0.1 323.1 -0.1 316.5 

n, (pa"t/cc) 2.00 2.01 2.01 2.01 2~01 

Vll1 (KIII/,) 328.9 328.3 328.3 Va.3 328.3 

V
y1

(b/,) -112.5 -112.3 -112.3 -112.3 -112.3 

V,,(b/,) 110.9 110.9 110.9 110.9 110.9 

BIl1 (nT; 1." 1.89 1.89 1.89 1.18 

By 1 (n!) -0.611 -0.65 -0.65 -0.65 -0.611 

8, ,(n!) 0.23 0.211 0.211 0.211 0.23 

n2(ps"t/ce) 6.00 5.98 5.98 5.98 5.98 

V 112(Xa/,) 1122.9 U2.3 "22.3 "22.3 "22.3 

Vy2(Ka/,) -111".6 -1".11 -11111.11 -1 ....... -1"11.11 

'Z2(Xa/,) 52.6 52.6 52.6 52.6 52.6 

BII2(nT> 1." 1.87 1.87 1.87 1.88 

8y2(n!) -0.611 -0.611 -0.611 -0.611 -0.65 

8z2(n!) 0.23 0.23 0.23 0.23 0.211 

No. ite" >103 8 

Te (,ee) >10- 338.0 
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Table Ie. Results of the analysis of the synthetic oblique shock. 

PRE-lIVEUCE'I1I1:TRODS ITERXTIVE SCREMES 
Exact. Magnetic Veloc it. Y Abrlllhllll- L.epplng- Vinu-

Solution Coplanar1t.y Co planar 1 t.y ShrlllUliler Mlllent1ero Scudder 
HC( tI) VC(. ) AS( A) LACO) 'SCt) 

~(de,) 11'5.0 115.1 35.8 11'5. 1 1111. '5 45.2 

's«(lIIII's) 500.0 502.3 529.8 502.3 536.2 1199.8 

tSV,(h/ll) ±18.6 

(j 0.9397 0.9392 x 0.9826 0.9392 0.91118 0.9352 

fj -0.32111 -0.3226 -0. 1711q -0.3226 -0.3226 -0.3318 
'J 

n z 0.1170 0.11111 0.06)'5 0.1111\ 0.09111 0.1251 

t5Dn (deg) ±a.5 

"A 2.2 2.3 2.3 2.3 2.3 

AI"(ev/ee) 11011.0 1156.2 1186.2 1156.2 815.1 3711.6 

n 1 (partlee) 5.00 5.02 5.02 5.02 5.06 5:07 

'i
x1

(lClII/s) 362.11 361.1 361.1 361.1 372.2 

'1
11 

(lillii'll) 55.9 55.6 55.6 55.6 78.8 

V t 1 (1(1111 II) -20.3 -20.3 -20.3 -20.3 -28.9 

Ix,(n!) 7.55 7.50 7.50 7.50 7.117 7.36 

8y ,(n1) 3.31 3.29 3.29 3.29 3.211 3.111 

B:&I(n1') -1.20 -1.20 -1.20 -1.20 -1.23 -1.111 

n2(parVce) 13.30 13.28 13.28 13.28 13.23 13.07 

'x2(b/s) 1113.8 11711.7 11711.7 11711.7 1163.7 

\'2«(II1II',) 35.11 35.5 35.5 35.5 , 1. 1 

V:&2(llllll's) -12.9 -12.9 -12.9 -12.9 -3.7 

IIx2 (nT) 11.111 11.35 11. 35 11.35 11.29 11.58 

By2(nT) 13.29 13.21 13.21 13·21 13.36 13.60 

8z2(nT> -11.84 -11.81 -11.81 -11.81 -11.76 -11.98 

No. iter 30 10 

T e (sec) )10- 386.3 
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the analysis for this shock are summarized in Table 1c. From the results in 

Table 1c we note that the MC and AS methods yield reasonable solutions, 

however the VC solution resulted in poor agreement with the exact solution. 

This is due to the mis-alignment of the bulk velocity to the shock normal 

and al so probably to the small value of the Al fven Mach nunber. The angle 

8 Bn and the shock speed V s given by the VC method are well outside the 

confidence bounds of the proper minimum solution. On the other hand, the LA 

method yielded good 8 Bn angle wi thin the 95% confidence region; however, 

both the LA shock speed and pressure jump across the shock depart 

considerably from the exact solution. Note that the LA method cannot 

predict the asymptotic plasma bulk velocity at each side of the shock, but 

it can only resolve the velocity jump /::,.V = V2 - V 1 across the layer. The 

predicted velocity jump across the layer obtained by the LA method for this 

+ 
case yielded /::,.V = (115.8, -68.9, 21.6) km/sec which compares relatively well 

+ 
with the exact velocity jump /::,.V = (111.4, -20.5, 7.4) km/sec obtained from 

Table 1c. Moreover, we find a conjugate pair of unphysical solutions at e = 

goo ± 50 and , = 700 and 2500 ± 50 that violate the pressure jump condition 

across the shock and are located almost orthogonal to the proper solution. 

This unphysical "holes" also give a very small mass flux suggesting that 

this candidate solution is either a tangential or a contact discontinuity. 

b. Real Interplanetary and PI anetary Shocks 

Complete plots of the magnitude and components of the magnetic field and 

plasma bulk velocity, with the plasma density in a heliocentric (R, T, N) 

coordinate system for a quasi-perpendicular and a quasi-parallel 

interplanetary shock are presented in Figures 4a-b, respectively. A similar 

plot for a planetary quasi-perpendicular bow shock in a GSE (geocentric 
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solar ecliptic) coordinate system is also shown in Figure 4c. The intervals 

selected for the analysis of the shock geometry are indicated by the 

vertical lines. 

The event on November 27, 1977 corresponds to a quasi-perpendicular 

forward shock at 2225: 57 UT as seen by the Voyager 1 at about 1.6 AU. 

Figures 5a and 6a represents the 'uniqueness' plots for the shock normal and 

asymptoUc magnetofluid variables solutions respectively. Superposed on 

Figure 5a are the solutions obtained by other techniques. The path followed 

by the iterative gradient scheme to get to our solution is indicated by the 

connected circles. The results of this event are tabulated in Table 2a. 

Fir st 9 note the similarity of the topology of the shock normal conjugate 

pair of solutions to that of the simulated perpendicular shock. As before, 

the solutions are along a "ridge" path and are located at two "thin" shaded 

contours centered about a = 37.5° ± 1.8° and ~ ::: 262.5° ± 22° and a ::: 142.5° 

± 1.8 0 and ~ ::: 82.5() ± 22° where the value of logX 2 is -0.014. Our 

estimates confirm that this event is a quasi-perpendi.cular shock wi. th a aBn 

::: 84.2° ± 9° and a shock speed of 305.5 ± 19 km/sec. Compar i son 0 four 

solution wi th those obtained by other methods is shown in Table 2a. An 

inspection of the asymptotic magnetofluid variables predicted by our method, 

compared to the average values used by the pre·-averaged techniques, and 

their standard deviations as shown in the first column. indicates the good 

agreement of our predictions within the error bounds of the data. For this 

event the LA solution is unknown beacuse the method did not converge within 

a reasonable time. Nonetheless, both the AS and the VC methods yielded good 

solutions because the shock meets the preconditions of these methods. Both 

solutions He wi thin the 95% confidence region about the minimum and they 

are within the error bounds supported by the data and the calculations. 
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However, although the Me solution is not extremely different from those 

obtained by other methods, it is nevertheless, outside the accepted 

confidence level. We have al so estimated for this event using the electron 

and proton data, the observed thermal scalar pressure jump across the shock 

layer. The average electron temperature in the upstream and downstream 

sides of the shock are 6.0 ev and 11.0 ev respectively. Similarly, the 

proton temperatures in the upstream and downstream sides are 0.8 ev and 3.5 

ev, respectively. Assuning charge neutrality we find that the thermal 

pressure junp is about 224 ev/cc. The value predicted by our method (see 

Table 2a) gives 296 ev/cc. This discrepancy of about 30% in the prediction 

+ + 
of A(neeen) can be explained by taking into consideration the geometry and 

orientation of the electron detector in the Voyager 1 spacecraft. The fact 

that there is only one electron detector which points always perpendicular 

to the radial direction almost in the equatorial plane (i. e. T-N plane) 

certainly indicates that the temperature reported are underestimated since 

there is not enough directional coverage of the electron distribution 

function to determine the proper pressure tensor. Besides, the important 

temperature canponent required for the pressure junp calculation should be 

that along the normal. But since this event is a quasi-perpendicular shock, 

this indicates that we must evaluate TJ. with certainty. An inspection of 

the electron detector orientation seems to indicate that the temperature 

obtained from it is the parallel canponent because of the field geometry 

relative to the detector during this period. 

The case on January 29, 1978 is a quasi-parallel rever se shock at 

0918:39 UT seen by Voyager 2 at about 2 AU. This shock has been previously 

studied in association with its structure by Scudder et al. [1984] and in 

the context of upstream waves by Vinas et al. [1984]. The 'uniqueness" 
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plots for the shock normal and magnetofl uid var iables solutions resulting 

from our calculations are shown in Figures 5b and 6b respectively. The 

results by our technique and by the other methods are shown in Table 2b. 

For reference, the shock normal results of other methods are superposed in 

Figure 5b. We find and confirm that this event is a quasi-parallel shock 

with a 6 Bn = 29° ± 18.0° and a speed of 261 ± 39 km/sec. The shock normal 

corresponding to this event is located at e = 157.7° ± 14.1° and ~ = 125.9° 

± 31.1° with its conjugate normal at e = 22.3° ± 14.1° and <f> = 305.9° ± 

31.1° where the value of the minimum logX2 is -0.9. Besides our solution, 

the AS method gives the only other result which lies within the error bounds 

of the accepted solution. All the other methods lie outside the 95% 

confidence interval. Note that the Me and LA methods are well outside the 

region where the minimum is located indicating that their solution are 

poorly resolved. Another important aspect of our calculations is the good 

agreement of the predicted thermal scalar pressure jump across the layer 

with the observed thermal pressure jump as obtained from the electron and 

pr oton data. The average electron temperature in the upstream and 

downstream sides of the shock are 6.1 ev and 6.2 ev respectively. The mean 

proton temperature in the upstream and downstream sides are 1.92 ev and 5.0 

ev respectively. Assuming equal density for electrons and ions 

(quasineutrality) we find that the thermal pressure jump is about 6.4 ev/cc. 

Comparing this value with our prediction in Table 2b we find agreement well 

wi thin the 10% error of the observed jump while that obtained by other 

methods are larger. 

The final event we investigated is a planetary bow shock crossing from 

ISEE-1 spacecraft on November 7. 1977. The shock crossing time is at 

2251:19 UT and the data intervals selected at each side of the layer for the 

43 



analysis are indicated by the vertical lines in Figure 4c. So far, we have 

used only proton plasma data to analyze the shock geOOletry. However, for 

this event we shall use the electron plasma data obtained from the Goddard 

three dimensional electron spectrOOIeter. The 'uniqueness' plots for the 

shock normal and the asymptotic magnetofluid variables are shown in Figures 

5c and 6c respectively. As usual, the locus of the iterative scheme and the 

resul ts from all the methods are indicated in Figure 5c. The overall 

resul ts of the analysis of this event are presented in Table 2c. Our 

analysis indicates that this event is a quasi-perpendicular shock with ean = 

74.4° ± 20° with a shock speed of -8.4 ± 31 km/s. The solution is located 

inside one of the shaded "holes" representing the 95% confidence region at 

the polar angles e = 164.9° ± 7.5° and ~ = 332.9° ± 28° where the minimum of 

the 10gX 2 is 1.7. Another conjugate solution is also found at e = 15.1° ± 

7.5° and ~ = 152.9° ± 28° corresponding to the opposite normal sign selected 

in Table 2c. The solutions obtained by the AS and the VC methods are al so 

very near the optimal minimum solution. Despite the fact that the AS and VC 

solutions are within the 95% confidence region, their relative shock speed 

error is greater than 10% cOOlpared to the shock speed determined from the 

two spacecraft method. However, the MC and LA methods yield very poor 

solutions, which are well outside the acceptable confidence interval. 

Indeed, the MC solution is quite close to one of the unphysical solutions of 

the problem. For cOOlparison, the velocity jump across the shock determined 

• + 
by the LA method glVes f:,V = (15.4, -56.3, 56.2) km/sec while our solution 

+ 
(VS) gives f:,V = (197.2, -46.0, 26.5) km/sec. Figure 5c al so show the 

presence of a conjugate pair of unphysical shock solutions that yield 

negative pressure jump across the shock layer. These unphysical shock 

'solutions' are located at e = 76° ± 8° and ~ = 353° ± 9.5° and also at its 
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conjugate position e :: 104 0 ± 8° and 4> :: 1'73° ± 9.5°. This bow shock has 

been exhaustively investigated by Scudder et ale [1985]. They have reported 

two spacecraft calculations of the shock speed using the ISEE-1 and -2 

observations of the same shock crossing. We have compared our calculations 

of the shock speed wi th that determined by the two spacecraft time delay 

method and the result is in excellent agreement with it. From the 

-+ 
separation distance between the spacecrafts AS :: (115.2, -193.0, 111.4) kID, 

the time delay of the bow shock crossing At :: 26 sec and assuming the shock 

normal determined by our method we can find the shock speed as seen by an 

observer in the spacecraft frame 

v (spo) ::: 
S 

lit 

Therefore the shock speed V (spc) gives -8.8 km/sec. A comparison with our 
s 

results indicates an excellent agreement within the error bounds of the 

calculations. Scudder et a1. [1985] have al so reported the velocity using a 

somewhat larger data interval in the downstream side of the shock. Their 

solution 13 al so consistent wi thin their error bounds wi th that determined 

in this paper. 

-+ -+ 
\ve have also evaluated and compared the thermal pressure jump lI(n·~·n) 

across the shock wi th that calculated from the electron and proton 

temperature data for the data interval indicated in Figure 4c. The average 

electron temperature in the upstream and downstream sides of the shock are 

1.39 ev and 4.0 ev, rEispectively. Similarly. the proton temperatures in the 

upstream and downstream sides are 6.0 ev and 148.2 ev respectively. 

Assurnlng again charge neutrality we find that the observed thermal pressure 

jump across the shock is 4736. 1 ev/ cc. The pred icted pressure jump (see 
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Figure 4a. Plasma and magnetic field data time plots for a real quasi-perpendicular inter­
planetary shock seen by the Voyager 1 spacecraft. The vertical lines represent 
the data interval selected for the shock geometry analysis. 
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V2-1978 MAGNETIC FIELD AND PLASMA DATA FOR SHOCK,JAN.29,1978 
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Figure 4b. Plasma and magnetic field data time plots for a real quasi-parallel interplane­
tary shock seen by the Voyager 2 spacecraft. The vertical lines represent the 
data interval selected for the shock geometry analysis. 
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Figure 4c. Plasma and magnetic field data time plots for a real planetary bow shock seen 
by the ISEE- I spacecraft. The vertical lines represent the data interval selected 
for the shock geometry analysis. 
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Figure Sa. 'Uniqueness' contour plots of the log X2 (8, ¢) function versus the shock normal 
polar angles (8, ¢) of a real quasi-perpendicular interplanetary shock. The loca­
tion of the solution of magnetic coplanarity (MC) '*', velocity coplanarity (VC) 
'+', Abraham-Shrauner (AS) '6.', Lepping-Argentiero (LA) '0' and our solution 
(VS) '.' are indicated. 
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Figure 5b. 'Uniqueness' contour plots of the log X2 (0, </» function versus the shock normal 
polar angles (0, </» of a real quasi-parallel interplanetary shock. The location 
of the solution of magnetic coplanarity (MC) '*', velocity coplanarity (YC) '+', 
Abraham-Shrauner (AS) '6', Lepping-Argentiero (LA) '0' and our solution (YS) 
'e' are indicated. 
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Figure 5c. 'Uniqueness' contour plots of the log X2 ((), 1» function versus the shock normal 

polar angles ((), 1» of a real planetary bow shock. The location of the solu­
tion of magnetic coplanarity (MC) '*', velocity cop1anarity (YC) '+', Abraham­
Shrauner (AS) '6.', Lepping-Argentiero (LA) '0' and our solution (YS) '.' are 
indicated. 
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Figure 6. 'Uniqueness' plots of the log X2 (P) function versus the nonnalized density p = 
plp* of a real a) quasi-perpendicular and b) quasi-parallel interplanetary shocks 
and c) planetary bow shock. The normalization constant p* is the value of the 
asymptotic density obtained by the iterative gradient scheme at the minimum of 
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Table 2a. Results of the analysis of the November 27, 1977 
interplanetary shock .. 

PRE-AVERAGED METHODS IT~RATIY~ S~R~HE~ 
Srgmu Mmgnenc Velocity Abrlll'ulll1l- Lepping- vliiu-

:!:u Cophnlllrity Cophnllir1ty Shrllll.!ner Ar!ent1ero Scudder 
MC(@) VC( .. ) AS( Ii) I.A(Q) '1S(III) 

~S) 81.1.0 86.S M.3 811.2 

V 3 (hI sl 288.0 313.9 306.6 305.5 

6'1 s «(1111 s) :!:19.3 

A 0.1370 0.8221 0.79511 0.79311 nil 

OJ -0.11593 -0.11.156 -0.1509 -0.0793 

nH -0.1.1959 -0.5519 -0.5869 -0.6036 

4I1n(dl!(!!;) 1'9.0 

14" 8.0 8.5 8.5 8.0 

Af'(ev/cc) 258.2 291.0 291.0 295.8 

II 1 (plirt/ cc) 0.20 7.611 7.64 7.64 7.65 

'1
111 

(KIIII s) 0.40 282.2 282.2 282.2 282.8 

'11'1(l<1li/$) 0.110 -7.1 -7.1 -7.1 -I!. 8 

\1'11 (11(l1li s) 0.50 0.8 0.8 0.8 2.0 

B
rl1

(flT) 0.10 0.611 0.611 0.611 0.68 

B.r,(nT) 0.10 O.:W 0.20 0.20 0.20 

BM,(nT) 0.10 1.02 1.02 1. 02 1.09 

n2(plllrt/cc) 0.90 , 8.96 18.96 18.96 18.98 

"112(1(1111:1) 0.90 322.2 322.2 322.2 321.6 

'1'2 (KIIII:I) 1.110 -111.2 -111.2 -111.2 -12.6 

'NZ(l{lIIIs) 1.10 -26.1 -26. 1 -26.1 -27.2 

BlIl(n!) 0.20 1. 96 1.96 1. 96 1.85 

812(n1) 0.30 0.116 0.116 0.146 0.117 

8112(nT) 0.30 2.711 2.711 2.71l 2.58 

No. iter )103 9 

T (sec) )1011 
333.5 c 
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Table 2b. Results of the analysis of the January 29, 1978 
interplanetary reverse shock. 

'RE-I.ERICED AEIRCDS ITERITI9E SCRERES 
51 .. ., "-IneUc 'elocity Abnh .. - IAppinl- Vinu-

til Copllnarlty Copllnarlty Shnuner ira·nU.ro Scudder 
K:( .) 'C(.) AS( .) LA(e) 'S(.) 

Ian (de,) 1.2 36.8 30.8 9.1 29.3 

',(KaI,) -259.7 -283.8 -270.5 -271.9 -260.8 

"s(h/,) t39.0 

IfR -0.8666 -0.9936 -0.9'3- -0.9392 -0.92'8 

1fT -0.37116 0.05118 -0.27111 -0.2750 -0.2231 

"N -0.3297 0.0990 0.1867 -0.20511 0.3080 

"In (del) t18.3 

Hi 1.3 1.6 1.5 1.7 

.,(..,/cc) 7.9 12.5 11.0 10.7 6.8 

n , (part/cc) 0.011 0.53 0.53 0.53 0.53 e.53 

'Rl(K./S) 2.9 360.7 360.7 360.7 357.' 

'T1(Kals) 7.5 11.9 '.9 11.9 6.0 

Ylll(Ka/s) 1.2 12.9 12.9 12.9 6.0 

1.,(nT) 0.15 -1.29 -1.29 -1.29 -1.29 -1.19 

aT1 (nT> 0.311 -0.59 -0.59 -0.59 -0.58 -0.58 

",,(nT> 0.23 -0.'9 -0.'9 -0.'9 -0.1t3 -0.20 

n2(.,.rt/cc) 0.12 0.95 0.95 0.95 0.911 G.91 

'R2(la/,) 7.70 328.11 328. II 328.' 332.' 

'T2(Kals) 9.63 6.70 6.70 6.70 5.7G 

'.2(1Ca/ s) 11.'0 16.2 16.2 16.2 25.5 

I
12

(nT) 0.111 -1. III -1.111 -1. ,. -1.10 -1.33 

'r2(nT) 0.60 -1.02 -1.02 -1.02 -1.00 -G. 99 

a.2(nT> 0.80 -0.38 -0.38 -0.38 -0.73 -e.91 

No. 1ter 10 6 

Tc (HC) 1188.2 
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Table 2e. Results of the analysis of the planetary bowshock. 

PRE-AVERAGE5 RETH55! ITERATIVE !~RERE! 
slalllllS "'III lIeli e Ve1oclt.y Abrllhllilll- iApplns- Yinu-

to Coplinllrlty Cophnllrity ShrII I.Iner Arsent1ero Scudder 
ICCI) VCC.) AS( II) LACO) VS(t) 

~(de,) 50.5 83.3 80.8 63.2 TVi 

"s(ICaI/S} -31.2 -15.2 -11.5 611.5 -8.11 

,,, s (Kllll/s) :t30.6 

n -0.0126 -0.9513 x 
-0.9608 -0.7829 -0.965-

ny 0.9906 0.2117 0.2195 0.5980 0.2321 

"7. -0.1361 -0.2242 -0. 1691e -0.1718 -0.1188 

4fl
n

(deg) i20.11 

"A 2.0 8.1 8.1 8.1 

.AP( ev/ce) -2311.8 5680.0 5700.0 1369.4 5679.8 

n 1 (pmrtl ee) 0.63 9.89 9.89 9.89 8.10 9.89 

")[,(1II1II3) 5.90 -289.6 -289.6 -289.6 -290.5 

\.1 (1(1111 s) 19.113 111.2 111.2 '41.2 142.8 

"7.1 (1(IIIIIs) 17.00 2.3 2.3 2.3 11.8 

Bxt (nT) 0.12 -0.63 -0.63 -0.63 -0.95 -1.27 

By, (n1') 0.011 3.91 3.91 V~l 3.90 2.97 

117.,(n1) 0.12 3.58 3.58 3.58 3.66 11.17 

fl
2

(Plllrttee) 0.16 31.60 31.60 31.60 29.63 31.60 

"x2(lICIIII/s) 1.13 -911.3 -911.3 -911.3 -93.3 

"Y2(JI{IIIIIS) 3.95 -2.3 -2.3 -2.3 -3.2 

"1.2(1(II1II 3) 11. il6 il8.11 -8.11 118.11 38.3 

8x2(n1) 1.26 -2.110 -2.110 -2.ilO 1.11 -1.011 

By2CnT) 2.98 5.57 5.51 5.51 10.62 8.78 

B7.2(n1') 1.38 15.11 15.71 15.71 111.93 13.72 

No. iter 25 1 

To (sec) 3000. 10. 
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Table 2c) gives 5679.8 ev/cc which has about 15% deviation from the observed 

value. This discrepancy can be explained by considering the errors incurred 

in the evaluation of the predicted pressure, since its calculation depends 

mostly in the poorly determined asymptotic magnetofluid variables. A crude 

estimate of the error bounds in the pressure jump due to uncertainties in 

the asymptotic magnetofluid variables yield ±970 ev/cc. It is clear then, 

that the predicted pressure jump encompasses wi thin this uncertainty the 

observed pressure jump across the shock. Scudder et al. [1985] have also 

reported the pr essur e jump using a somewhat larger data interval. Their 

results are consistent within the error bounds to the values reported in 

this paper. 

5. Summary and Conclusions 

We have presented and demonstrated the utility of a new, fast, iterative 

method to determine the geometrical characteristics of a shock using the 

plasma and magnetic field ob servations together with a sub set of a 

Rankine-Hugoniot model equations. The method exploited a new vector space 

that is separable, and unlike other methods contains a smaller number of 

non-linear unknown variables. An important aspect of the procedure is that 

'uniqueness' (or lack thereof) of the solutions can be demonstrated by 

either analytical or by graphical methods. To the best of our knowledge, 

this is the first time that 'uniqueness' has been demonstrated for the shock 

geometry solution. In so doing we also have illustrated the possible ways 

in which higher order non-linear techniques can obtain a misleading 

sol ution. 

The analysis we have presented indicates that, unlike extant methods, 
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this new iterative scheme is reliable at all sBn-angles regardless of the 

shock sbrength. geometry and direction of propagation relative to the 

ambient flow. The results in Tables 1a-c and 2a-c for synthetic and real 

shocks respectively. demonstrate the reliability and accuracy of the method 

in comparison to other procedures. A virtue of this method which indicates 

the well-conditioning of the approach is the lack of singular behavior for 

the extreme situations such as the purely perpendicular (BBn ::: 90 0
) and 

parallel shock. Our analysis also indicates that the 

uncertainties in each set of parameters in the least squares sequence is 

.... 
smaller for the shock normal polar angles (i. e. the shock normal n) and 

increases for the specification of the asymptotic magnetofl uid var iables. 

This impl ies that the determination of the asymptotic states is more 

sensitive to errors in the observations. On the other hand. techniques such 

as magnetic coplanarity. velocity coplanarity and the Abraham-Shrauner mixed 

data pre-averaged methods select a priori these states to determine the 

shock normal and in doing so their shock normal calculation will be equally 

affected by these uncertainties. 

The comparison of shock parameters as obtained by different techniques 

indicates that some of the other methods are reliable for particular shock 

geometries. In the case of perpendicular shocks, Abraham-Shrauner (AS) and 

velocity coplanarity (VC) methods gives good results for the shock geometry. 

On the other hand. magnetic copl anari ty (MC) cannot describe the shock 

geometry of perpendicular shocks since its expression is singular as aBn 

approaches 90 0
• Similarly the Lepping and Argentiero method cannot 

reasonably converge for even quasi-perpendicular shocks because its solution 

depends on the nearly singular expr ession of magnetic coplanari ty. For 

par all el shoe ks we fi nd that neither the Me. the LA nor the AS method scan 
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determine an accurate shock geometry. Again, this is because these methods 

are singular as 6Bn approaches 0°. Generally all the techniques give 

reasonably good results for oblique shocks except for the approximate VC 

method which was demonstrated to fail in this geometry when the flow 

velocity was not aligned with the shock normal vector. 

There still remains various aspects on the determination of the shock 

geometry which deserve some consideration, however they can be difficult to 

implement. From the point of view of non-linear optimization, it is 

possible to incorporate the expression of the scalar pressure jump 

condition, even in the absence of temperature measurements, into the least 

squares normal equation for the shock normal polar angles determination. 

This condition will act as a constraint or penalty function and its effect 

will be to eliminate some of the unphysical solutions of the problem. 

Unfortunately, the analytical representation of this penalty function is not 

clear. 

An important application that resulted from our solution is the 

determination of various frames of references, such as the deHofftnan-Teller 

frame CHTF) [deHoffman and Teller, 1950] and the normal incidence frame 

(NIF) since their calculation depends on the shock normal, speed, 

conservation constants and the asymptotic magnetofluid states [Scudder et 

al., 1985]. With the availability of a technique that determines the 

optimal conserved fluxes at the shock, there is now a viable way to estimate 

these quanti ties which heretofore were expressed as functionals of the 

poorly determined 9 Bn values. For example, the deHoffman-Teller 

transformation velocity can be written either as 
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or as 

E
t 

x 
-+ 
n 

VHT = c 
B 

n 

in terms of the conserved quantities of higher quality than the state 

variables. 
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Appendix A 

The analysis of the non-linear system of equations, such as for instance 

the Ranki ne-Hugoniot conservation equations (8) - (11), is conveniently 

accomplished by means of the generalized inverse method. The application of 

this method to non-linear systems has been previously discussed, e.g. 

Jackson [1972J. Bard [1974] and Lanczos [1961]. The generali zed inver se 

method is a matrix formulation of the least squares problem where the 

fundamental equation to be solved is represented as 

+ + 
A IIp :: llY (Al) 
:: 

+ -+ + -I- + (0) 
where llY :: Y - F(x i ; Pj ) is a vector of length Nt (L e. i:: 1. N') 

-+ 
representing the difference between the observations Y and the model 

prediction and A is a matrix Nt x M formed by the partial derivatives (i. e. 

the Jacobian) of the model equations wi th respect to the model unknown 

+ 
parameters p. (i. e. j :: 1, M) evaluated at the initial guess. 

J 

The solution of the normal equation (A 1) is equivalent to the least 

2 ... 
squares minimization method of the objective X (p) (i.e. the chi-square) 

function. This function is generally defined as 

(A2) 

where cr represents the standard deviation of the observations. Equation 

(A2) gives a measure of how well the model equations represented by '(~i; 
... ... 
p.) fits the observations indicated by the vector Yi • 

J 
In the matrix 

formalism. the m1nimi zation of the x
2 

funct10n 1s analogous to the 
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determination of the optimum parameters that minimize the function 

2 + +T + 
X (p) = r r 

+ + + 7. +T . 
where r is the residual vector given by r = (~ ~p - ~ I) and r 1S the 

transpose vector. Generally, the objective function x2 is normalized by the 

nunber of degrees of freedom \I of the system. The number of degrees of 

freedom is defined as the difference between the total number of data points 

N' and the number of unknown parameters per model equation (MIL) (i. e. \I = 

N' - MIL). Since the minimi zation of equation (A3) and the generali zed 

method solution of equation (A1) have been shown to be mathematically 

equivalent [Lanczos, 1961; Jackson, 1972; Bard, 1974] we shall instead 

proceed wi th the application of the later method to the linearized matrix 

equation (An. The reader is refered to the mentioned papers (and 

references therein) for the theoretical aspects of these methods. 

The matrix formulation of the generali zed inver se method utili zes the 

singular value decomposition of Lanczos [Lanczos, 1961: Jackson, 1972]. 

This approach requires the estimation of the eigenvalues and eigenvectors 

associated with the matrix ~ in (A1). This approach is convenient when the 

matrix ~ is well conditioned in the sense that its eigenvalues are large and 

the iteration scheme will require short steps in the parameter space, 

keeping the linearization well inside its region of validity. However, if 

the matrix A is close to being ill-conditioned, which implies that some of 

+ 
its eigenvalues are zero or numerically very small, the solution vector ~p 

will take large steps in the parameter space that may well be outside of the 

region where the I ineari zation is appropriate. This iterative process may 

then diverge unless some method of limiting the iterative step size is 

61 



employed. Two generally recognized options are used in this case. One 

option requires constructing a solution from the contribution of only the 

larger eigenvalues as suggested by Lanczos [1961] and Jackson [1972]. 

Al though this procedure is reasonably appropriate. it requires the 

monitoring of the eigenvalues at each step in the iteration process making 

it slow. A second option. that we consider more practical and that can be 

easily implemented is to follow the teehnique known as the 

Marquardt-Levenberg' s algorithm [Levenberg. 1944; Marquardt. 1963; Bard. 

1974; Lawson and Hanson, 1974]. With this method the stabil ity of the 

iterative procedurE~ is improved by limiting the step size (more sensitive in 

the direction corresponding to the small eigenvalues) by introducing what is 

known as a "cut-off" eigenvalue or Marquar'dt parameter a,2. Furthermore, with 

this "cut-off" eigenvalue, fast and accurate convergence is invoked and the 

need to monitor the small eigenvalues at each step of the iteration is 

avoided. 

The solution, then, of equation (A1) is now given by 

where A -1 is the generalized inverse defined by :::g 

(A4) 

(A5) 

T T where ~ is the transpose matrix, ~ ::: ~ ~ is the approximate Hessian matrix 

which is positive definite and of stze M x M. § is a diagonal matrix whose 

elements coincide with the diagonal elements of H if H .. f. 0 and with the 
11 

unit matrix I if H .. ::: O. 
:: 11 

2 The parameter a, is the Marquardt parameter and 
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its size controls not only the step size but also the contribution of the 

small eigenvalues to the solution at each iteration step. 

+ + + 
In general the quantities in the vector F. (x.; p.) represent entities 

1 1 J 

having different physical dimensions. For example, in the shock normal case 

is a vector of seven components 

representing the normal component of the magnetic field, the components of 

the tangential momentl.Jll flux and electric field in an arbitrary coordinate 

system. Since these quantities are constructed from the magnetic field and 

plasma observations, it is clear that some of the observations may be known 

to be less reliable than others, and we want to be certain that our 

parameter estimates will be less influenced by those than by the more 

accurate ones. For this reason it is convenient to weight equation (A 1) 

before the parameter s are estimated. After all, we cannot escape from the 

statistical nature of the observed data. One way of weighting the system of 

equations (A 1) is by constructing the standard deviations associated wi th 

the physical variables of the Rankine-Hugoniot system. If the observations 

are statistically independent we define a diagonal matrix ~ = ( 1/0i ) of 

size N' x N' from the standard deviations. Operating on the normal equation 

(Al) we have the solution 

(A6) 

2 2 +T T + At this point the X function can be generalized to be X = r ~ ~ r. 

Let us now address the problem of the reliability and precision of the 

+* 
model parameters. It is not enough to compute a vector solution p without 

a simultaneous estimate of the error bounds in the parameters determined. 
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One way of expressing the reliability of the solution is by constructing 

what is called the resolution matrix [Lanczos. 1961; .Jackson. 1972J given by 

R ._ A -1 A 
::: :::g ::: 

The degree to which the ~ matrix approximates the identity matrix is a 

measure of the resolution obtainable from the data for each parameter. If 

the matrix R is nearly diagonal, then each parameter is a weighted sum of 

the others. 

To estimate the error bounds on the obtained +* parameters p • it is 

necessary to assume a statistical uncertainty distribution for them. This 

kind of test are exact only if the measurement errors do indeed follow such 

a distribution. Since in general such a distribution is unknown, a more 

PI'" acUcal way of obtaining the error bounds in the parameter space is to 

constder the departure of the objective (risk) function x2
(p) from the 

2 +* obtatned optimal value X "(p ) [Bard, 1974] as follows 

(A7) 

where c is the largest difference that one is willing to consider 

insignificant (i. e. the indifference region). Therefore we have no reason 

+* + 
to prefer p over any other value of p for which (A7) is satisfied. The 

region enclosed in (A7) is named the indifference region. In a small 

. hb h d f +* x2(+p) rlelg or 00 0 p we can now approximate by a Taylor series expansion 

+ -+ -+* +* where lip ::: P - P • and q * and H 
::: 

-+T H* + op lip (AS) 

are the gradient vector and the Hessian 
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matrix of the x2 function respectively, evaluated at ; is an 

2 + +* optimal extremum of X (p), then q must vanish. We can now answer the 

question of the error bounds in the parameter 
+ 
p because equation (AB) 

properly written represents an M-dimensional ellipsoid whose principal axes 

(or eigenvalues of lj) are a measure of these errors. Note that equation 

(AB) can now be written as 

+T * + <sp H <sp < 2£ (A9) 

This is easily seen by noticing that equation (A9) can be formulated as an 

eigenvalue problem of the form 

* H 
= 

+ + 
<sp = It. <sp 

= 

* where ~ ia a diagonal matrix of the eigenvalues of ~. Thus operating by 

+T <sp at both sides of this equation and using (A9) we get 

(Al0) 

Equation (Al0) 
+ 

states that the length of each vector component of <Sp is 

proportional to / (2e:1A) where A is its corresponding eigenvalue and the 

eigenvector represents the principal axis of the multidimensional ellipsoid. 

The largest axis (smallest eigenvalue) defines the worst-determined 

+ 
direction in p space and the shortest axis (largest eigenvalue) defines the 

best determined direction. Thus the solution of (A 10) gives a reliable 

measure of the errors in the parameter determined. 

In a different way, if one does not have a good measure of the 
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indifferenoe region e. it i.s possible to adopt an i ad hoc' error 

distribution. such as for example, the normal distribution and determine the 

* confi.dence region E: for p provided that the covariance matrix C of the 

error's of the observations is known [Bard, 1974; Jackson, 1972; Scheffe, 

1959:1 • 
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