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1. INTRODUCTION

This document is the final report of a research project
concerned with the optimal design of helicopter rotor blades. The

report contains three main parts:

1. a discussion of the reasons for which the research
was undertaken;

2, a summary of project accomplishments, presented in
the form of a list of optimization problems which
have been solved and a list and brief déscription
of findings related to optimization of rotor
blades;

3. the doctoral thesis of Timothy Ko, which contains
many details of the computations performed during

the project.

2. IMPORTANCE OF THE RESEARCH

The design of helicopter rotor blades involves not only
considerations of strength, survivability, fatigue, and cost, but
also requires that blade natural frequencies be significantly
separated from the fundamental aerodynamic forcing frequencies
(e.g. Ref. 1) . A proper placement of blade frequencies is a
difficult task for several reasons. First, there are many forc-
ing frequencies (at all integer-multiples of the rotor RPM) which
occur at rather closely-spaced intervals. For example, 5/rev and
6/rev are less than 20% apart. Second, the rotor RPM may vary
over a significant range throughout the flight envelope, thus re-

ducing even further the area of acceptable natural frequencies.
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Third, the natural modes of the rotor blade are often coupled
because of pitch angle, blade twist, offset between the mass
center and elastic axis, and large aerodynamic damping, These
couplings complicate the calculation of natural frequencies. In
fact, the dependence on pitch angle makes frequencies a function
of loading condition, since loading affects collective pitch.
Fourth, the centrifugal stiffness often dominates the lower
modes, making it difficult to alter frequencies by simple changes
in stiffness.

In the early stages of the development of the helicopter, it
was believed that helicopter vibrations could be reduced (and
aven eliminated) by the correct choice of structural coupling and
mass stiffness distributions. However, it is easy to imagine how
difficult it is to find just the proper parameters such that the
desired natural frequencies can be obtained. The difficulties in
placement of natural frequencies have led, in many cases, to
preliminary designs which ignore frequency placement. Then,
after the structure is "finalized" (either on paper or in a
prototype blade), the frequencies are calculated (or measured)
and final adjustments made. Reference (2) describes the develop-
ment of the XH-17 helicopter in which a 380-1b weight was added
to each blade in order to change the spanwise and chordwise mass
distiribution and thereby move the first flapwise frequency away
fromn 3/rev. However, these types of alterations are detrimental
to blade wight, aircraft development time, and blade cost. 1In
addition, corrections usually are not satisfactory, and the heli-

copter is often left with a noticeable vibration problem.
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The state-of-the-art in helicopter technology is now to the
point, however, that it should be possible to correctly place
rotor frequencies during preliminary design stages. There are
several reasons for this. First, helicopter rotor blades for
both main rotors and tai: rotors are now being fabricated from
composite materials (Refs. 3 and 4). This implies that the
designer can choose, with limited restrictions, the exact EI
distribution desired. Furthermore, the lightness of composite
blades for the main rotor usually necessitates the addition of
weight to give sufficient autorotational blade inertia. Thus,
th2re is a considerable amount of flexibility as to how this
weight may be distributed. Second, the methods of structural
optimization and parameter identiiication are now refined to the
point where they can be efficiently applied to the blade struc-
ture. Some elementary techniques have already been used for the
design of rotor fuselages (Ref. 5). It follows that the time is
right for the use of structural optimization in helicopter blade
design. Some work on this is already under development, and,
although not published, some companies are already experimenting
with the optimum way to add weight ot an existing blade in order
to improve vibrations.

The purpose of the research project described in this report
was to investigate the possibilities (as well as the limitations)
of tailoring blade mass and stiffness distributions to give an
optimum blade design in terms of weight, inertia, and dynamic

characteristics. The work has focused on configurations that are
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simple enough to yield clear, fundamental insights into the
structural mechanism but which are sufficiently complex to result

in a realistic result for an optimum rotor blade.
3.0 SUMMARY OF THE PROJECT
3.1 OPTIMIZATION PROBLEMS WHICH WERE SOLVED

The basic structure optimized was a beam free at one end and
supported at the other. Various support conditions and con-
straints on natural fregencies were used. The behavior of the
beam was computed by using a 1l0-element finite-element model.
Quantities associated with the finite-element model, such as the
thickness or area moment of inertia of each element, served as
desigun variables in the the optimization procedure. A typical

formulation of an optimization problem was

Find the flange and wall thicknesses of a box-beam
cross-section (three variables per finite element)
which minimize the weight of the beam, while main-
taining the first natural frequency within a "win-

dow" (e.g., 2.4 < p; < 3.0 per rev).

All optimization problems were solved with the CONMIN com-
puter program [6]. CONMIN is based on the mathematical nonlinear-
programming method of feasible directions.

The list of problems solved follows.

Case 1. Cantilever beam
Rotating: no

Objective function: weight
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Design variables: area moments of inertia

Boundary condition(s) at root: fixed

Frequency Constraints: first flapping specified through equality
constraint

Autorotation constraint: no

Stress constraint: no

_References: First Semi-Annual Report pp.17-18, Thesis, pp. 18-19
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Case 2, Cantilever beam with tip mass

Rotating: no

Objective function: weight

Design variables: cross-sectional areas

Boundary condition(s) at root: fixed

Frequency Constraints: lower bound on first flapping

Autorotation constraint: no g

Stress constraint: no

References: First Semi-Annual Report pp.17-19, Thesis, pp. 18-21
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Case 3, Wind-turbine blade

[P SrY

W

Rotating: yes

Objective function: weight

i i <" e

Design variables: area moments of inertia, lumped weights
Boundary condition(s) at root: fixed

Frequency Constraints: windows on first and second flapping ]

o

Autorotation constraint: yes

Stress constraint: no

References: First Semi-Annual Report pp.21-24, Thesis, pp. 34-37
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Case 4. Hingeless rotor-blade

Rotating: yes

Objective function: weight

Design variables: area moments of inertia, lumped weights
Boundary condition(s) at root: fixed

Frequency Constraints: windows on first and second flapging
Autorotation constraint: yes

Stress constraint: no

References: First Semi-Annual Report pp.23-27, Thesis, pp. 38-41

Case 5.-Cantilever beam with two frequency constraints

Rotating: no

Objective function: weight

Design variables: area moments of inertia

Boundary condition(s) at ;oét: fixed

Frequency Constraints: windows on first and second flapping
Autorotation constraint: no

Stress constraint: no

References: Second Semi-Annual Report pp.7-16, Thesis, pp. 23-33

Case 6. Cantilever beam (similar to Case 5, except for three
rather than two frequency constraints)

Rotating: no

Objective function: weight

Design variables: area moments of inertia

Boindary condition(s) at root: fixed

Frequency Constraints: windows on first, second and third flapping

Autorotation constraint: no
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Stress constraint: no

References: Second Semi-Annual Report pp.l17-18

Case 7. Cantilever beam (similar to Case 6, except for addition
of lumped weights as design variables.)
Rotating: no
Objective function: weight
Design variables: area moments of inertia, lumped weights
Boundary condition(s) at root: fixed
Frequency Constraints: windows on first, second and third flapping
Autorotation constraint: no

Stress constraint: no

References: Second Semi-Annual Report pp.l17-21

Case 8. Cantilever beam (similar to Case 7, except for addition
of autorotation constraint)
Rotéting: no ’
Objective function: weight
Design variables: area moments of inertia, lumped weights
Boundary condition(s) at root: fixed
Frequency Constraints: windows on first, second and third £flapping
Autorotation constraint: yes (constraint applied to mass moment
of inertia of whole beam)

Stress constraint: no

References: Second Semi-Annual Report pp.l17-22

Case 9. Cantilever beam (similar to Case S, except beam is

rotating)

Rotating: yes
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Objective function: weight
Design variables: area moments of inertia, lumped weights
Boundary condition(s) at root: fixed
Frequency Constraints: windows on first, second and third flapping
Autorotation constraint: yes (constraint applied to mass moment
of inertia of whole beam)
Stress constraint: no

References: Second Semi-Annual Report pp.l7-24

Case 10. Teetering rotor

Rotating: yes

Objective function: initially the weighted sum of squares of
differences in frequencies; after a feasible design is
found, the objective is changed to the weight.

Design variables: flange thicknesses, lumped weights

Boundary condition(s) at root: fixed ;

Frequency Constraints: windows on first, second and third collective
flapping

Autorotation constraint: yes

Stress constraint: no *

References: Third Semi-Annual Report pp.5-6, Thesis, pp. 42-49

Case ll. Teetering rotor (similar to Case 10, except cyclic
flapping modes considered, instead of collective modes)

Rotating: yes

Objective function: initially the weighted sum of squares of
differences in frequencies; after a feasible design is
found, the objective is changed to the weight.

Design variables: flange thicknesses, lumped weights
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Boundary condition(s) at root: pinned

Frequency Constraints: windows on first, second and third cyclic
flapping

Autorotation constraint: yes

Stress constraint: no

References: Third Semi-Annual Report pp.7, Thesis, pp. 50-51

Case 12, Teetering rotor (similar to Cases 1@ and 11, except that
both cyclic and collective flapping modes are considered)

Rotating: yes

Objective function: initially the weighted sum of squares of
differences in frequencies; after a feasible design is
found, the objective is changed to the weight.

Design variables: flange thicknesses, lumped weights

Boundary condition(s) at root: one analysis performed with pinned
conditions, another analysis perfomed with fixed conditions

Frequency Constraints: windows on first, second and third

collective flapping and also on first, second and third

" ]

cyclic flapping
Autorotation constraint: yes

Stress constraint: no

References: Third Semi-Annual Report pp.7-9, Thesis, pp. 50-54

Case 13. Teetering rotor (cimilar to Cases 10-12, except that

O

collective and cyclic flapping and inplane and also
torsional modes considered)

Rotating: yes

Ca R Ll B S
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Objective function: initially the weighted sum of squares of
differences in frequencies; after a feasible design is
found, the objective is changed to the weight.

Design variables: flange thicknesses, wall thicknesses cf
both sides of box cross-section, lumped weights, stiffness
of torsional spring at root

Boundary condition(s) at root: a) flapping -- one analysis
performed with pinned conditions, another analysis perfomed
with fixed conditions; b) inplane -- one analysis performed
with pinned conditions, another analysis perfomed with fixed
cohditions; ¢) torsion -- fixed conditions

Frequency Constraints: windows on first, second and third
collective and cyclic flapping; windows on first, second and
third collective and cyclic inplane; and window on first
torsional

Autorotation constraint: yes

Stress constraint: yes

References: Third Semi-Annual Report pp.12-13, Thesis, pp. 58-60

Case 14. Teetering rotor (similar to Case 13, except that box-
beam dimensicns are fixed) ‘?
Rotating: yes
Objectivae function: weighted sum of squares of dirferences in
frequencies
Design variablies: lumped weights, stiffness of torsioral spring
at root
Boundary condition(s) at root: a) flapping -- one analysis

performed with pinned conditions, another ana.ysis perfomed
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with fixed conditions; b) inplane -- one analysis performed
with pinned conditions, another analysis perfomed with fixed
conditions; c¢) torsion -- fixed conditions

Frequency Constraints: windows on first, second and third
collective and cyclic flapping; windows on first, second and

third collective and cyclic inplane; and window on first

torsional
Autorotation constraint: yes
Stress constraint: yes

References: Third Semi-Annual Report pp.l3-14, Thesis, pp. 60-61

Case 15. Teetering rotor (similar to Case 14, except that
stiffness of blade cross-section at root is a design

variable)

Rotating: yes

Objective function: weighted sum of squares of differences in
frequencies

Design variables: lumped weights, stiffness of torsional spring
at root, variable root-stiffness (but except at root, all
other dimensions of the box cross-section are fixed)

Bouncary condition(s) at root: a) flapping -- one analysis
performed with pinned conditions, another analysis perfomed
with fixed conditions; b) inplane -- one analysis performed
with pinned conditions, another analysis perfomed with fixed
conditions; c¢) torsion -- fixed conditions

Frequency Constraints: windows on first, second and third

collective and cyclic flapping; windows on first, second and

11
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third collective and cyclic inplane; and window on first
torsional

Autorotation constraint: yes

Stress constraint: yes

Re.2rences: Third Semi-Annual Report pp.l1l4, Thesis, pp. 61

Case 16. Teetering rotor (similar to Case 13, except that blade
pretwist is included.

Rotating: ves

Pretwisted Blade: yes

Objective function: 1initially the weighted sum of squares of
differences in frequencies; after a feasible design is
found, the objective is changed to the weight.

Design variables: flange thicknesses, wall thicknesses of both
sides of box cross-section, lumped weights, stiffness of
torsional spring at root

Boundary condition(s) at root: a) flapping -- one aralysis
performed with pinned conditions, another analysis performed
with fixed conditions; b) inplane -- one analysis performed
with pinned conditions, another analysis performed with
fixed conditions; c¢) torsion -- fixed conditions

Frequency Constraints: windows on first, second and third
collective and cyclic flapping; windows on first, second and
third collective and cyclic inplane; window on first
torsiona’

Autorotation constraint: yes

Stress constraint: yes

References: Thesis, p. 61, 64
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Case 17. Teetering rotor (similar to Case 14, except that blade

pretwist is included

Rotating: yes

Pretwisted Blade: vyes

Objective function: weighted sum of squares of differences in
frequencies

Design variables: 1lumped weights, stiffness of torsional spring
at root

Boundary condition(s) at root: a) flapping -- one analysis
performed with pinned conditions, another analysis performed
with fixed conditions; b) inplane -- one anlaysis performed
with pinned conditions, another analysis performed with
fixed conditions; c¢) ccrsion -- fixed conditions

Frequency constraints: windows on first, second and third
collective and cyclic flapping; windows on first, second and

third collective and cyclic inplane; window on first

torsional
Autorotation constraint: yes
Stress constraint: yes

References: Thesis, p. 61, 64

Case 18. Articulated rotor

Rotating: yes

Pretwisted Blade: yes

Objective function: initially the weighted sum of squares of
differences in frequencies; after a feasible design is
found, the objective is changed to the weight.

Design variables: flange thicknesses, wall thicknesses of

.
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both sides of box cross-section, lumped weights, stiffness

of torsional spring at root

Boundary condition(s) at root: a) flapping -- pinned; b) inplane

-- pinned at same radial location as in the case of
flapping; ¢) torsion -- fixed conditions

Frequency Constraints: windows on first, second and third
flapping; windows on first, second and third inplane; and
window on first torsional

Autorotation constraint: yes

Stress constraint: yes

References: Fifth Semi-annual Status Report pp. 8-9,
Thesis, pp. 67-69

Case 19. Articulated rotor (similar to Case 18, except that box-

beam dimensions are fixed)

Rotating: yes

Pretwisted blade: yes

Objective function: initially the weighted sum of squares of
differences in frequencies; after a feasible design is
found, the objective is changed to the weight.

Design variables: lumped weights, stiffness of torsional spring
at root

Boundary condition(s) at root: a) flapping -- pinned; b) inplane
-- pinned at same radial locacion as in the case of
flapping; c) torsion -- fixed conditions

Frequency Constraints: windows on first, second and third
flapping; windows on first, second and third inplane; and

window on first torsional

14
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Autorotation constraint: yes
Stress constraint: yes

References: Fifth Semi~Annual Status Report, pp. 9-10
Thesis, pp. 67-70¢

Case 20, Articulated rotor (articulation at different stations for
flapping and inplane motion)

Rotating: vyes

Pretwisted Blade: yes

Objective function: initially the weighted sum of squares of
difference in frequencies; after a feasible design is found, the
objective is changed to the weight.

Design variables: lumped weights, stiffness of torsional spring at

root.
Boundary conditions(s) at root:
a) Flapping -- pinned;
b) Inplane -~ pinned, but pin location is another few feet away
from root
Frequency constraints: windows on all first, second and third fre-
quencies (flapping, inplane, torsion)
Autorotation constraint: yes
Stress constraint: vyes

References: Sixth Semi-Annual Status Report, pp. 3-4

Case 21. Articulated rotor (similar to case 20 except that box bean
dimensions are also design variables)
Rotating: yes

Pretwisted Blade: yes

15
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Objective function: initially the weighted sum of squares of differ-
ences in frequencies; after a feasible design is found, the
objective is changed to the weight.

Design variables: flange thicknesses, wall thicknesses of both sides
of box cross-section, lumped weights, stiffness of torsional
spring at root.

Boundary conditions(s) at root:

a) Flapping =-- pinned;
b) inplane -- pinned, but pin location is another few feet away
from root

Frequency constraints; windows on all first, second and third fre-
quencies (flapping, inplane, torsion)

Auto rotation constraint; vyes

Stress constraint: yes

Refzrences: Sixth Semi-Annual Status Reports, p. 5
3.2 FINDINGS RELATED TO OPTIMIZATION OF ROTOR BLADES

The most important general finding of the project is that it
is possible to use an ootimization routine such as CONMIN to
tailor blade mass and stiffness distributions in an optimal
manner, Furthermore, formulating the optimization problem in
terns of frequency placement (that is, restricting the natural
frequencies of the blade to lie within narrow intervals located
away from certain integer multiples of the rotor speed) has been
shown to be a useful approach for reducing vibrations.

In addition to these gyeneral findings, the project estab-
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lished a number of specific results, knowledge of which would be
useful to anyone intending to apply or extend the optimization
approach developed during the project. A list of these results

follows.

1. In applying CONMIN to rotor-blade design, gradients of
the objective and constraint functions should be calcu-
lated by analytical formulas rather than by finite
differences. However, finite differences serve as a
useful check on the possibility of errors in the com-
puter implementation of the analytical formulas.
Reference: Second Semi-Annual Status Report, pp. 9-10;

Thesis, pp. 23.

2. Frequency constraints may be formulated directly in
terms of the frequency in Hz, rather than in terms of
eigenvalues (i.e., the square of the circular frequen-
cy). If eigenvalues are used, then scaling should be
employed in the constraint equations to ensure well-
behaved gradients for use in CONMIN.

Reference: Second Semi-Annual Status Report, pp. 10-12;
Thesis, pp. 25
3. The following values of CONMIN parameters were ade-

quate for most of the optimization studies:

ITMAX = 4¢-80
ITRM = 3

DELFUN

0.0001 (for cantilever beams)

0.00001 (for rotor blades)
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DABFUN = 0.0825 (for cantilever beams)
= 0.00001 (for rotor blades)
THETA = 1.0

PHI = 5.0

Reference: Second Semi-Annual Status Report, pp. 13-16;
More efficient designs can be achieved if 1lumped
weights are included as design variables (along with
dimensions of the cross-section of the blade).

Reference: Second Semi-Annual Status Report, pp. 18-21;

Thesis, pp. 27.

Because of the stiffening effect of the centrifugal
forces in a rotating blade, frequency placement is much
less dependent on stiffness and mass distributions than
in 3 non-rotating blade. Thus, the rotational speed has
a strong influence on what can be achieved in the
optimization process.

Reference: Second Semi-Annual Status Report,

PP. 23-24;

Use of ten finite-elements appears adequate to model a
rotor-blade for optimization studies, although if many
frequencies must be calculated, more elements must be
used, Empirical rules which have been suggested are a)

2 degrees, where

Use 4n degrees-of-freedom; and b) use n
n is the number of frequencies to be found.

Reference: Second Semi-Annual Status Report, pp. 25-29;

18

TR TR T ey



1ad.

Mmares BT MM P @

An accurate eigenvalue routine should be used in opti-
mization studies, since errors in eigenvalue calcula-
tions can appreciably affect the optimal design.

Reference: Second -Semi-Annual Status Report, pp. 29-31;

The natural frequencies of a rotor blade are not great-
ly affected by small changes in dimensions of the blade

cross-section.

Reference: Second Semi-Annual Status Report, pp. 31-32;

For tight frequency-constraint windows, CONMIN is often
unable to find a feasible design. In such cases, an
objective function consisting of the weighted sum of
squares of the differences in frequencies (actual fre-
guency minus desired value) may be used initially. In
the process of minimizing this objective function,
CONMIN is often able to find a design which satisfies
the frequency constraints. If this occurs, the objec-
tive function may then be switched to the weight of the
blade.

Reference: Third Semi-Annual Status Report, pp. 5-9;

Thesis, p. 44, 48, 50, 52, 58

The natural frequencies of a blade which has already
been built can be modified in a rational (rather than
trial-and-error) manner by using CONMIN to specify
where lumped mass should be added. It appears best to
either raise all undesirable frequencies or lower all

undesirable frequencies (a mixture of raised and
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11.

12.

13.

14.

lowered frequencies is much more difficult to attain).
References: Third Semi-Annual Status Report, pp. 13-14;
Thesis, pp. 60-61; Sixth Semi-Annual Status Report,

p. 4.

The forced response of a rotor blade can be adequately
controlled through the approach of frequency placement.
Reference: Fourth Semi-Annual Status Report, pp. 2-1€;

Thesis, pp. 71-95,

Aerodynamic damping substantially reduces resonant
peaks, but even in the presence of damping, frequency
placement is a powerful driver of loads, and, as a
result, frequency placement can be justifiably con-
sidered an important pert of blade optimization in the
presence of damping.

Reference: Fourth Semi-Annual Status Report, pp. 5-7;

Finite-element modelling errors caused by neglecting
secondary structural items such as shear deformation,
restraint of warping during twist, and filler stiffness
are small. However, accurate filler properties, dimen-
sions and locations are required in order to model the
mass distribution properly.

Reference: Fourth Semi-Annual Status Report, pp. 1ll-12;

Since calculating eigenvalues is the major computa-

tional burden in rotor-blade optimization, an efficient

eigenvalue routine should be used. For example, determ-
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inant search or subspace iteration can be used to
calculate only the needed first few frequencies.

Reference: Fifth Semi-Annual Status Report, pp. 2-5
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DESIGN OF HELICOPTER ROTOR BLADES FOR

GPTIMUM DYNAMIC CHARACTERISTICS

_1, INTRODUCTION

1.1 AELICOPTER DESIGN

The design of helicopter rotor blades involves not osnly considera-
tions of strength, survivability, fatigue, and cost, but also requires
that blade natural frequencies be significantly separated from the
fundamental aerodynamic forcing frequencies (e.g. Ref. 1). A proper
placement of blade frequencies is a difficult task for several reasons,
First.lthere are many forcing frequencies (at all integer—-multiples of
the rotor RPM) which occur at rather closely-spaced intervals. For
example, §5/rev and 6/rev are less than 20 % 2part. Second, the rotor RPM
may vary over a significant range through tne flight envelope, thus
reducing even further the area of acceptable natural frequencies, Third,
the natural modes of the rotor blade are often coupled because of piterh
angle, blade twist, offset between the mass center and elastic axis, and
large asrodynamic damping. These couplings complicate the calculation of
natural frequencies. In fact, the dependence on pitch angle makes fre-
quencies a function of loading condition, since loading affects collec-
tive pitch., Fourth, the centrifugal stiffness often dcainates the lower
modes, making it difficult to alter frequencies by simple changes in
stiffness or mass,

In the ear;'ly stages of the development of the helicopter, it was



believed that heliccpter vibrations could be reduced (and even elimina.-
ed) by the correct choice of structural coupling and mass stiffness
distribution. However, it i3 easy to imagine how difficult it is to find
just the proper parameters such that the desirsd natural frequencies can
be obtained. The difficultiss in placement of natural frequencies have
led, in many cases, to preliminary designs which ignore frequency place—
ment. Then, after the struoture is ‘finalized’ (either on paper or in a
prototype bhlade), the frequencies are calculated ( or measured) and
final ad justments made. Reference [2] describes the development of the
XH=17 helicopter in which a 300-1b weight was added to each blade in
order to change the spanwise and chordwise uaés distribution and therby
move the first flapwise frequency away from 3/rev, The authors were con-
fident that similar adjustments to the mass distribution (and thus to
the frequencies and modes of the blades) could greatly reduce rotor
vibration on other rotors. An analytic study in Reference [3] predicts
that chordwise mass distribution could also be used to lower overall
helicopter vibrations. In particular, a forward shift of mass is shown
to be useful because it places torsion in resonance with a particular
harmonic. The torsion loads car then be tuned to cancel undesirable
blade loads. The study also shows, however, that such mass changes may
have an adverse effect con 3stability; and thus stability and vibration
must be studied together. Similar benefits of inertia pitch-flap coupl-
ing are alsc observed in shaker iasts in Reference [4].

These positive results, and other like them, were at least partial-
ly responsible for the optimistic outlook so aptly presented in Ref ([5].
In that reference. six helicoptar pioneers erpress their bdelief that

helicopter vibrationa can be reduced through proper blade and fuselage



design. This optimism of the 50’s was somewhat eroded in the 60’s and
70’s as the true complications of rotary-wing dynamics became bettor
known. Nevertheless, the belief is still held by most dynamicists that
simple concepts (such as frequency placement) can go a long way toward
improving cotor design. For example, in Reference (6] six helicopter
pioneers (some of the authors of Ref. 4), reminiscs on the early days of
rotary wing and the recent advances in our understanding of helicopter,
Yot, they still contend that much can be learned from simple principles,

Presently, helicopter blades are not tailored to give a set of
desired natural frequencies, Instead, blades are designed based on other
considerstions (including the desired aerodynamic characteristics and
the cumulative experience of the designers), Then, after the design is
analyzed (either by computer program or by fahrication and testing), the
designer checks for frequencies that are poorly placed. These.are then
ad justed by judicious application of lumped inertias at crucial spanwise
locations. These after—the—-fact alterations, however, can be detrimental
to bdblade weight, blade cost, and the development time of the aircraft.
Sometimes, the problems ares unsolvable, and a helicopter is left with a
noticeable resonance problem,

The state—of-the—art in helicopter technology is now to the point,
however, that it should be possible to correctly place rotor frequancies
during preliminary design stages, There are several reasons for this.
First, helicopter rotor blades for both main rotors and tail rctors are
now bheing fabricated from composite materials (Refs. 7 and 8). This
implies that the designer can choose, with limited resirictions, the
exact EI distribution desired., Furthermore, the lightness of composite

blades for the main rotor usually necessitates the addit_-n of welight to



give sufficient autcrotational hlade inertia. Thus, there is a consider—
able amount of flexibility as to how this weight may be distributed.
Second, thes methods of structural cptimization and parameter identifica-
tion are now refined to the point wvhere they can be efficiently applied
to the blade structure. Some elementary techniques have already been
used for the design of rotor fuselages (Ref., 9)., It follows that the
time is right for the use of structu=al optimization in helicopter blade
design. Some work on this is already under development, and, although
not published, some companies are already experiment with the cptimum
way to add’ weight to an existing blade in order to improve vibrations,
1.2 PREVIOUS WORK

In this light, we would like to mention a few recent attempts at
application of optimization techniques to rotor blade design., In Ref
[10], an optimization procedure i{s applied in order to reduce blade
loads consistent with aerocelastic stability. The procedure is not com=-
pletely automated, however, and thé designer must make the desién incre-
ment at each iterat.on based on numerical 3sensitivity parameters, The
biggest needs (as identified in this work) are the complete automation
of the optimization and the formulation ¢f realistic design constraints.
In Reference [11], an optimization package iz applied to an aerocelastic
response program, The results mirror the earlier conclusions of Refer-
ence 2-4, In particular, minimization of vibrations tends to drive some
natural frequencies close to 1n£egers in order to cancel loads. (The
rotor becomes an isolator,) Although this -urns out to be a good mathe-
matical sclution, stability analyses in Reference [11], as in References
[2~-4], show that the coalsscence of frequencies to supp:'ess vibration

tends to introduce aeroclastic instabilities. Thus, flutter margins tond
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to become the dominant constraints. Furthermore, minimization of loads
at one flight condition may not at all minimize loads at others,

Another investigation into vibration reduction by altsration of
mzss and stiffness distribution is given in Refarence ([12], In that
reference, a2 tip weight is used to change the mode shape. It is hypothe-
sizsd that changing the mode shape such that it is orthogonal to the
foreing function is a way to lower vibrations, However, ths conclusions
are uncertain since the frequencies also are changed by this added
weight (e.g. the second flap mode moves away from 5.06 to 5.19 per rev),
One also nctices that the loading distribution changes with flight
condition so that modal shaping may help one condition but hurt others,
Other related previous work is found in Reference [13]., That paper shows
that design to minimum loads can result in a disjoint solution. Fortu-
nately, in helicoptsr problems we generally begin with an adequate (but
not perfect) blade design. Thus, many questions such as this (i.e.
disjoint i{n the desaign spuce) are aufomatically avoided. We already have
a good first guess and merely wish to refine it,

1.3 SCNPE

In this paper we undertake a much less ambitious aim than the mini-
mization of hub loads. Inatead we look at the problem of using optimiza-
tion techniques in order to place natural frequencies, Even within this
reduced problem there are varying levels of complexity. For example, one
could consider the retrofit problem:

' Given a blade design find the amount and lncation of added

~ masses required to move fresquencies away from integer

resonances,’

One could also consider thi basic design problem in which both stiffness

@
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and mass distributions may be chosen. In this paper, we treat this
latter design problem in the [orm of three uncoupled problems: flap, in-
plane, and torsion.

The scope of this present work is not just to find a mass and
stiffness distribution to give desired frequencies, It is also to deter-
mine meaningful constraints and objective functions that will result in
realistic designs. In this area, several items are noteworthy. First,
there is the airfoil envelop. Whatever the structural engineer designs
must lie within the airf<il cross-section. Second, there is mass balanc-
ing. The center 5f mass of each section should he forward of the one-
quarter chord. Third, there is *the autorotational constraint. The blade
must have sufficient mass moment—of-inertia to insure a safe autorota-
tional capability. Fourth, there is strength. The blade must be strong
enough to endure the centrifural loads as well as the oscillatory bend-
ing loads. This last criteria is the most elusive of the four, Desigrzrs
know how to make a very soft section (hinge or flexure) which neverthe-
less can withstand high centrifugal and bending 1lsads., Such flaxures
generally do not fal) within an airfoil envelope, howevar, and are
placed near the root. Therefore, in the work to fcllow, we first obtain
‘optimum’ designs and then check to see if the required EI distribution
has unrealistically soft spots. 3imilarly, we check the final designs
for axial stresses.

In summary, we work with simple (Luc realistic) rotor-blade designs
and simply experiment with constrzints and objective functions in order
to determine the feasibility of designing to a Jerired 3et of frequen-

cles,
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1.4 OVERVIEW OF OPTIMAL STRUCTURAL DESIGN

Most approcaches to optimal structural structural design may be
classified into three categories. (For .acent review ar*icles see Ref's,
14 awxd 15.) One such category is 'variational methods.' These generally
rely on techniques from the mathematical theory of the :.iculus of
variations, and, when applic-hle, often provide useful physical iraight
into the nature of an optimal design. Unfortunatuly, only relatively
simple problems can be solved by this approach, since the mathematics
becomes .ntractable when complex enginecring structures are considered,

A second category of structural optimization techniques consists of
the appiication of mathematical prcgramming methods togethe:* with the
discretization of the structure by finite element tecinicues. This
approach to optimization was founded in 1960 (Ref. 16) with the hore
that more complex stru'ctures could be analyzed than weres possible when
using the analytical tecaniques of the calculus of variationsa, Yowever,
in the late 60‘s it became apparent that mathematical programming method
had limitations of their own, namely, unacceptably long computation
times occurring when the num:asr of design variables become large (over
20-100, depending on the type of structure)., Fortunately, several
improvements developed over the last few years appear to have
significantly extended the capability of the mathematical programming
approach, and, as a result, it i{s this approacu we intend to draw upon
for solution techniques in this research,

A third catagory . structural optimization approaches 1is the
'optimality criterion’ approach in which an equation expressing some
necessary condition of optimality i{s used as the hasis for constructing

an iterative (successive re-design) procedure, Originally developed
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because of diasatisfaction with mathematical programming techniques, the
optimality-criterion approach initially relied on intuitive optimmlity
criterion such as constant stress—-ratio and uniform strain-energy
density conditions, More recently, optimmlity criterion (and assocciated
re—design equations) have been derived from the Kuhn-Tucker conditions
(ses, e¢.g. Raf. 17) for a constrained minimization problem.

The optimality criterion apﬁxoach seems- sspacially well-su_ted to
problams wi*“ a large number of design variables., Since our design
problea will have a2 moderate number of variables and since deriving
effinient re—design equations for our problem is not immediately
straightforward, we initially prefer tie mathematical programming ap-
proach over the optimalitv—criteri.n approaci.

A astructural optimization computer program, called CONMIN (Ref,
27),1is available from NASA, It is this program that 1s used in our
present work. CONMIN is based on the mathrcmaiical nonlinear programming

method of feasible directions,

()
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2, JACKGROUND
2.1 PORMULATION OF PROBLEM

Because numerically-based optimization is best carried out with dis-
crets variables, the finite slement techni ue stands as the most logi-
ecal choices for the blade mcdel. A recent research project (Ref., 18) has
resulted in a finits—element computer program that is iasally suited to
the work here., The program allows for tapered, twisted finite elements
in 2 rotatirg environment, The existiag code can calculatea natural fre-
quenczies, (with ard without asrodynamic terms) and forcas response,

Another important aspect of ths rctor blade optimization problem is

laeiime A, L

the salection of the optimality critaria and constraints to be imposec,
Cur design problem has certain features which are unusual compared to
typical prodlems occurring in the structural optimization literature,
There are basically three catagories of criteria, In the first class,one
would minimiza weight given constraints on the natural frequencies (i.e.
frequency ‘windows’), In this case, a constraint on rotary inertia Is
also implied since a rotor muat have sufficient inertia to autorotate.
The advantage of this approach is that it is directly related to the
physical realities of design. The disadvantage, hcwever, is that the
first guess will probably not be feasible (that is will not have fre—
quercies that fall in the ’‘windows’). This can be a stumbling block to
convergence, A 3econd type of criteria i3 cne in which the objective
to minimize the discrepancies bstween desired frequencies and actnal
frequsncies, The constraint then becomes a window on autorotational
inertia. Although this avoids unfeasible solutions, it does not direct-

ly minimize weight (although weight is limited by the autorotational
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constraint), An objective function can be constructed that combined com-
bined blade mass and frequency placement, but the relative weightings of
the two components is not obvious. The third category of constraint is
to minimize vibrations directly without regard to frequency placement.
Although this appears on the surface to be the perfec* solution, there
are problems., First, calculation of vibrations is an order—of-magnitude
more difficult than the calculation of frequencies. Second, past efforts
at this have resulted in strange designs, incompatible with standard
helicopter practice, Third, there is still the problem of the weight-
vibration trade—off. In this work, we intend to concentrate on the first
two categories with some attention to the third.

Another type of constraint involved in the problem is the limita—
tion on structural proverties, The blade planform, airfoil, and twist
are chosen by the aerodynamicist on the basis of nerformance. The
structural engineer must choose his design to “it in the aerodynamic
envelope given, There are five structural parameters to be chosen: 1)
flapping stiffrness, 2)inplane stiffness, 3) torsional stiffness, 4)
mass, and 5) torsional moment of inertia. In practice, these cannot be
chosen completely independently. Figure 1 shows the envelope of a
typical blade section. All stiffness is assumed to reside in a box-beam
of dimension b x h with thicknesses t,d1,d2. This beam is placed as far
forward as possible (to keep the elastic axis near the 1/4 chord), Macs
properties are due to the box-bteam, skin, honeycomb, and two lumped
masses, The lumped mass in the tip is typical of rotor blades and is
used to keep the mass center forward of the aerodynamic center, A second
mass 1s included to allow independent cheoice of mass and mass-moment,

The constraints of this construction are clear and are listed on the
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figure.

In addition, there -re minimum conatraints on t,d1,d2 to hold
centrifugal loads and to remain withir manufacturable limits, For
axample a simple minimum constraint on area could come from the centri-

fugal constraint (not considering bending stress). Thus, if 5,. is the

maximum stress and if f is a safety fantor, then

n
2
(@) > £ £ (M), 1/A -;
Q' - {=i+1 i i’y (la)
n
£l ¢ Hiﬁzr-i]
A {mi+l (1b)
i= (cm)

Of course, when we enter the vibratory-respouse phase of the work, bend-
ing stresses will be included,

Our work will nevertheless include flutter criteria in a simplified
manner. Pirst, we can choose frequency placement such that no coales-
cence occurs between fiap—lag, flap-torsion, or lag-torsion. Secound, we
can constrain the five parameters in Figure 1 such that the mass certer
is always forward of the 1/4-chord, a common design practice to preveat
torsion—-flutter in rotor -lades,

2.2 Pipite-Blegent Mode

Although tapered, twvisted elements are within our capabilities, we

introduce here a simple case which is also of value, The stiffnesses GJ,

EIzz, l!:Iyy are assumed to be constant along the length of the element,
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The lumped mass weight is assumed to be evenly distributed on the two
nodes.

Let the deflection of an element in the y a.’' z directions at a
distance x be denoted as w(x) and v(x), for which the displacement
models are assumed to be polynomials of third degree, The expressions

are given as

(25)

where V40 V3. Vg and Vg represent the bending degrees cof freedom in the

zZX plane and “2' Uq. u4 and u9 represent the degrees of freedom in the

yx plane
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1) The strain energy due to bending deformation can be exprassed as

—
LS ]
[
—

/
|E iTw (2 32w 32y 1,2, 12y 2/
U'f[Z Crr R Pl el & (3)
Q

i1) The potential energy in tension from the centrifugal force fisld,
which is equivalent to the negative of kinetic energy due to radial dis-

placement, is given by

{
T =
-Tpu-fog[cﬁ)“(?—;—)z]dx (%)

where T, tsnsion force, is assumed to be constant along each eia-

ment .

iii) The kinetic energy due to inplane displacement is given by

{
! 2,2 .
TKs--Z-'/;mVQ dx (5)

which is equivalent to u = T
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Jegrees of Freedom of an Zlement

Meanwhile, the pretwist angle ¢ (x), and the torsional deformation

6 (x) are assumed to be polynomials of first degree, and can be express-

ed as
v s . - A
¢z (1 -7) - 9 (7 (52)
X s X
ox) = Us( 1 T 2,40 l—) (832)

wherse ¢‘ ’ ¢2_ reprssent the pretwist angle at node 1 and 2, and UgilUyy

represent the elastic torsional degree of “reedom at each end.
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iv) The torsional energy, due to elastic deformations and centrifugal

tsrms, can be expressed as

[
a 1..271 anl 1,271 Y- 1 2 .
U f;zkalA(,dHa) *2“2A(¢' 9) * > GJo )de (7a)
9

where 2 ,ff 2 a
ka] Z” dy dz Iyy (75)
2 T2
kaz ’_/J y©dydz = 1 (7¢)

V) The ‘torsion-rotation’ energy under the effect of rotation is

given by
L 2
= 0 7 2 . 2
i f 7 (M - a3 )(0+0)% ax (24) ,
o)
where knlz. knzz are mass moment of inertia which can be expressed as

: ff ‘
km = £
1 p2° dy dz = p1 (25)

2 2
My ’f/"” dy dz = oty (3¢)

Total displacement snergy now can be used to form the stiffness matrix

from

E-%u (<lu -
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where u is ths vector of ncdal displacements, in the order as ul, Ue

Uss Ug, Uy, Uy, U, Uy ,Ug U0 3 [K] i3 the elemental stiffness matrix

of order 10,

vi) The 3ass matrix will be obtained by the kinecic energy of an

element, which is given by

= o BVZ m ow, 2 + 2 3v 2
f { 8: (ac) 2 22 (a:ax)
2 3% )2 4 02 '
+ 2 Iyy (ac ax (kml + km )8 (10)

Written in matrix form, the kinstic energy can be expressed as

where [M] 1s the mass matrix. o
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3, JLLUSTRATIVE EXAMPLES OF STRUCTURAL OPTIMIZATION
3.1 CANTILEVER BEAM WITH GIVEN FREQUENCY
Some simple examples will be examined and discussed before the

utilization of the program CONMIN, In each case the results will be coor
pared with those obtained by previous researches, if it is availabdle.

The first limiting example is the problem of determining the opti-
mal design of an elastic cantilever beam, such that with a specific
natural frequency,the weight of the structure attains the minimum value,

We start with a uniform beam, modeled by ten alements, with a given
length of 1C inches, E = 1.0 1b-in2 , EI = 10 1b-in®, density = 0,042
16/1n3, and a specified first lowest natural frequency = 0.6489 rad/sec.
We cobtain the final stiffness profile shown in Figure 2, Figure 2 is the
present result with ten elements,

A related problem has also been treated by Olhoff [19]. He
seeks the cdesign of a cantilever beam that yields a maximum value o a
particular higher natural frequency w = (i.e. of specified order, n)
with the volume and length of the beam specified, His work is the dual
problam of the example shown in Figure 2, Optimization with respect to
the frequency under the constraint of volume is similar to the one of
minimizing weight (or volume) under the constraint of specified natural
frequency. Figure 3 gives the profile of the optimal cantilever for n =
1 by Olhoff. One can see that the shapes in Figure [2] and [3] are very
similiar in that they give a nonlinear taper.

3,2 CANTILEVER WITH TIP MASS

Another example problem is to minimize the weight of a cantilever

carrying a mass at the tip, subject to the constraint that the fundamen-

tal natural frequency must be greater than or equal to a specified
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valus, The problem was originally fcrmulated by Turner [20]. Kahn ang

Willmert ([21] vsed an optimality criterion method to solve Turner's

problea. In this example, four f£'~..e alements are used, with the areas

of each as the design variables,

as illustrated in Figure 4. The spec-

ified natural frequency is 17.752 rad/sec, The other initial data are

Modulus of elasticity
Mass density

Radius of gyration (A1

Radius of gyration (A2

Radius of gyration (A3

Radius of gyration (A4

Concentrated mass

Length of each element

)
)
)
)

10,3 x 10 psi

2.5 x 10 lb—szlin
2.0 in

1.5 1in

1 in

0.5 in

1 lb-szlin

60 in

where I = Area * (radius of gyr...,ion)2 .

(

)



< 240" >

EETLRALINTRR N

Figqure 4 Cantilever tcamn w'ih concentrated mass
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The results of the optimization are showa in Table 1., The feasiblc

starting deaign is described by Al = 200, Az « 15C, A3 = 60 and A‘ = 35,

Table 1
Comparigon of Canti'ever Bear wi.h Concentrated mass
Raf.[12] def,113] This Faper
Iteration - 23 19
A1 (1n2) 136.81 136.63 134,60
Az (inz) 118,73 118.70 116.
A3 (inz) 83.59 83.58 82./5
A4 (inz) 34,43 34,61 34.89
Weight (1b) 2243.0 2242.9 2214.4

It can be seen that excell~nt results have been obtvained using the

present CONMIN optimization program,

'4
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4, NUMERICAL EXPERIMENTS
4,1 DESIGN VARIABLE

Despite the strong documentation and intensive development that has
Zone into optimizaticn programs, it i3 alweys advisable to do some ex-
perimentation with these progiams for the particula. class of problems
to which thev are to be applied. This has been done in detail for the
representative box beam shown in Figure 5. The parameters i{see Fig 1;
for this car. are: h = 2,5 in, 8 = 0.1 in, 3 = 0.1 in. b = 4 in, t
variable. This bean has been analyzed for various values of the CONMIN
parameters and for various c¢nmbinations of constraints., The first
studies are performed for vertical vibrations. a nonrotating beam, ner
lumped mass, and with two frequency constraints. Each of the CONMIN
options 1s then exercised, and several conclusions drawn.

Fiist, we find that the use of analytic gradients (the derivative
of objective function and constraintz in closed form) is greatly co be
desired. For “he particular case in Figure 5, area, weight, and moment

of inertia can bLe expreased in terms of the single variables, t

Ay =050+ .60 ¢, (12a)

Vo= 1,20 + 18,24 ¢, , (125)
- 2 -

I, = 25/90 + £ (285 - 228 ¢, + 60.8 t “)*124 (lze)

Therefore, analytic derivatives are satraightforvard. Where analytic
gradients are noet available, however, we find that finite diffarence

gradients still work albait at a higher computationa. cost, 3Jecond, wa
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find that the optimization is best behaved when frequency constraints
are provided in Hz. A constraint (if not scaled) on eigenvalues (wz) is
mere dirficult for the program when default values are used. Third, we
find that initial designs outside of the desired constraints
(infeasible) sometimes can lead to convergence. Since this is not always
the case, however, alternative strategies are necessary. Fourth, we
find that the default values for the CONMIN program worked reasonably
well (although they are not always the most efficient values). An
example is the number of iterations. Sometimes 40 iterations were

required for convergence, although the default value is 10,

In terms of various modes of application, we also have come to
several conclusions, Firat, we could find optimum designs no matter how
tightly we closed the windows on frequency (i.e. the frequency const-
~aints). Thus, we are able to essentially ’zero’ an objective function
based on frequencies (for vertical vibrations alone). Second, we can
handle a large number of simultaneocus frequency constraints, (We have
successafully gone from 2 up to § constraints.) The optimization alsoc re-
xains yell-behaved when we add blade rotation, lumped mass, and the auto-
rotational constraint.

4.2 CONVERGENCE

We have studied the convergence of the final design as a function
of the number of elements used in tke finite—element frequency calcula-
tion. Tec study how the optimal design changes as the number of elements
increases, a cantilever tear with 'n’ elements and with lumped weights

added at the nodes but otherwise similar to the beam in Figure 1 is

considered, The density, and “he constraints on the natural f:aguency,

lurved weights, and moments of inertia are

¢ g;,
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B = 0.05 we/u’
1.0 ¢ £, ¢ 1.3 (Hz)

(13a)
10.0 ¢ 2 < 11.2 (E2) (13b)
0.0 < W, ¢ 100.0 (1bf) (13¢)

. 4

3.83073 < I, ¢ 5.2083 (in) (13d)

and the initial value of OBJ (the total weight) 1is 30,2249 1bf.

Results of the study are shown in Figures [6-11]j. In all cases,

the active frequency constraints were found %o be

f1 = 1.3 (Hz)

fz = 11,2 (Hz)

Figure [6] demonstrates, as one would expect, that the optimum

weight dces in fact decrease as more slements are added to the mesh, The

change in optimum weight is quite small (note that the scale of the
vertical axis begins at 20,0),

Figure [71 and (8] show the variation of the lumped weight and the
moment of inertia (of the cross—-sectional area) at the free end versus
the total number of elements in the mesh. It appears that these quanti-
ties do not converge. The result can be explained, however, by referring
to Figure (9], in which the upper curve represents the total weight at
the free end. ( m(n) is the non-structural,or, lumped weight 1{n) is

the structural weight associated with the mass distributea tunrough 1t



Y

element ‘n’). It can be seen from the figure that the total weight
appears to converge smoothly as the mesh is refined. The explanation for
the apparent non—convergence shown in Figures [7] and [8] and for the
convergence shown in the top curve of Figure [9] is that the ’'structural
weizht’ at tae free end of the cantilever ir not really structural,
since there is no portion of the beam beyond the free end which needs to
be supported, Thus, the optimization routine is indifferent to whether
structural or noa-structural weight is present at the frez end — the
only thing that counts is the total weight at that end.

Figure [9] also shows the var ~tion of the lumped weight slightly
beyond the middle of the beam. (All optimal designs have non-zero lumped
weights there and at the free end of the beam.) The weight can be
decrease smoothly as the mesh is refined, although no asymptote apoears
to be present, Tha explanation for this behavior is that, as the mesh is
refined, the weight in the middle is being place more efficiently - and
thus less is needed.

The various sketches in Figure 102 show the distribution of mass and
stiffness along the beam for insreasing numbers of elements, It is in-
teresting to observe that the optimization routine finds it most effici-
ent to mset the constraints on frequency by varying the lumped weight
rather than by varying the stiffness (moment of inertia), since this
latter quantity is at its lower bound every re except near the end of

the beam. Another interesting aspect of F.gure 10 i{s the manner in which

the lumped mass at the center alternates between: 1) being all on one
element, and 2) being split between two elements, This phenomenon is a

result of the fact that the minimum weight structure would have all the

mass at a single point (node or antinode). When this single point lies
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near a structural node the mass is placed there. On the other hand, when
the mesh causes the point to be between nodes, the mass is accordingly
divided between the two closest nodes.

As was pointed out previously in reference to Figures [7] and [8],
the optimization algorithm appears to treat the struccural and non-
structural mass at the znd of the beam as interchangable, To test this
hypothesis further, the optimal design problem statement was altered
slightly by decrecasing the upper bound constraint on the moment cof iner-
tia from 5.2083 to 2.0. The resulting optimum design is shown in Figure
{10b]l, and should be compared with the design (for n = 10) shown in
Figure [10a), Note that the constraint on the moment of inertia for
element 10 is not active in the optimal design of Figure [10b] (the
constraint was active during the CONMIN iterations 1leading to this
optimal design). Thus, the effect of the constraint is to lead the
optimization algorithm along a different path than that followed when
the constraint value was 5.2083. The design found, however, has about
the same total weight at the free end (= 9,9705 1lbf) as the previous
ten-element optimum (= 9,9222 1bf)., This result confirms the hypothesis
that CONMIN incrcases the moment of inertia at the free end only as a
means of increasing the mass there. Once that option is closed (that is,
the upper bound constraint is reduced to a value of 2,0), CONMIN simply
increases the ! rcped weight at the beam tip. This finding suggests
that,in future optimization studles, a tight constraint be imposed on
the moment of inertia at the free end, since little structural capa-
bility is needed there, and necessary end mass can be adequately repre-~

sented by the lumped weight design variables.

e
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5, PRELIMINARY CALCULATION FOR ROTORS

5.1 WIRD TURBINE BLADE

The first example in this section 1is the optimization of a wind
turbine rotor blade at 30 rpm. Initial data is taken from Ref.[22). A
ten—element model i3 used. Only the flapping is considered, The area
moment of inertia, I, and the lumped weight of each element are taken as
the design variables (see Fig 1 for blade area cross-section). Young's

Modulus, E = 0.2 x 106 lb—inz, and density = 00,0334 lb/in3 are assumed

to be constant. Blade radius, R = 750 inches., Table 2 shows the profile.

of moment of inertia and the distribution of added weight for the
initial and final configurations. The final profi.e of the area moment
of inertia along the blade is similar as the one in the previous
example. The optimization procedure has removed material from the
inboard sections and placed it more outboard. The lumped mass is
concentrated at the tip of the blade as might be expected. We also note
that most of the originally-pnstulated lumped mass is removed so that
only the mass inherent in the stiffness elements or necessary for the
autorotational constraint is maintained. (Although wind turbine have no
autorotational constraint, a certain moment of inertia i3 still useful
to smooth out wind vibration,

An important aspect of the optimization problem i3 the existence
(or lack of it) of a feasible solution. A ’'feasible solution' is defined
as any set of design variables that satisfy the constraints (whether or
not that particular solution is an optimum). Tt is possible that, if the
problem i3 poorly formulated, no feasible solution exists. What is

more oftan the case, however, 1s that there are feasible solutions but

ey
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that tha optimization scheme may not be able to find theam, Thus, it is
advantageous to have a feaaible initial guass so that one is assured
that at lsast a local optimum is possibie,

For example, Table 2 illustrates that the first guess is feasible
(w1> 2.82 no./rev), Here we found that CONMIN was able to move from this
first gness through che space of feasible solutions., In other caaes,
however, when the first guess is not feasible we have found that CONMIN
is not able to reach a sclution. In such cases, one must add or remove
some weight (or add or remove EI) from the firat guess to move from into
the feasible space; or, alternatively, we must begin with frequency-
placement as the objective function and then switch to weight when the
frequencies are within tolerance,

For example, Table 3 represents data for the s--e wind turbine as
in Table 2, but the constraint on the first natural frequency has been
lowered to remove it from the dangerous 3/rev range. This implies that
the first guess in Tahle 2 is no longer feasible, In order to overcome
this, a lumped mass {s added to station 9 (225.4 vs 49.350), This lowers

w, below 2,621 rev but also lowers w, to 8.25/rev., This could be alle-

1 2

viated in one of two ways: 1) move the mass to the node of the second

mode, or 2) simply widen the w, window. We have done the latter, It is

2
interesting that the added weight 1is ultimately rearranged to other

places and other weight removed such that the new design is no heavier

than the optimum in Table 2, Furthermore, w, i3 raised to 8.57 so that

2

the ‘widened window'’ had nc erfect on the solution,

r‘,/,
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5.2 HELICOPTER BLADE

The design and analysis of a representative helicopter olade is
discussed. Similar to Section 3, only flapping is considered and a te.-
element model is used. The initial configuration is modeled after the
rotor in Reference 23, Density 1is constant along the blade and equal to

3 8 2

0.17 x 10~ slugs/in3 . Young’'s Modulus is equal to 0.49 x 10° 1lb-in~ at

the root and is equal to 0.585 x 108 1b-in el=ewnere, Blade radius is

equal to 193 inches. Results are given in Table 4 and 5. In Table 4, vy

is in the desired range but "2 is too small, Furthermore, the autorota-
tional inertia is larger than necessary. In this case, the CONMIN pro-

gram 1is able to remove mass and stiffness in such a way to raise W, and

lower LIT The minimum bending inertia set as a constraint (0.4) 1is

reached at every point except the root. The root remained high to keep

vy ) 1.05. The new blade is one-third the original mass, In Tanle 5, a

stiffer initial design is used and the frequency Wy is forced to De
very high, In this case, the program COMMIN would ‘like’ ter decrease EI

and m, bu: any removal of material could lower w, beyond its 1lower

1
bound of 1.24/rev. To counter this, the optimization 2heme adds EI near
the root (to maintain "1 > 1.24/rev)., Furthermore, the lumped mass
necessary to maintain zutorctational constraint 1s moved =z2iightiy “‘n-—

board to have less effect on w, (keep it high) but more effect on v,

(keep it low). This exarple illustrates the physical soundnezs cf this
optim.zation scheme, It dies the same things that a designer would do
(given appropriate constraints) but in a more systematic manner, Thus,
with proper constraints, optimization can prove a .,aluable tocol for

frequency placement,

\./
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We have also examined the designs in Tables 3-5 with respect to
axial stress due to centrifugal loads. In each case, the maximum stress-

es sfter optimization are equal to or only slightly higher than the

original stresses,

U

e

‘_- ey



42

6, TEETERING ROTORS

6.1 Definition

In this section we attempt our firsc optimization of a realistic
cross—section (see Figure 11), one which is little different from our
first design pattern, (Figure 1). Therefore, it is sufficiently general
that both the bending and torsicnal stiffnesses of some currently exist-
ing blades can be matched., Using this generiec cross—-section and starting
frorz an actural rotor blade design, (Ref.[24]), we have studied the
pcssibility of moving natural frequencies away from resonances while
simultaneously satisfying constraints on the following: stress, the size
of lumped weights to be added, capability for autorotation, and thick-
ness of the main structural member (the box beam). Because a teetering
blade was considered, cyclic and collective modes os vibration were
calculated independently by a change in the boundary condition at the
blade root. In the initial phase of the study, we considcored collentive
flapping modes first, then cyclic flapping, and finally combined
collective and cyclic flapping. The results of these studies were
favorable (i.e. we were able to change the frequencies in the desired
manner and still satisfy the constraints), Buildiag on these results, in
the second phase of this section, we consider a more challenging problem
which involves combined mocdes of collective flapping, cyclie flapping,
collective inplane, cyclic inplane and torsional vibrations.

In this section, the primary design variables are: 1) the wall
thickness of the box baam and 2) lumpcd weights, that can be added at

specified stations along the beam, In the final problem studied, the
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wall thicknesses are taken as fixed, and only the lumped weights are
allowed to vary. This situation corresponds to that encountered in
practice when a blade has actually been designed and manufactured, but
then found to have poorly placed frequencies — thus lumped weights are
added at various positions along the beam to change the frequencies., We
found that our optimization routine was able to handle this problem
adequately, although the total weight of the beam could not ve used as
the objective function, as had been done previously. Instead, a
‘frequency placement'’ objective function was used.
6.2 Flapping Frequencies

The first set of optimization problems in the section 1is concerned
with flapping response only. The atarting design for the cptimizaticn
procedure in each of the three cases studied is a typical metal-bladed

teetering rotor with a diameter of approximately 24 feet. Ten finite

elements are used to model the rotor; their lengths are given in Table.

6. The objective of the op-imization is to minimize the total weight of
the blade. The design variables are the wall thickness, ti' of the
finite e'ement representation of the box bdeam (the structural member in
the rotor - see Fig., 1 ) and the lumped weight We, associated with each
finite element. The lumped weight is the sum of two components, a fixed
component (representing the weight cf the leading and trailing edge
strips, honeycomb, skin and nose weight,) and a variable component
(representing additional non~-stmictural mass which may be added at
various positions alonz the length <f the rotor) to modify the dynamic
behavior in a desired mannrer. The side conditions on the element thick-

nesses are, in units of inches,
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0.00044 < t, ¢ 0.730

i

The side conditions on the lumped weights consist of a lower bound only,

which represents the fixed component of weight for each element and is

given in Table 6 under the heading 'wmin" Ncece that the element thick-
nesses ti are not given in Table 6; instead, the area mcment of inertia,
I, i3 represented, Using the dimensions given in Fig. 12, we can show
that I reiated to the thickness by the equation

I = 2.593t3 - 7.780t2 + 7.780t + 0.506
The moment of inertia is given, rather than the thickness, to facilitate
comparison with Io' the portion of the moment of inertia which is con-

tributed by those §arts of the cross-section other than the box beam.

(Thus Io remains fixed as t, is varied.) Table 6 also contains the
values of the box weight, which are calculated by multiplying the weight
density of the box beam material by the cross—sectional area of the box.
Thus, the box weight is not an independent design variable, but depends
on the thickness ti. The box weight is included in the table to facili-
tate comparison with the distribution of lumped weight. The constraints

for the optimization are both the autorotation constraint,

2

r 7 2
i

sunm (wi') => 0.5567x10" 1lb-in
(where wi' is the total weight of element i, and ry is the distance from
the root to the center of the i-th finite element). The frequency con-

straints will be described in subsequent sections of this thesisSome

.
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additional data which complete the problem description are the values of
the elastic modulus, 0.105x10% 1b/in?, the radius, 288.8 in, :he
rotational speed, 324 rpm, and the mass density of the box beam
material, 0.000262 mugs/ins.
6.2.1 Collective Modes

The initial problem to be considered is the optimization of the
blade with respect to collective flapping modes only. Because we are
studying a teetering rotor, the collective mode of flapping may be
analyzed by iwposing a fixed boundary condition at the root cf the

rotor. The imposed frequency constraints are

1.15 < pl < 1.50 (loa)
3.40 < p2 < 3,60 (185
. 6.40 < p3 < 6.60, (162)

in which pl, p2 and p3 are the first three collective flapping mode
frequencies non-dimensionalized by dividing by the rotor speed.

The starting design for the optimization algorithm is given in
Table 6 under the beading “initial”., This initial design was chosen to
correspond closely with an actual rotor blade; thus,it is not surprising
to find that the design is infeasible with respect to the frequency
constraints we have imposed. The optimization algorithm used in this
study, CONMIN, supposedly permits an infeasible starting point and at-
tempts to proceed from this starting point to a reasible point. However,
for our design problems, thig feature of CONMIN failed to produce a

feasible design after many iterations. As an alternative approach, we
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formulated a preliminary optimizatiom problem im which the previous
objective function (weight) was replaced by a “frequency-placement”’

objective:

obifP = (3.50 - p2)2 + (6.50 - p3)? (17)

The numbers 3.50 and 6.50 are the average of the bounds of the frequency
constraint inequalities which are violated by th» initial design. The
remaiader of the optimization problem is the same as the original pro-
blem, except that the constraints on those frequencies which appear in
the frequency placement objective are omitted. CONMIN was applied to
this preliminary problem. In the process of minimizing the preliminary
objective, CONMIN was able to drive the frequencies sufficiently close
to their bounds that a feasible design (with respect to the original
problem) was obtained. At this point, the original objective function
wvas reinstated and CONMIN applied once again.

Table 6 gives the optimized design obtained by this two-stage
optimization procedure, with the corresponding frequencies and the total
weight. From the point of view of helicopter vibrationms, the initial
design of this plage is acceptable, since (except for the third mode) the
number/rev is far away f: m even integer values. The third mode is,
however, near 6.0/rev. The frequency of the second mode does not satisfy
tke inequality comstraints, but is not near an even integer multiple.
Note that the final design moves the third frequency to 6.53, waile
keeping the other frequencies wituin the counstraints. At the same time,

the weight of the blade drops from 344.5 1b to 265.6 1b.
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6.2,2 Cyclic Modes
The next pr-.dolem to be studied is the optimization of the blade
with respect tn cyclic modes of flapping. The non-dimensicrnmalized fre-

quancy constraints are now

0.90 < pl < 1,05
2.60 < p2 < 2.60

L.80 < p3 < 4,60,

in which pl, p2 and p3 are the first three cyclic non—dimensionalized
flapping-mode frequencies. For cyclic flapping modes, the boundary con-
dition at the root corresponds to a pinned suppbrt. The frequeucy-~-
placement objsctive was agzin chosen by noting which frequency con-
straints were violaved by the initial design. Noting the initial fre-

quency velues given in Tadle 7, we define

obifP = (2.50 - p2)% + (4.50 - p3)2

Table 7 gives the optimal design found by the two-stage optimization
pgocedure with the corresponding frequencies. The final weight of the
blade is showm to drop from 344.5 1b to 295.2 1b.
6.2.3 Combined Collective and Cyclic Modes

Next we consider the optimization of the beam wit' :~s2pect to
combined crllective and cyclic modes. Thues, in each iteracing an analy-
sis must be performed to find the frecuencies correspond.ng <0 a fixed

boundary condition; sud then ancther analysis must be pe formed t. [ird

-
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the frequencies for a pinned boundary conditiom. All other aspects of
the design problem remain the same as before. The constraints on the

collective flapping modes are

1.15 < pl < 1.60 (17a)
3.40 < p2 < 3.60 (75)
6.30 < p3 < 6.60 (172)

The constraints on the cyclic modes are

0.90 < pl < 1.10

(.8a)
2.40 < p2 < 2,60 (18b)
4,40 < p3 < 4.60 (18c¢)

For this problem, weighting factors are introduced into the frequency-

‘placement objective,

P o - 2 - a1y2
obj [2(3.50 - p2)© + (6,45 - p3) ]collective +

2 2 .
(22,50 - p2)% + (450 = p2%Y o (3)

The results of the optimization are given in Tables 8. The cyelic
modes of the initial Jesign are well-placed in the sense that they are
not near odd integers/rev, but the third collective mode is near 6.0/rev

(the same as in the first example). Note that the fina! design moves the
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third collective frequency to 6.33 while keeping the other frequencies
in the ’‘safe’ range. However, the weight of the blade only decreased
from 344.5 to 333.5 1b, in contrast to the previous example in which the
welght decreased to 255.6. The difference is caused by the larger number
cf frequency constraints in this example compared to the previcus
example.
6.3 SIMULTANEOUS FLAPPING INPLANE AND TORS1ON

The next problem to be studied is that of optimizing a teetering
rotor blade subject to the following simultaneous constraints on f{re-
quencies (non-dimensionalized by dividing by the rotor rotational

speed) :

1 collective flapping modes,

¢.5 ¢ p1 ¢ 1.5
2.3 ¢ p2 < 3.7

4.3 ¢ p3 < 5.7

2. cyclic flapping modes,

0.5 ¢ p1 ¢ 1.5
1.3 ¢ p2 ¢ 2.7

3.3 ¢ p3 < 4.7

3. collective inplane modes,

0.0 ¢ p1 <« 1.0

4.3 < p2 5.7

ey

14,3 ¢ p3 < 15.7
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4, cyclic inplane modes and

0.1 < pl < 1.5 (23a)

$.3 < p2 < 6.7 (23b)

17.3 < p3 < 18,7 (23¢)
5. torsional mode

(The first lower bound fer cyclic inplane modes, 0.10, was later repalc~-
ed by 1.0 in the problem formulations of the following sections). Be-
cause we are considering a teetering blade, the coliective-flapping and
cyclic-inplane modes can be modeled by clamped boundary conditions at
the root, while the cyclic-flapping and collective~inplane modes can be
modeled by pinned boundary coaditionms.

The elastic modulus, blade length, gpeed of rotation, and demnsity
of the box-beam material are unchanged from the values used before. In
addition to frequency and sutorotation constraints, the axial stress is
constrained to bde less than 20,000 psi. The value of the bound in the
autorotational constraint has been changed slightly to 0.5429:107 ib-
in?.

In the problem described in section 3., the thicknesses, t:, dli
and d,., of both the vertical and horizontal walls of the box beam (see

Fig. 2) are allowed to vary - that is, are also design variables, with

the following side constraints (in units of inches);

Vea
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0.01 < e, < 1.0
0.01 < 4

0.01 < dZi < 2,32, i=1,2,....,10.

The initial values of these variables are given in Table 9. In the
problems discussed in section 3.2 and 3.3, the box beam dimensions ts

d,; and dy; are fixed at these initial values.
Tables 9 also gives data defining both fixed and iInitial stiffness

and inertia values of the blade. In the tables, 'on' and 'on’ repre-

sent the portions of the flapping and inplane area moaents of inertia of

L4

Bx

and 'Ixy’ are the area moments of inertia of the box besm -~ thus fune-

the blade seczion which are independent of the design variables, I

tions of the (initial) values of the design variables, ¥y dy;s dgy, and

=rs thg Totary inertias of the box beam with respect to

-

t.. M. and M

oX by
flapping and inplane and are calculated simply by multiplying the mass
density of the box-beam material by the ares moment of inertias. Hox and

Hoy are the contributious to the rotary inertia of the section which are
independent of the design variables. Note that since these contributions
come from items with differemt densities, a single uniform value of
density cannot be defined for the Ho terms,

Jther initial inertia and stiffness properties are also defined in
Table 9. As beiore, the lumped weights associated with the finite ele-
ments are taken as design variables; but, to permit greater latitude in
placing torcional frequencies and to match more closely the behavior of

s true helicopter blade, a torsional spring is introcduced at the blade

toot; and it: stiffness is takea as a design variable. The side

11 ¢ 2.32 (25a,b,c)
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constraints on the lumped wveights are given in Table 9 under the heading

L d L

Yain the side constraint on the torsional stiffnegs consists of the
requirement that the stiffness be non-negative.

Since a torsional mode is involved, special treatment is given to
GJ, the torsional rigidity, which is s function of all variables includ-
ing t, dl' dz. the area of the trailing edge, and the lumped mass. The
procedu.e for calculating GJ is described in Appendix A,

Table 9 also containa the contribution of the lumped weight to the
rotary inertia, which equzls the lumped mass (vi/g) times (b/2)2. This
expression has been chosen to match the bebavior of the true blade. It
is assumed that the lumped weights cf the first two elements contribute
nothing to the rotary inertia.

6.3.1 Variable Box Dimension

As was done with the optimizstion involving flapping only, a two-
step optimization proccJdure is used, which involves a frequency-
placement objective followed by a weight objective. The frequency-
placgwcnt objective has the general form

objfp = gum [vfi (P*i - pi)zl (25)
in which tF um is taken over those f-equencies which are to be changed
from their _.itial values to the desired values Peje Values of p,. and
the weighting factors vfi are given in Table 10 with the results of the
optimization. Exsmination of the values of lumped weight gives in Table
10 stows that weight is concentrated at the tip of the blade because of

the autorotational constraint. .1e stress at the first element is close

to the stress constraint value of 206,000 psi. Th: total weight changes

..-’;9‘, A

7
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insignificantly, from 345 to 339 1lb, However, the root spring shows a
significant effect on the torsional mode. The spring constant changes

from 6.5x10° to 4.10x10°

in-1b/radian.

The placement of the frequencies is shown in Table 9,also, Note
that the third collective mode of flapping, which was near 6,0/rev,
moves to 5.67/rev; and the second cyclic mode of inplane, which was near
7/rev, moves to 6.7/rev. Finally, the torsion mode, which was 3.87/rev,
moves to 3.4/rev,

6.3.2 Fixed Box Dimensions

We next consider the oroblem of modifying a blade which has already
been c~onstructed, but which has been subsequently found to have inappro-
priate natural frequencies, Since the blade is'already built, the only
way its dynamic behavior can be modified is through the addition of
lumped mass and also through changing the root spring. Thus, in contrast
to the problem of section 3.1, here the box-beam weight, the flapping
and inplane-bending inertia, and the torsional rigidity are constant,
All starting values and fixed parameters are the same for this problenm
as in the previous section, Finding a starting design which satisfies
all of the frequency constraints is a difficult task for this problem,
and thus the frequency-placement objective is the only objective
function used; the second phaie (with weight as the objective funection)
is never reached, Values of the weighting factors and frequency bounds
which appear in the objective function are given in Table 11.

The final values of the lumped weights and axial streasses are shown
in same Table 11, with frequencies, root-spring stiffness, and total
weight. The most significant frequencies are the third colleccive flap-

ping mode and the second cyclic inplane mode, which are seen to move far

s s BT
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away from the undesirable integer/rev values. However, the first cyclic
inplane frequency is near 1/rev.
6.3,3 Variable Root Bending Stiffness

The problem furmulated in the previous section presented computa-
tional difficulties in that it was found difficult to find a design
which satisfied all the frequency constraints simultaneously when only
lumped mass and the root spring were used as the design variables, This
difficulty may be caused by the dominating influence of the root bending
inertias, Thus, it seems reasonable to include the values of 'on' at
the root as one of the design variables., The frequency-—-placement
objective is used throughout the optimization (the weight is not used as
the objective), and all starting data and fixed parameteps are given the
same values as in Section 3,2, Values of the weighting factors and
frequency bounds which appear in the objective function are'given in
Table 12 with the results of the optimization.

The results of Tables 12 differ from those of Tables 10 and 11, The
lumped weight changes at the first, fourth, and {ifth elements, The

5 5

stiffness of the root spring moves from 6.5x10° to 4.32x10° in-

1b/radian, However, the most significant effect is the change of on

(the bending moment of inertia at the root from 48.11 to 290.29 in‘.
Table 12 shows that all frequencies are placed in tne safe range,
6.4 Effect of Pretwist

In this section, we will do the optimization of a beam which is
pretwisted, (Pretwisted blade implies that the mot’' .s of flapping and
inplane are ccupled). The procedure of analysis will be the same as in

section 6.3, Data are identical to those of section §.3 save that the
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pratwisted angle is ncw includeda,
6.4.1 Variable Box Dimension

A two-step optimization procedure is still used. The box beanm
dimensions and lumped weights as (well as the root spring) are considar-
ed as design variables, Tﬁé results are shown in Table 13, In a similiar
fashion as results in section 6.3, the weight is concentrated at the tip
or-the blade because of tha autorotational constraint. Root stress is
close to the stress sonstraint which “s 20,000 rsi. The total weight
does not decrease. Instoad, it increases from 3:¢ °"» to 354 1lb, The

5 to 4.211ﬁf ir-~lh/rad. The 3econd

apring consatan. change: from 6,5x10
colleative mode of flspping moves from 5.89 to 5.67 no/rev while second
eyclic mode of inplare moves from 7.08 to 6.54 no/rev,
6.4.2, Fixed Box Dimensions

For a blade of existing constrtvction, onlr the lumped weights are
considered as design variables. Thc results of optimization are saown in
Table 14. The total weight increases from 345 1lb to 372 1lh, The thi~d
z0llective mode of flapping and the second cvelic mode of irplane move

into the safe range.
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7. ARTICULATED ROTORS

7.1 Definition

Articulated rotor blade wili be the subject of design blade in this
section. Ref{25] The primary design variables are same as before: the
wall thickness of box beam and lumped weights. Because the blade is
articulated with a rigid hub, there is no distinction between collective
or cyclic modes for flapping and inplane. The blade is pretwisted. The
boundary condition for flapping is a hinge at the root, There is root
spring for torsional motions and an offset for inplane, Table 15 gives
data for both the initial (and ainimum) blade stiffnesses and inertias
as well as for the initial variables such as box beam dimensions, lumped
weights,ete.
7.2.1 Variable Box Dimension

Box beam dimensions, lumped weights and root spring are taken as
design variables., Tables 16 shows the intial and final results of the
optimization procedure, The inplane frequency moves from 4.84 to 4.69
no/rev while the torsional mode moves from 4.25 to 4.45, The total
weight drops slightly from 96.55 to 95.48 1b. The root spring changes
from 2.41x10° to 2.89x105,
7.3, Fixed Box Beam Dimensions

Box beam dimensions will be considered to be fixed in this section.
Only luamped weights and the root spring are taken as deaign variables.

The final results are shown in Table 17.
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8. REIATION BETWEEN VIBRATION AND FREQUENCY PLACEMENT

8.1 FORMULATION

In this section, we would like to show wvhether or not the forced
response of the blade can be adequately controlled, as we have assumed,
by our approach of “frequency placemsnt”’, that is, of restricting the
natural frequencies of the blade to lie within narrow intervils located
avay from certain irteger multiples of the rotor speed. Also we would
exgmine whether or not aerodynamic dsmping substamtially reduces the
resonant peaks, in which case concern sbout avoiding resonances through
proper selection of frequency windows would be unnecessary. Finally, the
sensitivity of the optimal design to the choice of frequency window
will be studied.

.‘rhil investigation is carried out through two, somewhat overlap-
piig, problems. First, the forced responselof an initial (i.e., nom-
optimized) design is compar . to the response of a final design; cases
with and without sercdynamic damping are considered. Next, the response
of initial and final designs are evaluated as a single natural frequency
is varied (the others being held fixed). In each case, a forcing
function containing harmonics of the rotor speed is applied. Again,
cases with and without aerodﬁuic damping were considered. The general
finding “wom these studies is that frequency placement is a viable wmeans
of reducing vibration, altbough it is by no means the oanly method and
stould be used in conjunction with others.

8.2 RESPONSE VERSUE FREQUENCY
The equations of motioa for the finite—element representation of a

rotor blade, subjected to an external excitation, may be writtem in

~
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matrix form as

MI{X()} + [e]{X(e)} + [RI{X(2))} = {F(e)}, (27)
where
(M] = sass matrix,
{X(t)} = colusn vector of nodal displacement,
[C] = damping matrix,
[K] = stiffness matrix, and

{F(t)]) = forcing fumction columm vector.

The forcing function may in turn be expressed as

(F(2)} = (7} &i™F, (28)
where
v = forcing frequency, and *

vo = forcing amplitude.

After some calculation, it can be shown that the amplitude of the

response — written as (X}, independent of t — can be given as

(X} = [X + iwC - VZHI-I(V;} (29)

In this section, the response of both the initial and fimal
(optimal) designs to an external forcing functiom is studied as the

frequency of the forcing function is varied. Blades both with and with-

out aerodynamic damping are considered. To formulate these problems,

consider the forced betavior of a rotor-blade. Omly the flapping res-

ponse is considered., The lnplane response is inferred from the results

ST
4 :!.(;“-*/f<
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PRE

without damping. since there is l.ttle aerodynamic damping in the in-
plane direction.

Fig. [13] shows a plot of the forcing amplitude vo [Ref. 25] used
in the study. Given the forcing amplitude, we can calculate the response
of each node of the finite—element representation of the blade as the
value of the forcing frequency, w, is varied. The tip (finite—element
node farthest from the hub) response is of special interest. Before the
results obtained from this study are presented, it is useful to examine
the frequency placement results which are described in charter ¢ (see

Table 10). The results for the frequencies (in units of cycles/rev) are,
for flapping mode only,

MODE INITIAL DESIGN FINAL DESIGN
1st 1.18 ' 1,18
2nd 3.22 3.09
ird 5.89 5.67

Blade dimensions are given in Table 9,

The frequencies in the above table correspond to the symmetric
modes of a teetering rotor, Thus, only even harmonics of the rotor speed
have been considered ass forcing frequencies. As a result, the optimized
blade (Final design) finds the third mode moved away from the critical
6.0/rev (from 5.89 to 5.67). Similarly, the movement of the second mode
to 3.09/rev removes it from 2.0 and 4.0/rev. In the comparison study to
follow, however, we will apply the entire spectrum of frequencies to
this blade (not just even harmonics), Thus, the °'Final Design’ can no

longer be considered optimum, A comparison of the two blades, however,
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does indicate the atrong effect of resonance because each case has a
distinct resonance (6 and 3/rev).

We shall now consider the results of the present study. Fig, 14
shows the tip reaponses of both the initial design and final (i.e.,
optimized) design as functions of the forcing frequency. Aerodynar '~
damping has been neglected (Alternatively, the results can be interpret-
ed as giving the inplane response), It can be seen that ncar 1.18
cycles/rev, the responses of the twc designs are very similar. However,
the responses corresponding to the second and third modes differ signi-
ficantly. For example,in the second mode, the peak of 3,22 cycles/rev
(initial design) moves to 3.09 cycles/rev (final design)/ Similarly, the
peak of the third mode moves from 5.89 cycles/rev to 5.67 cycle/rev,
which is especially important since it is highly desirable to keep the
frequency away fros the integer frequency of 6 cynles/rev. We conclude
from these results that the frequency placement approach does have a
significant effect on the forced tip response when damping is not consi-
dered.

Next, the effect of aerodynamic damping is considered, The presence
of the damping implies that results to be presented oc;rmspond to flap~
ping. Mathematical details of the damping formulation are available
[Ref.18]., The effect of aerodynamic damping on reducing the resonant
peaks of the tip response of the initial blades is shown in Fig., 15,
Fig. 16 rhows the damped responses of both the initial and optimized
blades so that the effect of frequency placement can be studied, It is
interesting to observe here that when damping is included, no apparent
advantage 1s gained by cptimizing the blade, at least in terms of

reducing the tip response, oxcept in the range of 3-4/rev,in which a

{
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vhich a thirty-five percent reduction occurs. However, we must also
examins the effect of optimization whem the response is measured by the
average shear force sxisting in the blade.

Consequently, the shearing force in the blade is considered rext,
As s msasure of the average shear in the rotor, we consider the sum of

the squares of the shear force (abbreviated SS8),

2 *Y 2 * ces ¢Y 2

=Y 2 10 (30)

In this section, Yi represents the shear force at node i in the (ten-
element) finite~element model. ¥ote that the root shear is necessarily
included as one of the terms on the right-hand side of the equation, so
that a Iax;ge value of root shear will cause 8SS to also be large.

Pig. 17 shows the variation of SSS with respect to the forcing
frequency for the initial design with and without serodynamic damping.
Fig. 18 shows the same quantities for the final (optimized) design. 'Fig.
19 compares the quantity SSS corresponding to initial snd final designs
when aerodynamics is considered. Inspection of these figures shows that,
in contrast to behavior of the tip response, the shear response is
significantly affected by changing blade frequency, even when
aerodynamic damping is included. The 3/rev loads are increased by fifty
percent due to the movement of v, from 3.22 to 3.09/rev. Similarly, the

6/rev loads are reduced by seventy percent due to the movement of vy

from 5.89 to 5.67/rev. Thus, even with damping, frequency placement is a
powerful driver of locads. It follows that frequency placement can be

justifiably considered an impcrtant part of blade optimizatiom,
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8.3 RESPONSE VERSUS PLACEMENT

In the study just described, the respounse of the blade to changes
in the forcing frequency was cousidered. Now we consider a different
approach. In effect, we examine how the blade responds to a forcing
functiou “during the optimization procedure” — in the sense that during
optimization, the optimization algoritim va~ies the natural frequency of
the blade (to force it to satisfy the frequency constraints). Ir obtain-
ing the results to bc presented next, we simulated the optimization
procedure by varying the natural frequency. Thus we can observe what
happens to the forcea response during frequency placement.

The formulation of the approach is as follows. Throegh appropriste
transformations (described in Appendix 11.3), the system mass matrix can

be written as
(%} = [0)"T(o)~! (31)
and the system stiffness matrix as

(K] = (M)(0] diagl (w;®) 10017 (] (32)
vere v, are the natural frequeacies of the system, (0] is a matrix whose
columns are eigenvectors, and the notation “diag” indicates a diagonal
matrix (sll off-diagornal terms vanish). From examination of these
expressions, it can be seen that the stiffness and mass matrices car be
considered functions of the natural frequencies. Thus it becomes
possible to fix all frequencies but one, and then study the response of
the system as that one frequency is varied with mode shapes also held
fixed. In particular, the rmsponse to the following forcing function

will be studied:
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. iwt 12wt inwt
F(e)} = (V™™ + (V)12 4 4 (Ve (33)
vaere

v = the rotor speed, and

{v) = (i1 v},
A /) (¥} o)

where {Vo} was defined previously in Fig. 13. Since the arguments of the
exponentials are integer multipies of w, resonance will oceur at har-
monics of the rotor speed, The particular forcing function given above
is known from empirical observation to provide an approximate, but
physically realistic representation of the radial znd harmoniec variation
of the amplitud2 of the load on a real blads, As mentioned in this
section, the blade response will be defined by the tip displacement and
the sum of the squares of the shears axcept that, here, the n = 1 term
has been omitted from the expressions for calculating tip displacement
and shears Ddecause this term reprzsents 2 tip-path plane tilt that is
controlled by the pilot fn:- trimming purposes, It is not part of the
true vibratory loads we are considering.

Results for the problem just formulated are shown in Fig. 20. where
the sum of the aquares of the shears is plotted as a function of LY the
second natural frequency, with the other natural frequencies being
fixed, This figure corresponds to the initiil blade design (blade dimen-
sions are given in Table 9, Fig. 21 shows the same guantity for the
case where the third natural frequeacy is varied, It is interesting to
note that the response curve ‘or the damped case in Fig. 21 lacks
resonant peaks — apparently ‘he damped response is soc completely
dominated by the resonance of the second natural frequency, which 1is
fixed near 3/rev, that the (damped) resonant peaxs for the third fre-

guency are negligible by comparison. It should be noted that the
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response of the original design is respresented by only one point on
Figure 20 or Figure 21, This value can be found by taking w, = 3.22 or
Wy = 5.89 on those figures, since these are the initial design values
(Table 10).

For the final (optimal) design, the analogous quantities are plot-

ted in Figs. 22 and 23, Again, no resonant peaks are present in the
damped response when the third natural frequency is varied. Compzrison
of magnitudes of ordinates in Figs. 20 and 22 (no damping) shows that
the overall shear measure is reduced in the final design in the regions
away from resonance. Also, the choice of scale or the vertical axis in
Fig. 22 highlights the effect of frequency placement. Note that by
inspection of Figs. 20-23. a designer may select the design frequency
which minimizes the average shear as measured by the SSS.

One of the most interesting results of Fig. 22 is information about
the width of valleys and peaks, since this gives design information.
First, let us examine the non-damping curve (inplane response), Here,
the minimum points are nearly at the centers of the regions (2.55/rev)
and (3.5°/rev)., The frequency windows to maintain no more than thirty
percent incre=se in loads are 2,40 - 2,70/rev and 3.4C - 3,70/rev (plus
or minus 0.15/rev) — a fairly narrow window. For the damped curves
(flapping response), mimima are also near the one-half points, but the
window for thirty-percent increases are much wiver: 2.20 to 2.90/rev and
3.20 to 3.80/rev (plus or minus 0.30/rev). Stated another way, inplane
frequencies snould be no closer thar a 0.4/rev from integers, but flap-
ping frequencies may be as close as 0.2 from an integer, It should be
emphasized that these observations apply to this particular example and

uzay not be generalized for other frequency constraints.
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Another conclusion to be drawn from the above results is that the
undamped response curve has very flat-bottomed ’'valley’ when one of the
fixed frequoncies is near an integer velue (cf, Figs. 22 and 23).

8.4 RESPONSE DUE TO EVEN-INTEGER HARMONICS

In this section, we still study the response of the blade due to
the change of forcing frequency. However, the forcing frequency will be
a little different from the one in section 8.3.1. We will consider c¢nly
the even integer forcing frequenciea for which the collective mc - are

optimized. Thus, the forcing function may be written as

(F(t)) = vze“"'t + v4ei“"t + vsa“‘“‘ + vse“‘"‘

where
w = rotor speed
V,=1n* LA
Since the arguments of the exponentials are even integer multiples of w
only, the resonance will expectedly occur at an even integer of
harmonics of the rotor speed. The response of shear stress will be
studied in this section.
Results for this case are shown in Fig 24, where the sum of the

squares of the shear harmonics is plotted as a function of W, (w1 and Wy

are fixed; w, = 1.18 and v, = 5.89). The figure corresponds (o the
initial blade design. Resonance peaks occur at 2 and 4/rev. Thus, for
the shear response, a second frequencies around 3.0 would be the
suitable choice for W, 28 design frequncy. #fig 25 is a similar
comparison for a variable value of Wy ( W, = 1.18 and w, = 3.22 are
fixed). Here, the resonance is at 6,0/rev, and Wy = 5 or wy = 7 would be

ideal.
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Results are showa in Fig 26 and 27 for the final desizn blade.
Again, it is noted that the resonance peaks appear at even integers. A
comparison of Pig 24 and 25 with Fig 26 and 27 shows the relatively
lower vibrationms of the final design. In either case, however, we see

the sensitivity of vibrations to frequency, even with aerodynamics.
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9, SUMMARY AND CONCLUSION

The optimizatior technique works very successfully on the design

_ of rotor blades even when there are as many as 55 constraints, The most

efficient optimization orocedure involves 2 steps, In the first step,
the objective function is based on frequency placemert with appropriate
3tructural constraints. In the se~ond step, the objective function is
weight with frequency windows as constraiats,

As far as the optimization of helicopter blades is concerned, the
appropriate constraints include autorotational inertia, axial stress,
geomevric limitations of the cross-section, and the placement of mass
center “orward of the quarter chord,

Proper choice of input d2%a can ensure the optimization runs
smoothly and converges faster. Although we have up to 15 full con-
straints and 40 side constraints at one time, the program works very
well, The reason may be due to the fact that the input data are
practical encugh to meet (or to be close to) most of the constraints
even before the optimization starts. However, if we start the optimiza-
tion with random input data, the results may not be as good as expected,

The forced response of the blade can be adequately controlled, as
expected, by the approach of 'f:requency placement’,

The optimization techniques results in realistic designs by place-
ment mass at antinodes or node=, by adding stiffness at antinodes or
nodes, and by placing mass near tne *ip to achieve autorotational

inertia at minimum weight.
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APPENDIX 11.1

Nowmenclature

size of tip mass

area of cross-section of box besm

width of box beam

blade chord

damping matrix

width of lumped mass

vall thickness of box besm

weighting function

flapping stiffness

inpisne stiffness

sr.fety factor

final design

forcing, function ,
gravity

torsional stiffness

height of box besn

initial desi-n

area moment of inertia of box beam
constant ares moment of inertia of blade
mass moment of inertia of box beam
constant nass moment of inertia of blade
stiffness nmatvix

ares mowent of inertia

masg moment of inertia
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1 length of an element
(M] mass matrix
ol,p2,p3 blade first thrze frequencies (no/rev)
r distance from rotation axis
R length of the blade
s box beam thickness
SSsS sum of squares of shear frrce
t box beam thickness

(2 ]

tension force '

Tk kinetic energy

] tota! energy

Ul"ulo displacement of degree of freedom of element
(0] unit matrix |

vc;vl..vn forcing amplitude

v displacemcﬁt in yx plane
v displacement in zx plane
A blade frequencies

wf weighting factor

x coordinate axis and length parameter
e blade twist

) pretwist angle

o muss density of the blade
14 small parameter

14 Nt

n rotating speed

Om maximum stre~-

] mass of skin
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density of lumped mass, box beam, honeycomb
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APPENDIX 11.2

Calculation of Torsional Stiffness, GJ

The blade cross section is shown in Fig. 1 and is idealized into a
two cell torsion box in Fig.28. Although the bending and torsional
inertias include the contribation of all masses (including the filler
elements), the torsional stiffness is based only on the structural bex
and thin-skin elements. The torsional stiffness, GJ, 1is based on classi-
cal thin-walled closed section theory.(Ref,26) The effects of warping re
and distortion of the cross section are neglected. The equations are
briefly summarized as follows:

Considered call i, having an enclosed area of A,, and thickness t.

i’
The length along the circumference is measured by c¢, and the shear

stress is denoted by s.. The torsion constant is
J =124,/ [ (s de)lT (37)
!

where j; de is the line integral along the entire closed box, and T

represents the total torque applied tn the entire system. We also have

2T /3 = [ (s de) - f; (@ de/t) (38)
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where ¢ is the constant shear flow in the i-th box, Denoting the single
adajcent box as k, there will be a common wsll, ik, between the two
boxes. The shesr flow in the common wall will be the difference of shear

flows q; and g, . Thus, for the i-th box,

% fi(dclt) - qy f;;f“/t) - 21a,/3 (19)

and for the k-th box
I ACULREN JCULRENE (40,

Defining q. = Q.(2T/J) and n., = j-(dc/t), we can reforn
] J jm J'n

Eqs.3 to read

%130 " T A (41a)
QoG =t A (41b) '
Zurthermore,

Thus, the torsional constant, J, is given by
T ow 4(Q.A, + QA,)
i1 kAk (43)
Specifically, for the two cell box shown in Pig.28, cal bez i the
box besam and box 2 the equivalent trailing edge. Denmote the

circumference ot box 2 by C, The areas, Al and Az are given,

g
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Then, from the other dimensions,
oy, = n/d1 + Z(b/tl) + hld2

0, = n/d2

nzz - C/p + h/dz
Then, solving Eqs. 4a snd 4b gives
Q) = (Ajnyy + Agmy)/D

Qz = (Aznn + Alnlz)/D

2
D = )10, = (ny,)

Thus, all quantities in Eq.6 are known and the torsional

can be evaluated,

{(44a)

(44b)

(44c)

(45a)

(45b)

(45¢)

constant, J,
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I"' by o

Cell I: Constant thicknesses for sides of box beam
represent weighted effects of varigble
" th:ickness elements.
Cell 2: This cell represents configuration cf
skin and trdiling edge.

Tig. 28 Idealized two~cell model for calculation of torsional stiffness.




A
w S U I Q")

-106-

APPERDIX 11.3
Derivation of Mass and Stiff.ess Matrices
as Functions of Natural Frequencies
Define

x*] = a1~V ey 712, (46)

. * . . *
and construct a square matrix [U ] by using tbe eigenvectors of (K ] as
columns. If the eigenvectors ire normsalized to the identity matrix, that

is, if

(o1 70" - 111, (a7)
i. then fo'lows that

[0"17 2" 10e™] « diag © (v D) 1, (a8)

2 . *
wvhere v.” are the eigenvalues of [K ],

Next, let
) = -2, (49)

from which it followd that

(03T = (0¥ T(M11/2, (30)

o7l - 1Tt/ 2, (51)

(O1T(RT{U] = giag [ (w,D) 1, (52)
cnd

(w)¥iMlro] = [1]. (53)
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Finslly, then, the gtiffness and mass matrices can be written as

functions of the eigenvalues, 'iz:

] = (01" T(pj~!

[n]l/ztnlllz, (24)

and

(x]

() Tazagl (w.?) 10u1

1210 )aiagl (w, ) 1007171112

(1 [0ldisgl (w, ) 1001701, (55)

Note that the eigenvectors, [U], snd eigenvalues, wiz, appearing on
the right-hand side were originally calculated from the stiffness and
mass matrices, (K] and [M]. If we consider only relatively smsll changes
in the frequencies, V., then the eigenvectors should relatively
unchanged. Thus the last two equations for iM] and [K! with [U] held
fixed can be considered as expressing the msss and stiffness matrices as

explicit functions of the natural frequencies.
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