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ABSTRACT

Traditionally symmetric, multiple phase-shift-keyed (MPSK) signal con-

stellations, i.e., those with uniformly spaced signal points around the cir-

cle, have been used for both uncoded and coded systems. Although symmetric

MPSK signal constellations are optimum for systems with no coding, the same is

not necessarily true for coded systems. This paper shows that by designing

the signal constellations to be asymmetric, one can, in many instances, obtain

a significant performance improvement over the traditional symmetric MPSK

constellations combined with trellis coding. In particular, we consider the

joint design of n/(n + 1) trellis codes and asymmetric 2
n+1

-point MPSK,

which has a unity bandwidth expansion relative to uncoded 2 n-point symmetric

MPSK. The asymptotic performance gains due to coding and asymmetry are evalu-

ated in terms of the minimum free Euclidean distance 
dfree 

of the trellis.

A comparison of the maximum value of this performance measure with the minimum

distance d
min 

of the uncoded system is an indication of the maximum reduc-

tion in required E b/N0 that can be achieved for arbitrarily small system

bit-error rates. It is to be emphasized that the introduction of asymmetry

into the signal set does not affect the bandwidth or power requirements of the

system; hence, the above-mentioned improvements in performance come at little

or no cost. MPSK signal sets in coded systems appear in the work of DiArsalar

[1J.	 Here we expand upon these results by considering 4-, 8-, and 16-PSK

asymmetric signal sets combined with the optimum (in the sense of maximum

dfree) trellis code having 2, 4, 8, and 16 states. The numerical results

obtained will clearly demonstrate the tradeoff between the additional savings

in required E b/N0 and the additional complexity (more trellis states)

needed to achieve it.
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Preface

The Mobile Satellite Experiment (MSAT-X) is managed by the Jet Propulsion

Laboratory (JPL) for the National Aeronautics and Space Administration (NASA)

as part of NASA's Mobile Satellite Cormnunications Program. The thrust of

MSAT-X is to develop advanced ground segment technologies and techniques for

mobile communications via satellite in future-generation high-capacity sys-

tems. Areas of concentration in technology development include: vehicle

antennas; mobile radios; low bit rate, near toll quality digital voice; band-

width and power efficient modulations; and efficient network management and

multiple-access schemes. NASA plans to validate these technologies by con-

ducting experiments through the first-generation commercial mobile satellite,

expected to be launched in the late 1980's.

Presently under way is an advanced MSAT-X technology de ^opment whose

goal is to transmit 4800 bpG, near toll quality digital speech and data over a

5-kHz Rician fading channel, the latter being characteristic of the mobile

radio environment. In order to attain this goal, specific attention has been

directed toward combined modulation/coding techniques which potentially

achieve increased power efficiency without expansion of bandwidth. One such

class of techniques is the combination of MPSK modulation and trellis coding

with the possible addition of asymmetry to the modulation for further improve-

ment in performance. It is in this context that the research presented in

this report finds its motivation.
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SECTION I

INTRODUCTIO14

A. SYSTEM MODEL

The system under consideration is illustrated in Figure 1. Typical sym-

metric and asymmetric signal sets are shown in Figure 2. In particular, the

asymmetric M=2
n+1

-point set is created by adding together the optimum sym-

metrical M/2-point set with a rotated version of itself. The optimization

problem discussed in the Abstract thus reduces itself to a determination of

this angle of rotation.

Another way of looking at the M-point asymmetric construction, which is

more in keeping with Ungerboeck's "set partitioning" technique, is to imagine

partitioning the symmetric M-point constellation into two M/2-point constella-

tions with maximally separated signals, and then to perform an appropriate

rotation of one subset with respect to the other. Upon optimization of the

rotation angle, the resulting two subsets can be used as the first level of

set partitioning in Ungerboeck's method. In the next section of this report,

we briefly discuss this procedure and illustrate its application.

B. ASSIGNMENT OF SIGNALS TO STATE TRANSITIONS OF TRELLIS COLTS

The approach of assigning signals to transitions of the trellis code is

based on a mapping rule called "mapping by set. partitioning" [2]. This map-

ping results from successive partitioning of a signal set into subsets. Each

subset (including the original set) is partitioned into two subsets with an

equal number of signals and with the largest minimum distance between signals

within the subset. Figure 3 demonstrates the set partitioning method as

applied to asymmetric 8-PSK. What remains is to optimize the rotation angle

As in [2], the criterion of optimization will be to maximize the free

Euclidean distance (or its square) of th.. trellis code. In the next section,

we review the relation of this performance measure and likewise the average

[	 bit error probability of the overall coded system to the transition structure

of the trellis diagram.

F	 1
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Figure 2. Symr„etric and AsNgnmetric MPSK Signal Sets
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Figure 3. Set Partitioning of Asymmetric 8-PSK
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SECTION II

PERFORMANCE ANALYSIS

For every n information bits, the rate n/(n + 1) trellis encoder produces

n + 1 output coded symbols. These symbols are assigned to a unique member of

the asymmetric 2n+1 signal set in accordance with the above mapping proce-

dure. Thus, each transmitted signal x  at time k is 3 nonlinear function of

the state of the encoder s  and the n information bits at its input denoted

by uk , i.e.,

X  = f(sk , uk)	
(1)

The next state of the encoder sk+1 is a nonlinear function of the present

state and the input u k. In mathematical terms,

sk+1 = g(sk' u
k )	 (2)

The received signal sample at time k is

r  = xk + n 
	

(3)

where n  is a sample of a zero mean Gaussian-noise process with variance
2
a.

o find the average bit error probability pe-formance of the Viterbi
n

decoder. we must first find the pair-wise error probability p(x + x) between

the coded sequence {xk } and the estimated sequence IV,  denoted by x and
A respectively. Assume that Ixkl2 = 1. Then, using the Bnt•ttacharyya

bound (4], we have

P(x + x) < DA A = E 62 (S Uk)
k

5

dt
'.

(4)



V,	
7

77:7747 _ 

where

	
4

d 2 (Sk , Uk )	 (f(sk, uk ) - f(G k , u k )I 2	 (5)

with ^k and u
k the estimate:; of the state of the decoder and the informa-

tion symbol, respectively. Also, D is the Bhattacharyya distance which in

this case is given by

D = exp - 12
	

(6)
80

The pair-state S  and the pair-information symbol U 	 [4 and 51 are defined

as

S (s sk)k k,

? U (uk' uk ) (7)

We are in a correct pair-state when s  = s  and in an incorrect pair-state

when sk * sk.

In ter	 of the above definitions, it can be shown that

P b	 n dz T(D ' z)Iz=1	
(8)

where

T(D, z) = 1 V  [I - A]-I W
m — — — —

and m is the number of code states. The vectors V and W have dimension

m2 + m with elements taking on values 1 and 0. A is a (m2 + m) x (m 2 +

m) pair-state transition matrix with elements

(9)

6
	 F^
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(E n

l z w(Uk) D 62(S k' U k ) ;
—

uk EUk 2	 if U  is nonempty set

0; otherwise

where

U  = 
1
(uk , uk )I(s k , u k ) # (c k , uk ), S 	 A d , S k+l = G(Sk , Uk)

	 ti

( 11 )

in which .8 t and ,a d are sets of all true and dummy correct pair-states

respectively, and

G(Sk , Uk)	
\g(sk' u

k ), g ( sk' uk)I	 (12)

Finally, the free EucliJean distance of the code [51 is

dfree = lim log2 T(DD,1))	
(13)

D i0	 '

AsymptoLically for large signal-to-noise ratios (SNR), maximizing dfree is

synonomous with minimizing the average bit-error probability. This relation

is true provided that the distances between individual points in the signal

set do not become too small. As we shall see, in some cases, optimization of

the asymmetry condition produces signal sets wherein the limiting signal

points tend to merge together. Thus, in these instances, the reader is

cautioned that the performance advantage achieved in terms of improvement in

dfree no longer translates directly into improvement in the required SNR;

thus, one is forced to back off somewhat from this optimum condition.

I
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Based on the discussion of the previous section, the procedure for

designing good trellis codes, combined with optimum asymmetric MPSK signal

constellations, can be summarized by the following steps:

Step 1: Use the mapping by set-partitioning method to partition the sig-

nal constellation as the example in Figure 3.

e

	

	 Step 2: Assign signals from either of the two partitions (each contain-

ing 2 n signals) generated at the first level of partitioning

in step 1 to transitions diverging from a given state. 	 Simi-

	

larly, assign signals from the other of these two partitions to 	
i

transitions re-emerging to a given state. These assignments

should be made such that the minimum distance between diverged

and the minimum distance between re-emerged transitions are as

large as possible.

Step 3: Find the free Euclidean distance of the code using Eq. (13) or

the bit error probability using Eq. (8) or the pair-state

transition diagram.

Step 4: Maximize the free Euclidean distance or minimize the bit error

probability of step 3 with respect to the rotation angle ^.

This value of d then defines the optimum asymmetric MPSK sig-

nal constellation.

A.	 BEST RATE 1/2 CODES COMBINED WITH ASYMMETRIC 4-PSK (A4PSK)

The signal partitioning for trellis coded A4PSK is as in Figure 4. For a

rate 1/2 code, there will be two transitions leaving (diverging from) each

state. We begin by considering the signal point assignment for the simplest

case of 2 states.

8



1.	 2-State Trellis

k.*

For a 2-state trellis, one has only two choices for transition

assignment. Either there exists multiple (two) transitions between like

states or the two transitions leaving a given state go to different states.

In the case of the former, the shortest error event path will be length one

(i.e., the parallel path); hence, the maximum value of 
d?ree 

is limited

to the Euclidean distance between this pair of signal points. For the set

Partitioning of Figure 4, this corresponds to the squared distance between

points 0 and 2 (or 1 and 3) which has a value of 4.0. If on the other hand,

the latter choice of assignment is made as illustrated in Figure 5, then the

shortest error event path, i.e., the one yielding the minimum distance, is of

length two. This path, corresponding to the error event of choosing signal 2

followed by signal 1, when, in fact, signals 0 and 0 were successively trans-

mitted,* clearly has a larger value of 
dfree 

than 4.0 since the squared

distance of the first branch of this path is by itself 4.0. Thus, this assign-

ment is obviously the better choice.

We shall define a state transition matrix, T, which describes the possi-

ble transitions between states corresponding to successive discrete time

instants separated by a channel symbol. The i j t h entry in the matrix repre-

sents the output MPSK symbol assigned to the transition from state i to state

j. The absence of an entry implies that a transition between those states is

not possible. Thus, for the trellis of Figure 5, we have

0 2

T=

1 3

(14)

* In all of our discussions, we shall assume that the all zeros path, which
corresponds to the all zeros input bit sequence, is the transmitted path.
This implies that the signal point assignment to the trellis should satisfy
the uniform error probability (UEP) criterion, i.e., the probability of

M-

	

	error is independent of the transmitted sequence. A further discussion of

this implication will follow shortly.

9
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Figure 4. Set Partitioning of Asymmetric 4-PSK
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Figure 5. Trellis Diagram and MPSK Signal Assignment for 4-PSK
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We note that the signal point constellation of Figure 4 can be regarded

as a special case of an unbalanced QPSK (UQPSK) where the data rates on the

two channels are equal and the symbol transition times are aligned, but the

	powers are unbalanced. The ratio of powers between the I and Q channels can 	 1^

be related to the angle ^ that defines the asymmetry.	 In particular, let-

ting a = PQ /PI , then

a = tan  2	
(15)

The trellis of Figure 5 can be implemented by a constraint length 2, rate

1/2 linear convolutional code. The pair-state transition diagram for this code

is illustrated in Figure 6 and has the transfer function bound

4(l + 2a)
1 + a

T(D, z) = zA
	

4	 (16)

1 - zD 1 + a

where D is defined by Eq. (6). 	 Using Eq. (16) in Eq. (8) gives the upper

bound on the average bit error probability, namely,

401 + 2 a)
1 + a

P <	 D	 (17)

b —	 4	
2	 =^

1 - D 1 + a

where the unit radius circle in Figure 4 implies that P I + PQ = 1.

The optimum value of a (or equivalently ^), i.e., the value that

minimizes the bound on Pb of Eq. (17), is

a = - 4knn3D - 1	 (18)

12^
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T (D'z) = 1-26

a = z D4

4

b= z 
D +a

2

4a
+ Of

c= 2 D

Figure 6. Pair-State Transition Diagram for Trellis Diagram of Figure 5
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The parameter D of Eq. (6) can be related to the system bit energy-to-noise

ratio	 E 1)/N 0	by	 first	 recognizing	 that	 a2	=	 (2E s /N 0 ) -1	where	 Es

is the MPSK symbol energy. Since, for n/(n + 1) trellis coding, n input bits

of energy Eb , produce n + 1 code symbols,which in turn result in a single

MPSK symbol of energy E s , then clearly Es = nEb . Using these observa-

tions in Eq. (6) gives the desired relation for D in terms of Eb/N0,

namely,

I	 (
D = exp -

e
nEb

	

4N
() )

	

(19)

Table 1 below gives the optimum value of a and 	 versus Eb /N0 in

accordance with Eqs. (15) and (18) together with Eq. (19).

Substituting Eq. (18) in Eq. (17) gives the optimum (in the sense of the

best asymmetric 4-PSK signal design) upper bound on the average bit error

probability, namely,

2Eb
/N0

3 -
Pb < 4 

3	 Rn 3	 (20)

t	 n

Table 1. Optimum Values of Power Ratio and Asymmetry Angle Versus Eb/N0

E b/N 0 , (dB)
	 a

	
^ (rad)

4 1.3 1.70

5 1.9 1.89
6 2.6 2.03

7 3.5 2.16
8 5.7 2.35

9 7.2 2.43

10 9.1 2.50

11 11.5 2.57
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For the symmetric signal design	 71/2, a = 1), the upper bound in

Eq. (17) becomes

exp (- 3E
b 
/2N )

P <	 0	 (21)

b — [1 - exp (- Eb/2N0)J2

Finally for uncoded PSK, the corresponding upper bound would be

E

Pb < exp	
- Nb	

(22)
0

Figure 7 illustrates the three upper bounds of Eqs. (20), (21), and (22)

versus E b/N0 . For sufficiently large values of Eb/N0 , the denominator

of Eq. (21) can be approximated by unity. Thus, asymptotically, the gain in

Eb /N0 of the coded symmetric 4-PSK system over the uncoded PSK system is

10 log 10 (3/2) = 1.76 dB. To determine how much additional gain due to asym-

metry is achievable in the same asymptotic limit, we turn to a discussion of

the free distance behavior of the coded system.

Let 62 denote the squared distance from signal point 0 to signal
J

point j = 1,2,3. Then, for the asymmetric constellation of Figure 4,

46 i = 4 sin 	
2	

62 =	 ; 63 = 4 cost 
2

(23)

For the minimum distance path of length 2, we have

d free - 52 +
 6i =4 ( 1	 + sin 	

2 J
(24)

which for the symmetric signal design	 n/2)	 become..,

#	 dfree = 4
	 1 + 2
C	 )

= 6 (25)

15
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In the more general asymmetric case, substituting Eq. (15) into Eq. (24) gives

dfree	
4 

C
1+1+a)

- 4 C

1 + 2a1
1 + a J

•I	
Thus, the improvement in 

dfree 
due to asymmetry is from Eqs. (25) and (26)

2
A	 dfree lasymm.	 2(1 + 2a)

n = 10 log10 d2
	

= 10 log
10 30 + a)

free I symm.

For example, for E b/N0 = 10 dB, we have from Table 1 that a = 9.1.

Thus, the performance improvement of the asymmetric constellation over the

symmetric one is 1.03 dB.

If instead of minimizing the bit error probability, we select the asym-

metry angle that maximizes 
dfree 

of Eq. (24), then the value of this

angle will be independent of the SNR. From Eq. (24), we see that dfree

is maximized when m = r , i.e., signal points 1 and 2 merge together and

likewise for signal points 0 and 3.	 In this limiting case, dfree	
8 and

the gain relative to the symmetric constellation is 10 log 10(8/6) = 1.25

dB.	 Note that this result represents the limiting case of Table 1 as

Eb /N0 approaches infinity.	 It also represents the asymptotic improvement

in the Eb /No performance due to asymmetry, as would be obtained by letting
	 ` =41

the symmetric and asymmetric coded curves in Figure 7 approach infinite

Eb/N0 .	 Finally,	 for	 any	 finite	 E b/N 0 ,	 using	 m =	 n	 or,	 equi-

valently, a =	 in Eq. (17), results in an infinite upper bound as would

be expected.

(26)

(27)
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Since for uncoded 2-PSK (or simply PSK), the square of the minimum dis-

tance is 4 (two signal points diametrically opposed on a circle of diameter

2), then the limiting gain of the 2-state trellis coded asymmetric 4-PSK rela-

tive to this equivalent bandwidth uncoded system is 10log 10(8/4) = 3.01 dB.

The relative gain of trellis coded symmetric 4-PSK to uncoded 2-PSK would,

from the above discussion, be 1.25 dB less, or 1.76 dB, which agrees with the

statement above.

2.	 4-State Trellis

For a rate 1/2, 4-state trellis code combined with 4-PSK, the

assignment of signals to the branches according to steps 2 and 3 of the pre-

vious section, leads to the trellis illustrated in Figure 8. Depending on the

value of ^, there are two possibilities for the shortest path with the mini-

mum free distance. For small values of ^, the length-4 path corresponding

to MPSK signals 2,3,3,2 is the dominant one; whereas, for values of m near

TT, the length-3 path corresponding to MPSK signals 2,1,2 is dominant. The

squared Euclidean distances for there paths are

d 2 (2,1,2) = 4 + 4 sing 2 + 4

d 2 (2,3,3,2) = 4 + 8 cos 2 2 + 4
	

(28)

To find the optimum value of ^, we equate the two squared distances in

Eq. (28) which results in *

tan g 	= 2	 = 1.91 rad	 (29)

	

with a corresponding value of d ` 	,
free

d2= 4 + 8 f 1 + 2 ) + 4 = 32 = 10.67	 (30)

* Since the two squared distance functions in Eq. (28) are monotonic functions

(one increasing and one decreasing) of ^ over the interval (0, n), their

crossover point results in the maximum value of the smaller of the two eval-
uated at each ^.

18
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Figure 8. 4-State Trellis Diagram
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For the symmetric case (^ = 702), the length-3 path gives the smaller

minimum distance, which from Eq. (28) is

d free = 4 + 4 ( 2) + 4 = 10	 (31)

Thus, from Eqs. (30) and (31), the gain in d 2	due to asymmetry isfree

	rn = 10 log
10 3 103

 = 0.28 dB	 (32)

Again, relative to an uncoded PSK, the gains are as follows:

2

d free a,,,,.	 32 
4 n asymm.	 10	 d2

= 10 log

lo

	 10 log10 = 4.26 dB

min

0	 dfree symm.	 10
n	 m. = 10 log 	 ^	 = 10 log	

10
4 = 3.98 dB	 (33)

s
^'	 d ` 

m i n

Although we have only discussed the minimum distance paths with respect

to the all zeros path as the transmitted one, we have also checked our results

against all possible transmitted paths with the conclusion that the signal

assignment in Figure 8 leads to a UEP code, i.e., its average bit error prob-

ability is independent of the transmitted sequence.

In general, it would be desirable to have a necessary and sufficient set

of conditions which would determine whether a particular signal assignment to

a given trellis diagram has the UEP property. Indeed, one would like to have

these conditions, independent of the implementation of the code and indepen-

dent of its linearity. Thus far, finding such a set of necessary and suffi-

cient conditions has eluded the authors of this paper and thus it is essential

to check (typically by computer search) each signal assignment made for the

UEP property. To make this task a bit simpler, we shall define an approxima-

tion to the UEP property, denoted by "UEP" which, for the purpose of system

20
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comparison in terms of minimum free distance, is quite suitable. In particu-

lar, we shall say that a code is "UEP" if, independent of the input sequence,

the trellis diagram prodices the same minimum free distance and same number of

error event paths at this distance. This approximate definition is equivalent

to requiring that the leading term in the transfer function polynomial be

Independent of the input sequence. The stricter UEP definition would require

that all terms of the polynomial be independent of the input sequence.

There is an important point to be emphasized here that is true regardless

of whether the UEP or "UEP" definition is applied. When dealing with

Euclidean (rather than Hamming) distance as a performance measure, the lengths

and composition of the first error event paths at a given distance from the

transmitted path may vary with the transmitted path itself. More specifi-

cally, the individual terms in the transfer function polynomial are character-

ized by a coefficient that specifies only the number (regardless of their

length) of first error event paths at a given distance from the transmitted

path and an exponent of D (the Bhattacharyya distance) which specifies the

distance itself. Thus, even though a code is UEP, which implies a unique set

of coefficients and exponents independent of the transmitted path, the makeup

of the paths, i.e., their lengths and corresponding output MPSK symbols, con-

tributing to a given term in the polynomial may well vary with the transmitted

sequence.

3.	 8-State Trellis

Following the steps previously discussed for the design of good

codes, one arrives at the 8-state trellis diagram on Figure 9 with state

transition, matrix, T, given by



Figure 9. 8—State Trellis Diagram for Asymmetric 4—PSK
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1	 2	 3	 4	 5	 6	 7	 8

1	 0	 2	 '	 r

2	 3	 1

3	 2	 0

4	 1	 3

T =	 (34)

5 2	 0

J	 6	 1	 3	 ^'

7	 0	 2
i

8	 3	 1

v
i

As for the 4-state trellis, there are two shortest-length paths (solid lines)

that, depending on the value of ^, yield the minimum free distance. The

squared distance of these paths is given by
I

2 (2	 t	 t,3,2,2) = 4 + 4 cos 2 + 4 + 4 = 12 + 4 cosd 	
2

d 2(2,1,1,0,2) = 4 + 4 sin g 2 + 4 sing 2 + 0 + 4 = 8 + 8 sin g 2	 (35)

r

	

When these distances are equated, the optimum value of 	 is found to be

sing 2 = 3	
= 1.23 rad	 (36)

4 .

ChM

i

and the corresponding squared minimum free distance is

d f ree - 8 + 8 ` 3 ) - 3̂  = 13.33	 (37)

* Again, the two distances in Eq. (35) are monotonic with ^ and thus equat-

ing them results in the maximum value of the smaller of the two over all m

E (0, n).

2 3 	 ^'



For the symmetric signal design with m = n/2, the length-5 path provides

the smaller distance with the value

d 2	 =8+8 C 1 ) = 12	 (38)
free	 2

Thus, gain due to asymmetry is

n = 10 log 10 4 023 = 0.46 dB	 (39)

and the gains of the asymmetric and symmetric 8-state trellis coded 4-PSK sys-

tem over the uncoded PSK system are

r Ias
mm. = 10 log10 40/3 = 5.23 dB

Y

n	
= 10 log

10 1 - 4.77 dBI symm, 
.

There is another path illustrated by dashed lines in Figure 9 which cor-

responds to the length-6 error event "2,1,3,3,0,2". The squared distance of

this path from the all zeros path is identical to that of the length-4 path

found above, and thus does not change the relative gains given in Eqs. (39) and

(40). One might wonder then why we even mention this path at this time. We

shall see later when we discuss the signal assignment for an 8-state trellis

code for 16-PSK that indeed the paths found in Figure 9 still provide the min-

imum distance. However, because the distances between points in a 16-point

MPSK constellation are obviously not the same as in the 4-point constellation

being discussed here, we shall find that there the solid line length-4 path

and the dotted line length-6 path do not have the same distance. In fact, to

get the optimum asymmetric design one must equate the distance of the length-5

path with that of the length-6 path. We shall delay further detailed discus-

sion of this interesting point until later on. Suffice it to say that one must

not be complacent with finding the shortest minimum distance paths for a given

modulation level and assume that they also control the optimum design of a

system employing the same trellis code but a different number of modulation

levels. Rather, in each case, one must be certain to check all possible paths

of all leneths.

24
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B.	 BEST RATE 2/3 CODES COMBINED WITH ASYMMETRIC 8-PSK (A8PSK)

The signal partitioning for rate 2/3 trellis coded A8PSK is as in Fig-

ure 3. Here there are four paths that diverge from each state. Thus, one now

has more flexibility as to how many parallel paths, e.g., 1, 2, or 4 should be

assigned per transition between states. For the 2-state trellis the choice is

Somewhat obvious; thus, we shall again begin our discus- sion with this simple

case.

1.	 2-State Trellis

The 2-state trellis used here is exactly of the form given in Fig-

ure 5 except that now each branch represents two parallel paths (see Fig-

tire 10). The minimum free distance path is once again of length two and

corresponds to the error event "2,1". Since from Figure 3 the set of squared

distances from signal point 0 to signal point j = 1,2,3,...,7 is now

6	 = 4 sin g 2
= 2	 ( 1 - cos	 d5 = 4 sin g  -

2
=	 2	 ( 1 + cos	 ^)

d2 = 2; 62 = 2

2 2
4 sin

n 
1	 +	 =

2 2
= 4 sin

^
- 4'

=	 2	 ( 1 -sin	 ^)d 3 = 4	 2 
J

2_	 ( 1	 + sin	 ^);	 d 7 4 2 
1

6 2 = 4 (41)

then the squared minimum free distance is given by

dfree	
d 2 + di = 4 - 2 cos
	

(42)

which is maximized when ^ = 7T/2, i.e., the signal points 1, 3, 5, and 7

merge respectively with points 2, 4, 6, and 0. In this limiting case, the

maximum value of Eq. (42) becomes

2	 _

dfree	
4
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Figure 10. 2-State Trellis Diagram and Signal Assignment for 8-PSK
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For the symmetric 8-PSK constellation (^ = 1/4), Eq. (42) becomes

dfree = 4 - 
32	 (44)

Thus, the gain due to asymmetry is

n = 10 l0	 4	 = 1.895 dB	 (45)
g10 4 -

Since rate 2/3 trellis coded A8PSK is equivalent in bandwidth to uncoiled

4-PSK, and since the latter has d2min = 2, then the relative gains for the

asymmetric and symmetric coded signal designs are, respectively,

n 

I 
asymm. = 10 log10 2 = 3.01 dB

n I symm. = 10 log l0 4 2 
3 2 = 1.116 dB
	

(46)

As was true for the 2-state rate 1/2 trellis coded A4PSK case, the opti-

mum asymmetric signal design corresponds to a merger of alternate signal

points in the original symmetric set. This implies that the gain due to asym-

metry as dictated by Eq. (45) only translates into an equivalent Eb/N0

gain, in the limit of infinite E b/N 0 (zero average bit-error rate). Thus,

it behooves us to investigate the practical gain achievable with asymmetry.

This is done once again by finding the pair state transition diagram for the

trellis, evaluating its transfer function T(D,z), and differentiating this

result in accordance with Eq. (8) to find an upper bound on the average bit

error rate. Minimization of this bit error rate bound with respect to the

asymmetry angle ^ then results in an optimum asymmetric signal point design

as a function of E b /N0 . The details of this procedure are as follows [3].

q
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Figure 11 illustrates the pair-state transition diagram for the rate 2/3

trellis code. The transfer function of this diagram is, by inspection, given

by

(a1 + a 2 ) c

	

T(D, z) = d +	 1	 - 2b	
(47)

Applying Eq. (8) and simplifying the algebra results in

1 d	 1 
d2	 1 D S2 (D d1 + D d5)

(2 - Da7)
P ^	

T(D, z)	
4 D
	 + 2

(1 - D 7 -	

(48)
b	 2 dz

	

z=1	 d2	 621 
2

 D 3

The upper bound in Eq. (48) is implicitly a function of the asymmetry angle

m through the distances between signal points defined in Eq. (41). Minimiz-

ing Eq. (48) with respect to m does not lead to an exact closed form expres-

sion for the optimum asymmetry angle as was possible in Eq. (18). Thus, we

have elected to perform the minimization by numerical analysis with the
It

resulting values tabulated below.

Table 2. Optimum Values of Asymmetry Angles Versus Eb/N0

E b/N 0 , dB	 ^ (rad)

	

5	 0.7854

	

6	 0.9189

	

7	 1.037

	

8	 1.139

	

9	 1.217

	

10	 1.280

	

11	 1.327
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Figure 11. Pair—State Transition Diagram for Rate 2/3 Trellis Code
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As a check on the above, we note that, for large values of Eb /Not Eq. (48)

can bL approximated by

d 2+d i
(	

d^

1 D	 \2 - D
P b < 2	 2 2

d

(1 - D 2

Differentiating Eq. (49) with respect to m and equating the result to zero

leads to the transcendental equation

3 _	 sin ^ + 9 cos	
E

D20 -sin 0 	 sin m + cos m^ D = ex - 
b	 (50)

2	 P	 2N0

Solutions of Eq. (50) agree extremely well with Table 2 even for moderate

values of Eb/N0.

Substituting the values of ^ from Table 2 into Eq. (48) results in the

optimum upper bound on the average bi` error rate and is illustrated in Fig-

ure 12. Also illustrated in that figure is the result for the symmetric case,

i.e., Eq. (48) evaluated for m = n/4, and the corresponding upper bound

for uncoded 4-PSK (one half the result in Eq. (22)).

(49)

Before going on, we should point out that the selection of a trellis with

parallel paths, as in Figure 10, limits the achievable free distance. The

minimum distance path is of length one and corresponds to the transition

between like states in the trellis. Thus, for 8-PSK, if one is to achieve a

larger d 2	 than four, i.e., the squared distance between signal points
free

0 and 4, then one must choose a trellis with no parallel paths. For four

states we shall demonstrate that this is not possible, i.e., for any amount of

asymmetry, the selection of a trellis with nc, parallel paths achieves a

smaller d 2	 than the trellis with parallel paths.
free
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} Before concluding our discussion of the 2-state case, we note that had we

selected a trellis with four parallel paths between like states and no cross

transitions, then 
dfree 

would have been limited to two, i.e., the squared

i	 distance between signal points 0 and 2 (or 6). Thus, the selection made in

Figure 10, which achieves a 
dfree 

larger than two, is optimum.

2.	 4-State Trellis

For four states, we can either have a trellis with two parallel

paths between states or one with no parallel paths. These two possibilities

and their corresponding signal point assignments are illustrated in Fig-

ure 13. The state transition matrix for the latter trellis is

0	 4	 2	 6

1	 5	 3	 7

T =	 (51)
4	 0	 6	 2

5	 1	 7	 3

and the shortest minimum distance path is of length 3 corresponding to the

MPSK output symbols "2,0,1". The squared distance of this path from the all

zeros path is

d 2 (2,0,1) = 4 - 2 cos ^	 (52)

which for every value of ^ between 0 and n/2 is smaller than that corre-

sponding to any other path of any length. In the limit, Eq. (52) achieves its

maximum value, i.e., dfree 4 when = n/2. For the symmetric case

where ¢ = r/4, Eq. (52) evaluates to d2free = 4 - V-2which is the
same result as for the 2-state trellis, thus implying no gain by going to the

additional complexity.

One might wonder at this point whether the selection of another signal

point assignment for the trellis of Figure 13(b), still satisfying the "UEP"

condition, would lead to improved results. An example of such would be the

state transition matrix

M.
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Figure 13. 4-State Trellis Diagram
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0 4 2 6

5 1 7 3
T=

4 0 6 2

1 5 3 7

(53)

For this case, the shortest minimum distance error event path is of length 2,

namely, "6,1", which achieves the identical squared distance as Eq. (52). The

authors have exhaustively tried many other combinations with the result that

with the fully connected trellis structure of Figure 13(b) no further improve-

ment is possible.

To show that Figure 13(a) is the preferred approach, we observe, as rid

Unge_boeck [2], that all paths of length greater than one have a squared dis- 	 1

tance larger than four. In fact, the closest to this value would be achieved

by the error event path "2,1,2" with squared distance 6 - 2cosm, which is

greater than four for all values of ^ (other than 7T/2). 	 In conclusion,

the maximum d 2	is achieved by the 4-state trellis of Figure 13(a) and
free	 f

has the value of 4, independent of the asymmetry angle. Stated another way,

for rate 2/3, 4-state trellis coded 8-PSK, there exists no gain due Lo asym-

metry, and the gain relative to the uncoded 4-PSK case is 3.01 dB.

3.	 8-State Trellis

For eight states, we again have several options of signal assign-

ment according co whether or not there should exist parallel paths. We remind

the reader that if parallel paths are assigned to the transitions, then

dfree is limited to have a value of 4, regardless of asymmetry. Thus, we

should first investigate a fully connected trellis with no parallel paths and

see if indeed one can achieve a larger value of free distance. In that

regard, consider the 8-state trellis of Ungerboeck [2] reproduced here in

Figu-'e 14 with a state transition matrix

34,
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Figure 14. 8-State Trellis Code for 8-PSK
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0	 4	 2	 6

1	 5	 3	 7

4	 0	 6	 2

5	 1	 7	 3

T = I
	

(54)

1	 6	 0	 4

3	 7	 1	 5

6	 2	 4	 0

7	 3	 5	 1

nt the two shortest paths that, depending on the amount of

the minimum distance from the all zeros path are "6,7,6" and

luared distances for these paths are, respectively,

= 4 + 4 sin g ( 4 - 2) = 6 - 2 sin

= 4 + 4 sing 2 = 6 - 2 cos	 (55)

Equating these distances and solving for ^, we again find that the optimum

value corresponds to the symmetric constellation, namely = n/4. Thus,

once again there is no gain due to asymmetry.

Substituting m = n/4 into Eq. (55) gives

l`

e.^

dfree	
6 -	 = 4.586
	

(56)

and a gain relative to an uncoded 4-PSK of

n	 10 10g 10 6 2 V-2 = 3.60 dB
	

(57)



l+ 777,

Since 
dfree 

of Eq. (56) is indeed larger than 4, the trellis of Figure 14

is preferred over any configuration with parallel paths assigned to the

transitions.

4.	 16-State Trellis

Since we have already demonstrated that an 8-state trellis with no

parallel paths has a 
dfree 

that exceeds the maximum distance between paral-

lel paths, it is not necessary to consider a 16-state trellis with parallel

paths. Instead, we go directly to the fully connected trellis of Figure 15 as

considered by Ungerboeck (2], with a state transition matrix

0 4 2 6

1 5 3 7
4 0 6 2

5 1 7 3

i

i

2 6 0 4

3 7	 1 5
6 2 4 0

7 3 5 1
4 0 6 2

5 1	 7 3
0 4 2 6

1 5 3 7

6 2 4 0
7 3 5 1

2 6 0 4

3 7	 1 5

(58)

For this assignment, the two shortest paths that, depending on the amount of

asymmetry, yield the minimum distance from the all zeros path are "6,1,7,2"

and "2,0,1,1,0,1,6". The first of these paths (the one of length 4), dis-

covered by Ungerboeck, is concerned only with symmetric MPSK copstellations.

The second one, which indeed allows a slight gain to be achieved with asym-

metry, does not show up until one investigates paths of length 7. This once

again emphasizes the point that paths of all lengths (up to some reasonable

limit) must be looked at before deciding whether or not there can exist a gain

due to asymmetry.

IW 
1,
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= 10 log	 26/5 = 4.15 dB
asymm.	 10	 2

I	 8-2^
= 10 log

10	 2
= 4.126 dB (63) ^

symm.

the gain due to asymmetry is	 so small as	 to be only of academic	 inter-

t	 nevertheless	 points	 out the	 curiosity	 that,	 while asymmetry provided

39 `Z
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The squared distances for the above two paths are, respectively,

d 2 (6,1,7,2) = 8 - 2 (sin	 + cos ^)

d 2 (2,0,1,1,0,1,6) = 10 - 6 cos m
	

(59)

Equating these two distances gives the optimum asymmetric 16-PSK design corre-

sponding to

cos	 = 5 ; ^ = 0.6435 rad

dfree 5 = 5.20
2	 _ 26
	

(60)

It should also be pointed out that the length-8 path "6,7,0,0,0,7,7,6", which

has the squared distance

d 2 (6,7,0,0,0,7,7,6) = 10 - 6 sin ^
	

(61)

can be used to determine an alternate optimum asymmetric 16-PSK constellation

with m = n/2 - 0.6435 rad and the same value of dfree*

The gain due to asymmetry is

n = 10 log10 26/5
	

= 0.024 dB	 (62)

8 - 2 3 2

and the gains relative to uncoded 4-PSK are



no advantage with 4- and 8-state trellises, a theoretical gain is once again

achievable when the complexity is increased to 16 states. Again, it should be

emphasized that, despite its slight positive impact on system performance, the

gain due to asymmetry comes free of charge.

C.	 BEST RATE 3/4 CODES COMBINED WITH ASYMMETRIC 16-PSK (A16PSK)

The signal partitioning for trellis coded A16PSK follows the same steps

as those leading to the partitionings in Figures 3 and 4. For a rate 3/4

code, there will be four transitions leaving (diverging from) each state. As

before, we begin with the simple 2-state case. Our discussion herein will be

brief since by now the reader should be thoroughly familiar with the procedure

for picking a good signal assignment and when to have or not have parallel

paths along the transitions.

1.	 2-State Trellis

The 2-state trellis for A16PSK is identical in form to that in Fig-

ure 5 except that now each branch represents four parallel paths. In particu-

lar, the transitions between like states correspond to signals 0,4,8,12 and

3,7,11,15, respectively, while the cross transitions correspond to 2,6,10,14	 f

and 1,5,9,13. The minimum distance path is of length 2 and corresponds to the

error event "2,1". The set of squared distances from signal point 0 to signal

point j = 1,2,3,...,15 is now

6 2 = 4 sing 2 = 2 ( 1 - cos	 ¢); d9 = 4 sing 2 - 2 = 2	 ( 1 + cos	 ¢)1

d2 = 4 sing j 4 sing
37T

8 = 2 - = 6 14 ; 6 11	 = - 
2  2 I l - cos ( 34 	 0d

6 3 = 4 sing 8
+

2
= 2 - cos 4 + ¢1] 61 3 = 4 sing	 ( 4 - 

21 = 	 2	 (1	 - sin m)
L

]

a 4 4 g g= sin 4= 2= 612
d 15	 = 4 s i n	 18 - 2= 2

 _¢
1 
L

1 	 - Cos	
\	 4 J

I

+... _
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b5 = 4 sing 4 + 2 I
	 = 2	 (1 +sin m)

sing 3-nb6 = 4 3 2= 2 + = b10

sin g
nb^ = 4 (79— + 2 = 2	 1 - cos	 Can +

b8 = 4 sin  2 = 4 (64)

(65)

Thus, the squared free distance is given by

d free - b2 + bi =2 	 - 3 2 + 2 0 - cos 0

which is maximized when m = n/4, i.e., signal points 1,3,5,7,9,11,13,15

merge with points 0,2,4,6,8,10,12,14, respectively. In this limiting case,

the maximum value of Eq. (65) becomes

dfree=4-23 2= 1.172	 (66)

while for the symmetric case (^ = n/8), Eq. (65) evaluates to

dfree	 4 - 3 2 - 2 cos 7/8 = 0.738	 (67)

Thus, the gain due to asymmetry is

n = 10 log	 1.172 = 2.01 dB	 (68)
10 0.738

and the gains relative to the equivalent bandwidth, uncoded 8-PSK system are

n 
Iasymm. = 10 log10 1172 = 3.01 dB

2	 3 2
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From Eq. (65), we can determine the squared distances of the above two

paths as

n I 
symm. = 10 log10 0.738 = 1.00 dB	 (69)

2 - 3 2

where we have made use of the fact that the latter has d 2	 = 2 -
min

We note that for all 2-state cases considered, the total gain of the

trellis coded asymmetric MPSK constellation over the uncoded M/2 -point one is

3.01 dB. Indeed, this can be shown to be always true independent of M.

2.	 4-State Trellis

The 4 -state trellis for A16PSK has the structure of Figure 13(a)

and is illustrated in Figure 16. Unlike the A8PSK case, the minimum distance

is not determined by the length-one path between like states, i.e., there

exist paths with length greater than one whose distance from the all zeros

path is less than the minimum distance among the parallel transitions. 	 In

particular, the squared minimum distance among parallel paths is determined by

signal points 4 or 12 and has a value of 2 (see Eq. (64)). The paths "2,1,2"

and "2,15,15,2", depending on the value of m, yield the optimum asymmetric

design, which, as we shall see shortly, has a value of dfree which is

less than two but still larger than that corresponding to a symmetric

constellation.

d 2 (2,1,2) = 6 - 2V  - 2 cos

d 2 (2,15,15,2) = 8 - 23 2 - 4 cos 
C4 - mJ

	
(70)

which when equated give the optimum A16PSK design with

t an	 32	 1 - 2 - 3 2	 0.46 rad

d free = 1.38

	
(71)

EB	
-
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For the symmetric case, the path "2,1,2" has the shorter distance which from

4	 Eq. (70) becomes	 f

r

d2	 = 1.324	 (72)
f ree

Thus, the gain due to asymmetry is

*	 n = 10 log	
1 ' 38 

= 0.18 dB
10 1.324	

(73)

and the gains relative to the uncoded 8-PSK system are

n lasymm. = 10 log10 
1.38 

= 3.72 dB
2 - 3 2

n

	

	
1.324

Isymm. = 10 log 10 
	
= 3.54 dB	 (74)

2 - 3 2

3.	 8-State Trellis

The 8-state trellis for A16PSK is as illustrated in Figure 9,

except that the signal assignments are now defined by the state transition

matrix

CO	 C2
C1	 C3

C2	 CO

	

C3	 Cl

T =	 (75)
C2	 CO

C3	 Cl
CO	 C2

	

C1	 C3

CO = 0,4,8,12	 ;	 C2 = 2,6,10,14
Cl = 1,5,9,13	 C3 = 3,7,11,15



Since we are only interested	 in determining ti,e minimum distance	 paths through

the	 trellis,	 we	 can	 simplify	 Eq.	 (75)	 by	 considering	 only	 the	 signal	 points

which are	 the minimum distance	 from signal	 point	 0.	 As	 such,	 the	 "reduced"

' state transition matrix becomes

0	 2

1	 15

2	 0

15	 1

T = (76)
2	 0

15	 1

0	 2

1	 15

The minimum distance	 paths are	 still	 the	 three	 paths	 illustrated	 in Figure	 9

which, using Eq.	 (65), now have the distance

d 2 (2,1,2,2)	 = 8	 -	 33 2 -	 2 cos

d `(2,15,15,0,2)	 = 8 - 2v^_2 - 4 cos	
\4 - ^ J\

d	 -	 mI2 (2,1,0,1,15,0,2)	 =	 10 - 2^ - 4 cos	 m - 2 cos	 ( 4
\	 J

(77)

We	 note	 that,	 unlike	 the	 8-PSK	 case,	 the	 length-4	 (solid)	 and	 the length-7

(dashed) paths ao not have the same distance. 	 (This point was made during our

discussion of trellis coded A8PSK and 	 is now obvious from Eq.	 (77).) In fact,

the	 length-7	 path	 is,	 for	 all	 values	 of	 ^,	 closer	 in	 distance	 to the	 all

zeros path.	 Thus,	 to find	 the optimum asymmetric	 design,	 we	 equate the	 dis-

tance of the lengths 5 and 7 paths which results in

tan2 = 0.1637	 >	 = 0.3244 rad

d2	 - 1.589 (78)free
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and a gain due to asymmetry of

n = 10 log	
1.589 

= 0.319 dB	 (79)
10 1.476

Finally, the gains relative to an uncoded 8-PSK are

T) I asymm. = 10 log10 
1.589 

= 4.333 dB
2 -

n Isymm. = 10 log10 
1.476 

= 4.014 dB	 (80)
2 -

One could obviously conceive of many different signal assignments for the

trellis of Figure 16. For example, another good choice would be the state

transition matrix.

CO	 C2

	

C2	 CO
Cl	 C3

C3	 C1

T =	 (81)

C2	 CO

	

CO	 C2
C3	 Cl

Cl	 C3

It can be easily shown that here the minimum distance paths are "2,0,15,15,2",

"2,2,1,2", and "2,0,1,1,15,2" which lead to an asymmetric design with the

identical T matrix as in Eq. (76).
t

4.	 16-State Trellis

For 16 states, Wilson, Schottler, and Sleeper 161 have found a

trellis code that leads to an optimum coding gain when combined with a sym-

metric 16-PSK constellation. In particular, there are two parallel paths per

transition between states (thus each state diverges to two other states) and

the signal assignment is characterized by the state transition matrix

F-
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CO C2

C2 CO
Cl C3

C3 C1

CO C2
C2 CO

C1 C3
C3 Cl

'i = I
	

(82)
C2 CO

CO C2
C3 C1

Cl C3
C2 CO

CO C2
C3 C1

Cl C3

or its "reduced" version (keeping only the minimum distance parallel path)

0 14

14	 0

	

1	 15

	

15	 1

0 14

14	 0

	

1	 15

	

15	 1
	 t 

T = I
	

(83)
14	 O

0 14

	

15	 1

	

1	 15

14	 0

0 14

	

15	 1

	

1	 15

For this assignment, the shortest (depending on the amount of asymmetry) mini-

mum distance error event paths are "14,0,15,15,0,15,0,14" (length 8) and

"14,0,15,1,0,0,1,0,14" (length 9) with distances from the all zeros path of

d 2(14,0,15,15,0,15,0,14) = 10 - 23 2 - 6 cos (4 - ^)

2(14,0,15,1,0,0,1,0,14) = 10 - 2 3 2 - 2 cos ( 4d  	4 cos	 (84)
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At ^ = n/8 (the symmetric 16-PSK constellation), the two paths have equal

values, namely,

d 2 = 10 - 23 2 - 6 cos 8 = 1.628	 (85)

We note that as ^ approaches zero, the length-9 path approaches the value

d Z = 6 — 33 2 = 1.757	 (86)

which is smaller than that of the length-8 path, but larger than the symmetric

value of Eq. (85). Thus, one might jump (erroneously) to the conclusion that

there exists a gain due to asymmetry of ar amount determined from Eq. (86)

relative to Eq. (85).	 f

The reason why this conclusion is fallacious stems from the fact that the

squared distance of the length-9 path, as given by the second relation in

Eq. (84), is not a monotonic function of ^. As a result, the crossover

point (¢ = n/8) of the two functions in Eq. (84) does not necessarily

yield the maximum of the smaller of the two distances over all values of ^.

In fact, we have just observed that a larger value exists Jr accordance with

Eq. (86). Thus, to properly determine whether or not asymmetry inc-eases

dfree, one must see if there exist other (longer) paths whose distance func-

tion may cross that of the length-9 path at a point where the distance from

the all zeros path is smaller than Eq. (85).

The length-16 path "14,0,1,1,1,1,0,1,0,1,1,0,0,1,0,14" has a squared dis-

tance function given by

d` = 20 - 2V2 - 16 cos
	

(87)



•	 ...rte-..-_.r..r	 -	 -	 ...	 ..^- .	 .,.,^^.,

which is monotonically increasing with increasin: values of ^.	 Since

Eq. (87) evaluated at 0 has the value 4 2y'-2-, which is less than

Eq. (86), we have the potential of a path as described above. Indeed, equat-

ing Eq. (87) with the second relation in Eq. (84) results in a crossover at

m = 0.226 rad with a squared distance of 1.578. Since, this value is indeed

smaller than that corresponding to the symmetric design as given by Eq. (85),

then we may now make the correct conclusion that the optimum design is the

symmetric one. Stated another way, the smallest of the squared distances of

all three paths evaluated at each m, never exceeds Eq. (85).

D	
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SECTION III

CONCLUSION

Introducing an appropriate amount of asymmetry into the constellation

design of a combined modulation/trellis coding system is, under most circum-

stances, a cost-effective means of improving its performance. For MPSK modu-

lation, we have shown that for low coding complexity, quite a bit of perfor-

mance improvement is achievable relative to the equivalent symmetric design.

As the coding complexity increases (as measured by the number of states in the

trellis diagram), the amount to be gained by asymmetry typically diminishes;

however, the overall improvement of the asymmetric coded system, relative to

the equivalent bandwidth uncoded M/2-level system, continues to increase.

The specific numerical results obtained within the body of the paper are

summarized for quick reference in Table 3. Finally, we point out that all of

the numerical results derived within and summarized in Table 3 have been veri-

fied by direct numerical evaluation of Ea. (13) together with Eq. (9), with

perfect agreement in all cases.
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