SPACE STATION DEVELOPMENT WORK

SOLAR DYNAMIC SYSTEMS

BY

MILES O. DUSTIN
LEWIS RESEARCH CENTER

NOVEMBER 13, 1984

SOLAR DYNAMIC SYSTEMS

WHAT IS IT?

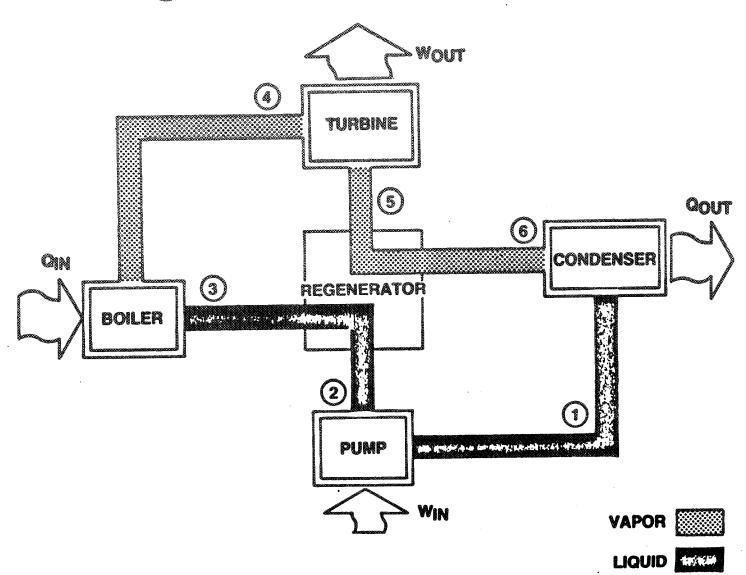
WHY ARE WE INTERESTED?

WHAT ARE THE BENEFITS?

WHAT IS THE SOLAR DYNAMIC DEVELOPMENT PROGRAM?

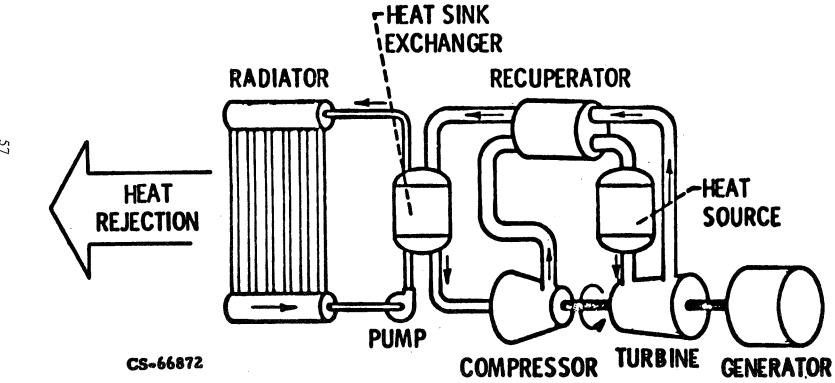
SYSTEM CONCEPT

SUN	MIRROR	RECEIVER WITH STORAGE MATL.	BRAYTON, RANKINE OR STIRLING HEAT ENGINE W/ALT.	SPACE RADIATOR	
HEAT SOURCE	HEAT COLLECTOR	HEAT STORAGE	HEAT TO ELECTRICITY CONVERTER	WASTE HEAT REJECTION	


RADIATOR

BRAYTON, RANKINE OR STIRLING ENGINE W/ALTERNATOR

RECEIVER


MIRROR

Organic Rankine Cycle

56

BRAYTON CYCLE SPACE POWER SYSTEM

2 /

SOLAR DYNAMIC RADIATOR REQUIREMENTS

20 KW_E

	ORGANIC RANKINE		BRAYTON			
TURBINE INLET TEMP	670K	(750F)	730K	(855F)	1080K	(1490F)
CONCENTRATOR DIA. AREA	14.6m 167m ²		14.8m 170m ²		12.6м 125м ²	
HEAT REJECTION RATE	105 KW		115 KW		80 KW	
PRIME RADIATOR AREA	150m ²		220м ²		60m ²	
RADIATOR TEMP	355K 344K	(180F) (160F)	376K 296K	(220F) (70F)	451K 324K	(350F) (120F)

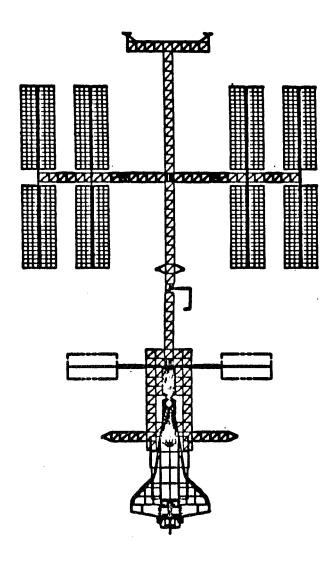
BENEFITS OF SOLAR DYNAMIC SYSTEMS OVER PV SYSTEMS

PRIMARY

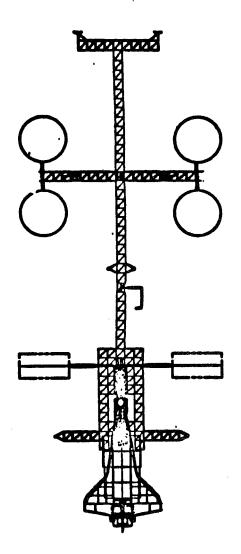
SMALLER AREA

- DRAG

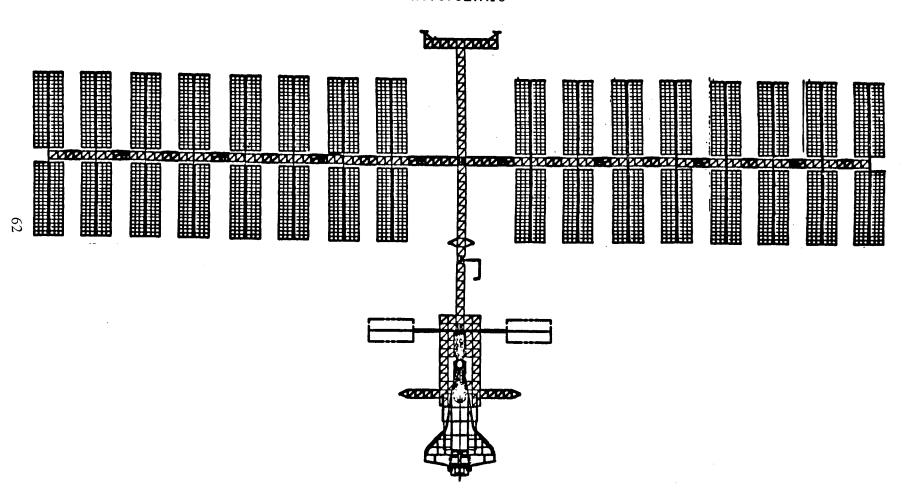
- STABILITY AND CONTROL
- ORBIT ALTITUDE ACCESSIBILITY
- VIEW ANGLE


SECONDARY

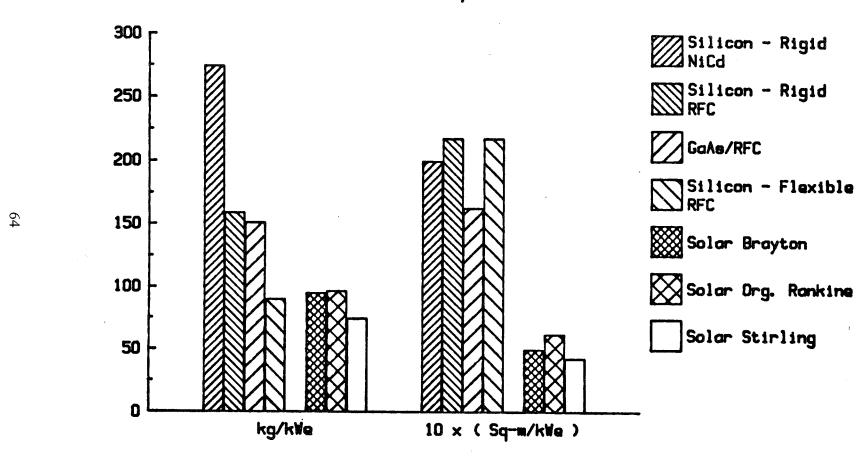
LOWER MASS


LOWER COST

HIGHER RELIABILITY


75 KW SPACE STATION PHOTOVOLTAIC


75 KW SPACE STATION SOLAR DYNAMIC


300 KW SPACE STATION PHOTOVOLTAIC

300 KW SPACE STATION SOLAR DYNAMIC

SPECIFIC MASS AND AREA OF SEVERAL SPACE STATION POWER SYSTEMS Net Power Output = 75 kWe

LeRC Space Systems Office

SOLAR DYNAMIC DEVELOPMENT HISTORY

- o SEVERAL SPACE CONCEPTS ACTIVELY PURSUED BY NASA AND USAF IN 1960's AND 70's
 - RANKINE
 - BRAYTON

1 - 15 KW_E LEVELS

- KINEMATIC STIRLING
- O GREATEST EFFORT EXPENDED ON RANKINE AND BRAYTON POWER CONVERSION SUBSYSTEMS
- O LESS EFFORT EXPENDED ON CONCENTRATORS AND RECEIVERS
- O SYSTEMS DESIGNED FOR EXPENDABLE BOOSTER LAUNCH
- O NO SYSTEMS HAVE FLOWN
- O DEVELOPMENT DISCONTINUED IN EARLY 70'S FOR LACK OF SUITABLE MISSIONS
- O DOE DEVELOPING LOW COST CONCEPTS FOR TERRESTRIAL APPLICATIONS SINCE APPROX. 1977

6

SOLAR DYNAMIC ADVANCED DEVELOPMENT

PURPOSE:

PROVIDE A BASE OF DATA ON THE CRITICAL TECHNOLOGY OF SOLAR DYNAMIC SYSTEMS FOR SPACE STATION

- TO ASSESS VIABILITY OF THE SOLAR DYNAMIC OPTION FOR IOC
- TO PROVIDE BASIS FOR SYSTEM DESIGN

APPROACH:

- o ADDRESS PRIMARY CRITICAL TECHNOLOGY AREAS
 - RECEIVER/STORAGE
 - CONCENTRATOR
 - SOLAR DYNAMIC SYSTEM INTEGRATION WITH SPACE STATION
- o EMPLOY CONSERVATIVE DESIGN APPROACHES
- o FABRICATE AND TEST CRITICAL COMPONENT FUNCTIONS

SOLAR DYNAMIC ADVANCED DEVELOPMENT

CRITICAL CONCENTRATOR TECHNOLOGY

CENTERS: LERC, JPL

o DEFINE CONCENTRATOR REQUIREMENTS

o DEVELOP SEVERAL DESIGN CONCEPTS FOR 12-18 m. DIAMETER CONCENTRATORS

- FAB TECHNIQUES

- POINTING REQUIREMENTS

- ACCURACY

- SHUTTLE REQUIREMENTS

- DISTORTION

- STOWAGE

- SINGLE VS. CASSEGRAINIAN

- DEPLOYMENT/ERECTION

- COATINGS

o FABRICATE AND TEST ELEMENTS OF SELECTED DESIGNS

o TEST REFLECTIVE SURFACE SAMPLES IN SPACE

0

SOLAR DYNAMIC ADVANCED DEVELOPMENT

CRITICAL HEAT RECEIVER TECHNOLOGY

CENTER: LERC

- DEFINE HEAT RECEIVER REQUIREMENTS
- DEVELOP SEVERAL DESIGN CONCEPTS FOR RECEIVERS IN THE RANGE OF 75-160 KW, AND TEMPERATURE NEAR 700K AND PERHAPS TO 1100K)
 - THERMAL STORAGE MATERIAL
- COATINGS
- CONTAINMENT OF STORAGE MATERIAL APERTURE MATERIAL
- MOVEMENT OF STORAGE MATERIAL
- HEAT PIPES
- TEMPERATURE CONTROL
- FABRICATION METHODS
- FABRICATE AND TEST DESIGNS OF ALTERNATE APPROACHES
- CAPSULE TESTS OF STORAGE AND CONTAINMENT MATERIALS