General Disclaimer
 One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission.

(NASk-CR-171549) SPAR IMEbOVED
 BPAR IMPRDVED BTFUCLTLJRAL_/FL_UID DYNAMIC ANALYEIS CAPABILITY
 FINAL FEPDFT

CONTRACT NASE-35772

17 JULY 1985

Prepared for
NATIONAL AERONAUTICS AND SPACE ADMINISTRATION GEDRGE C. MARSHALL SPACE FLIGHT CENTER MARSHALL SPACE FLIGHT CENTER, AL 35812

by
M. L. PEARSON

SOFTCOM SYSTEMS, INC. 908 MEMORIAL PARKWAY, NW HUNTSVILLE, AL $35 B 01$

FOREWORD

This final report presents the results of work performed under Contract NASB-35772 for the National Aeronautics and Space Administration, George C. Marshall Space Fliçit Center, Huntsville, Alabama. This work was performed by Softcom Systems, Inc., Huntsville, Alabama.

The period of performance for this study was from July 1984 to July 1985. The MSFC Contracting Officer's Representative for this study was Larry A. Kiefling, ED22.

SUMMARY

This report contains the results of a study whose objective was to improve the operation of the SPAR computer code by improving efficiency, user features, and documentation. Additional capability was added to the SPAR arithmetic utility system, including trigonometric functions, numerical integration, interpolation, and matrix combinations. Improvements were made in the EIG processor. A processor was created to compute and store principal stresses in table-format data sets. An additional capability was developed and incorporated into the plot processor which permits plotting directly from table-format data sets. Documentation of all these features is provided in the form of updates to the SPAR users manual, Ref. 1.

CONTENTS

Section Page
FOREWORD ii
SUMMARY iii
1 INTRODUCTION 1-1
2 AUS PROCESSOR 2-1
2.1 General 2-1
2.2 Trigonometric Functions 2-2
2.3 Numerical Integration 2-2
2.4 Interpolation 2-3
2.5 Matrix Combinations 2-3
2.6 Core Requirement Reduction 2-4
3 EIG PROCESSOR 3-1
3.1 General 3-1
3.2 Redundant Vectors 3-1
4 PSR PROCESSOR 4-1
5 PLTB PROCESSOR 5-1
5. 1 General 5-1
5.2 Table-Format Datasets 5-1
ASCII FORTRAN CONVERSION 6-1
6. 1 Description 6-1
6.2 Results 6-2
PROGRAM FILE DOCUMENTATION 7-1
PROCESSOR COMMAND SUMMARY 8-1
REFERENCES 9-1

CONTENTS (Concluded)

Appendix	Page	
A	SPAR Reference Manual Updates	f-1
	LIST OF TAGLES	
Table		
$6-1$	SPAR Ascii/Fortran V Run Time Comparison	$6-3$
$7-1$	SPAR Level 16 Routines	$7-2$
$7-2$	SPAR Processor Cross Reference	$7-3$
$7-3$	SPAR Subroutine Cross Reference	$7-4$

1. INTRODUCTION

SPAR (Structural Performance Analysis and Redesign) is a widely used general purpose structural analysis finite element code. SPAR has been developed over the past several years under contract to NASA-Marshall Space Flight Center and NASA-Langley Research Center.

Work performed under this contract represents a continuation of recent development done by Lockheed-Huntsville under contract to NASA-MSFC, (Ref. 2 and 3). The objective of this task was to improve the operation of SPAR by improving efficiency, user features, and documentation.

Additional features were added to the SPAR arithmetic utility system, including trigonometric functions, numerical integration, interpolation, and matrix combinations. Improvements were made in the EIG processor. A processor was created to compute and store principal stresses in table-format data sets. An additional capability was developed and incorporated into the plot processor which permits plotting directly from table-format data sets. The program was also converted to Ascii Fortran.

These updates and additions to the SFAR program were incorporated into a new production version of the code referred tu as System Level 16. One significant change in the operation of this version frem earlier versions involves the core reset command. The value of the core requested now refers to the actual data space instead of the total value of instructions and data.

This report presents the results of this contract effort. Following this Introduction, Sections 2 through 5 describe the updates and additional capability added to the SPAR processors. Section 6 describes the conversion of the code to Ascii Fortran. Section 7 contains SPAR program file documentation including a listing of all routines with their version designation. A separate listing is provided containing routines added or modified for Level 16.

User documentation is provided in the form of update pages to the SPAR Reference Manual (Ref. 1). These update pages are included in this report as an attachment to Appendix A.

2. AUS PROCESSOR UPDATES

2.1 GENERAL

The SPAR Arithmetic Utility System (AUS) consists of a collection of subprocessors which perform a variety of matrix and other utility functions. Considerable additional capability was added to AUS during this study.

The form of the general arithmetic operation command was expanded from the existing form:

```
Z= Oper( ci X X , cz X2, ---), (old)
```

to allow the following form, except where specifically indicated otherwise:
lib $Z=c \operatorname{Dper}\left(c_{1} X_{1}, c_{2} X_{2},---\right)$, (new)
where lib is a destination library which defaults to the library designated by the last OUTLIB command (or 1 if no OUTLIB command has been given), and c is a floating point constant which defaults to 1.0. Both lib and/or c may be omitted unconditionally.

Brief descriptions of the subprocessors added to AUS are given in the sections below. Detailed descriptions are given in Appendix A.

2.2 ARITHMETIC FUNCTIONS

The following arithmetic and trigonometric subprocessors were added to AUS: COS, ACOS, SIN, ASIN, TAN, ATAN, ATNZ, COSH, SINH, TANH, EXP, ALOG, ALIO, ABS, IFIX, FLOAT, POWER, and SRSS.

The form of COS, ACOS, SIN, ASIN, TAN, ATAN, COSH, SINH, TANH, EXP, ALDG, AL10, and ABS is: lib $Z=c \quad$ aPER (cx X).

The form of IFIX is: lib $Z=I F I X(c x X)$.

The form of FLDAT is: 1 ib $Z=c$ FLDAT (X).

The form of ATN2 is: lib $Z=c$ ATN2 (cx X, cy Y).

The form of POWER is: lib $Z=E \operatorname{POWER}(c x X, p)$, where $z=C *(C x * x)$.

The form of SRSS is: \quad ib $Z=c \operatorname{SRSS}(c x X, ~ c y ~ Y)$, where $z=c * S Q R T[([x * x) z+(c y * y) \geq]$.

2.3 NUMERICAL INTEGRATION

A numerical integration routine, NUMI, was added to AUS. The general form of NUMI is:

$$
\text { lib } Z=c \text { NUM1 }(c x X, c y Y),
$$

where X is a single-block data set containing n abscissa values, and Y is a multi-block data set consisting of m blocks containing n ordinate values each. The data set produced consists of one block containing m values derived by straight-line integration.

2.4 INTERPOLATION

A series of internolation routines, XNT1, XNT2, XNT3, XNT4, were added to the utility system. The form of these routines is:

$$
\text { lit } Z=X N T 1(X Y, A),
$$

where $X Y$ is a single-block data set containing n pairs of real numbers, (x_{1}, y_{1}), defining a piecewise linear function of X. A contains m real numbers representing abscissa values for which y values are to be determined. The output, Z, contains m ordinate values corresponding to the abscissa values in A.

XNT2 is similar to XNT1 except that straight-line interpolation is performed assuming logarithmic. (base 10) x and y. XNTS assumes linear x and logarithmic y. XNT4 assumes logarithmic x and Iinear Y.

2.5 MATRIX COMBINATIDNS

Matrix multiplication routines, CBR, CBD, ACER, and ACBD, were added to AUS. The form of these routines is:

$$
\text { lib } Z=\operatorname{CBR}(X, Y),
$$

where X is a multiblock data set representing a rectangular matrix. Y may be single or multiblock. CBR performs the matrix product of X and Y. CBD is used for the special case where Y is a single-block data set representing a diagonal matrix.

ACBR and ACBD perform the same functions as CBR and CBD except that each number in the data set X is replaced by its absolute value before the multiplication takes place.

2.6 CORE REQUIREMENT REDUCTION

AUS normally requires enough central memory to hold at least one block of each data set being operated on. The capability for handiing these data set blocks in segments to reduce the core requirement was implemented in AUS during this contract. This is especially important when working with large single-block arrays.

This function is automatic, requiring no user action. When not enough core is available to permit whole blocks ts be loaded, the arrays are loaded in segments, the lengths of which are determined by the available memory, and operated on accordingly.

This feature was implemented for the following commands: RECIP, SQUARE, SQRT, COS, ACOS, SIN, ASIN, TAN, ATAN, COSH, SINH, TANH, EXP, ALOG, ALIO, ABS, FLOAT, IFIX, SUM, and PRODUCT.

3. EIG PROCESSOR UPDATES

3.1 GENERAL

Several areas of the EIG processor were looked into during this study. Some output format changes were made. The eigenvalue summary printout was modified to include the appropriate heading, i.e., FREQ (HZ) for a vibrational solution, and BUCK FACT for a buckling solution. The format width was also increased to allow space between columns.

An alternate core utilization table was added to the EIG printout which tabulates the core required versus the number of vectors which may be held in core at one time and the number of passes required to process all vectors. This provides the user with information which may be used to determine possible core resets for minimizing $1 / 0$ activity for a particular problem.

3. 2 REDUNDANT VECTORS

One of the problems which occurs in EIG periodically is the appearance of a dependent (or redundant) system vertor in the Rayleigh-Ritz procedure producing a negative determinant in the Cholesky reduction process. This causes an error condition resulting in termination of the EIG execution.

A procedure was developed and implemented under this contract which automatically discards the redundant vector and continues processing. No user interaction is required.

4. PSR PROCESSOR

A processor was developed and incorporated into SPAR which reads multiblock, table-format stress data sets and computes and stores principal stresses in similar data sets. This processor, PSR, is applicable to two-dimensionai element types EJI-EJJ and E41-E43, and three-dimensional solid element types S41-581.

The order of stress quantities in the data sets produced by PSF for 2-d element types are as follows: 1) ANG, 2) MAX PS,己), MIN PS, 4) MAX SHR, and 5) SEFF, effective stress.

The order of stress quantities for 3 -d solid element types are as follows: 1) NS1, 2) NS2, 3) NS3, 4) SS1, 5) SS2, 6) SS3, 7) ONS, and 8) OSS, octahedral shear stress.

The PGR processor is executed as follows:

```
EXQT PSR
    "etype"
```

 or
 "etype" ni n4
 Examples:

5. PLOT FROCESSOR UPDATES

5. 1 GENERAL

Sevpral items involving the plot processors were incorporated into SPAR Level 16. The improvements made to the Tektronix version of PLTB (PLTB/TEK) during the previous contract (Ref. 3) were included, as was the laminate stress display capability also deveioped during the previous effort. Update pages to the SPAR Reference Manual describing these features are included in Appendix A.

The PLTB (FR-80) and the PLTB/TEK (Tektronix) routines were consolidated into a single file (RP) for Level 16. The routines which are configured for operation on the Tektronix were given "TEK" version designations for both the symbolic and relocatable elements. The aMap symbolics for both FLTB and PLTB/TEK were updated to include the relocatable version names where necessary to avoid ambiguity.

5.2 TABLE-FORMAT DATA SETS

The capability for plotting from table-format stress data sets was developed and incorporated into both PLTB and PLTB/TEK. This permits the user to plot any type stress (or any other quantity) which is contained in a table-format data set. The data set may contain either one value fer element, assumed to be at the center, values at each of the nodes, or values at each of the nodes plus the renter of the element (NNODES+1 values). Stress displays mi.y be created for 2-node, 3-riode, or 4-node
eiements. Depending on the number of values contained in the data set oer element, stresses will be displayed at the center of the element, at the corners, or both, accordingly.

The data sets may be created in AUS and must have names of the following form:

> "name1" "etype" iset ng
where,

$$
\begin{aligned}
& \text { "namel" is any name supplied by the user, which may } \\
& \text { describe the quantity contaiied in the data set, } \\
& \text { "etype" is a valid } 2-d \text { element type (E21, E2S,E24,E31, } \\
& \text { E32,E33,E41,E42,E43,E44), } \\
& \text { iset is supplied by the user and may corr'espond to a } \\
& \text { load set designatior, and } \\
& \text { ng is the element group number to which the data set } \\
& \text { corresponds. } \\
& \text { Example: ES E43 } 11
\end{aligned}
$$

A separate data set must be constructed for each group of each element type which is to be plotted. Descriptive information for frame labelling purposes may be placed in a data set named:

TABL TITL iset mask
where iset refers to the iset value in the stress data set names. If such a data set is present, the contents (up to 60 characters) will be displayed at the top of the plot frame.

The data set plotting is invoked in FLTB or FLTB/TEK with the DISPLAY command as follows:

DISPLAY=TABLe NAMEI "etype" iset
where, NAME1 "etype" iset, refers to the first three names of the data set desired to be plotted. The fourth name, ng, is not required on the DISPLAY command since a ploi specification may contain elements from different groups, and the data set corresponding to the group designation of the elements being plotted is read automatically.

6. ASCII FORTRAN CONVERSION

6.1 DESCRIPTION

The SPAR code was converted to Ascii Fortran and compiled with the Ascii (FTN) compiler. The priricipal features of the conversion approach were as follows:

- Use the existing assembly language routines.
- Read Eard images ir. Fieldata using the existing card reader logic.
a Convert alphameric data to Ascii before using in the program.
- Keep date and time in Fieldata since their format requires 6 characters and changing this would affect tine fata set storage allocation.
- Store data set names in Fieldata.
o Store type 4 (alphameric) data sets in Fieldata.

This conversion strategy provides many benefits. Some key aspects are listed below:
o Full data set compatibility is retained between the Ascii version of SPAR and the Fortran V version. This means that existing SPAR and EAL libraries can be read with the Ascii version and vice versa.
o Most of the code changes involving Asciiffieldata conversion are confined to a few routines.
o The impact on the SPAR data set structure and storage allocation is minimal, meaning no broad code changes are needed that would require extensive checkout.

6. 2 RESULTS

Several test cases were executed with no problems. The FTN compilations were made using the "Z" and "E" options so that fully optimized code would be produced. CPU times, however, were found to be significantly longer for the Ascii version compared with the Fortran V (FOR) version.

Table 6-1 shows run time comparisons between the Fortran V and Ascii SPAR versions for a 1001-node plate problem. As seen from the table the CPU time relationship varies from processor to processor, with the largest increase occurring in INV.

Examinations of the code produced by the FOR and FTN compile: s for the key routine in the INV processor show this to be the result of much less efficient code generated by the FTN compiler. Since the $1 / 0$ times are essentially identical for the two versions, the SUP times show a much smaller increase. The numerical results agreed to 8 places in all cases.

> Table 6-1

SPAR ASCII/FORTRAN V RUN TIME COMPARISON
FLATE PROBLEM 25×40 GRID (1001 NODES)

	FOR	FTN	$\%$
TAB	3.233	3.119	-3.5
ELD	2.139	1.855	-13.3
TOFO	15.180	17.488	15.2
E	2.597	2.787	7.3
EKS	67.919	78.687	15.9
M	32.057	32.682	1.9
K	11.866	12.256	3.3
INU	144.963	199.235	37.4
EIG	160.998	195.015	21.1
Total CFU	441.005	543.182	23.2
Total SUPs	1547.35		

7. PROGRGM FILE DOCUMENTATION

This section contains information on the SPAR program file contents, processor file requirements, and subroutine/processor cross reference data for System Level 16.

Table 7-1 lists the SPAR routines which were modified for System Level 16.

Table 7-2 lists each SPAR program file by number (order in which it resides on the tape), along with its file name and the processor nain programs it contains.

Table $7-3$ lists the SPAR processors in alphabetical order along with the file containing the MAP symbolic element, the file containing the main program, and other files (if any) required for collecting (@MAP'ing) that processor.

Table 7-4 1 ists the SPAR routines in alphabetical order by subroutine name. Main programs are listed by processor name preceded by MP, e.g. MPAUS. For each routine, the name of the file containing the routine, names of the symbolic and relocatable elements, and the processors which use the routine are listed.

Table 7-1
SPAR SYSTEM LEVEL 16 ROUTINES

Name	File	Symbolic	Relocatable	Processors	
CBRD	R9	CBRD/16	CBRD/M	AUS	(new)
CLVT	R9	CLVT/16	CLVT/M	EIG	
DPCHOL	R9	DPCHOL/16	DFCHOL/M	EIG	
EIGEX	R9	EIGEX/16	EIGEY/M	EIG	
EIGLD	R9	EIGLD/16	EIGLD/M	EIG	
KEXP	R2	DYNEXP/16	DYNEXP/M	*Al1	
LDPLTB	RP	LDPLTB/16	LDPLTB/M	PLTB	
MPALS	R9	MPAUS/16	MPAUS/M	AUS	
MPDCU	R2	MPDCL/ 16	MFDCU/M	DCU	
MPPLTB	R.P	MPPLTB/16	MPPLTB/M	PLTB	
MPPSR	R9	MPPSR/16	MPPSR/M	PSR	(new)
NODVAL	RP	NODVAL/16	NODVAL/M	PLTB	(new)
NUM1	R9	NUM1/16	NLM1/M	AUS	(new)
P3CALC	R9	PJCALC/16	P3CALC/M	PSR	(new)
PCALC	R9	PCALC/16	PCALC/M	PSR	(new)
POWER	R9	POWER/16	POWER/M	AUS	(new)
PWR	R9	PWR/16	PWR/M	AUS	
REDUCE	R9	REDUCE/16	REDUCE/M	EIG	(new)
RSET	R2	RSET/16	RSET/M	*All	
SDPLAY	RP	SD02/16	SDO2/M	PLTB	
SEGMPY	R9	SEGMPY/16	SEGMPY/M	AUS	(new)
SLABL	RP	SD05/16	SD05/M	PLTB	
SPROD	R9	SPROD/16	SPROD/M	AUS	
SSUM	R9	SSUM/16	SSUM/M	AUS	
SUV	R9	SVV/16	SVV/M	AUS	
XATNZ	R9	XATNZ/16	XATN2/M	AUS	(new)
XNTI	R9	XNT I/ 16	XNT J. /M	AUS	(new)
XPRNT	R9	XPRNT / 1 ${ }^{\text {a }}$	XPRNT/M	EIG	

Table 7-2
 SPAR PROGRAM FILE CONTENTS

File Seg_\#	File Name	Processors Contained (main programs)				
1	SPAR16					
2	R2	DCU				
3	R. 3	TAB	ELD			
4	R4	TOPO	PAMAP	PKMAP	STRP	
5	R5	E	EKS	PRTE	MN	
6	R6	K	KG	INV	$M \quad P S$	FSM
7	R7	EQNF	SSOL	UPRT	DR	
8	R8	GSF	PSF			
9	R9	AUS	EIG	PSR		
10	RA	SSBT	STRP	SYN		
11	RC	CEIG				
12	RJ					
13	RM	SM				
14	RP	PLTA	PLTB	PXY	PLTB/TEK	
15	T1					
16	T2	TGED				
17	T3	SSTA				
18	T4	TRTA				

Table 7-3
SPAR PROCESSOR CROSS REFERENCE

Processor	File Containing Map Symbolic	File Containing Main Program	Other Files Required
AUS	R2\%	R9	R7, R8
ceig	R2	RC	R7,R9,RJ
DCU	R2	R2	
DR	R2	R7	
E	R2	R5	R7,RJ
EIG	R2	R9	R7
EKS	R2	R5	RJ
ELD	R2	R3	
EQNF	R2	R7	R6,R8
FSM	R2	R6	
GSF	R2	R8	R7
INV	R2	R6	
K	R2	R6	RJ
KG	R2	R6	
M	R2	R6	RJ
MN	R2	R5	R7,RJ
PAMAP	R2	R4	
PKMAP	R2	R4	
PLTA	R2	RP	R5
PLTB	R2	RP	R7,R日
PRTE	R2	R5	
PS	R2	R6	
PSF	R2	R8	
PSR	R2	R9	
PXY	R2	RP	
SM	R2	RM	RS,R6, RC, RJ
SSBT	R2	RA	R8
SSOL	R2	R7	R9
SSTA	T3	T3	R2,T1
STRP	R2	RA	R4
SYN	R2	RA	
TAB	R2	R3	R5,R7
TGED	T2	T2	R2, 1
TOPD	R2	R4	
TRTA	T4	T4	R2, T1
UPRT	F2	R7	

> Table 7-4
> SPAR SUBROUTINE CROSS REFERENCE

Name	File	Symolic	Relocatable	Processors		
ABA	R3	F1T09/15	F1T09/M	TAB		
ABC	R3	F1511/9	F1T11/M	TAB		
ABD	R3	F1T12/7	F1T12/M	TAB		
ACON	R3	F1T15/10	F1T15/M	TAB		
ADDF36	R7	ADDF36/12	ADDF36/M	EQNF	MN	
ADDH	R6	ADDH/3	ADDH/M	K	3.3	
ADSK	R3	F1T10/10	Fitiolm	TAB		
ADVANC	RP	ADVANC/15	ADVANC/M	PXY		
AFEX	R6	AFEX/6	AFEX/M	INV		
AFGO	R6	AFGO/7	AFGO/M	INV		
AFLD	R6	AFLD/9	AFLD/M	INV		
AGEN	RJ	AGEN/9	AGEN/M	EKS	SM	
AJREF	R3	F1T06/9	F1T06/M	TAB		
ALEIJ	R7	ALEIJ/9	ALEIJ/M	EQNF		
ALFCNT	RF	ALFCNT/15	ALFCNT/M	PXY		
ALIO	R2	ALIO/9	ALIO/M	DR		
AMAT	R3	F1T02/11B	F1T02/M	TAB		
AMREF	R3	F1T07/10	F1T07/M	TAB		
ANSW	R3	F1T03/7	F1T03/M	TAB		
AQ	R3	F1T04/10	F1T04/M	TAB		
AQJJT	R3	AQJJT/7	AQJJT/M	TAB		
ARGS	R2	ARGS/9	ARGS/M	AUS	DR	
ARL2	R3	F1T08/7	F1T08/M	TAB		
ARMASS	R3	F1T18/12	F1T18/M	TAB		
ASA	R3	F1T13/11	F1T13/M	TAB		
ASB	R3	F1T14/7	F1T14/M	TAB		
ASET2	RC	ASET2/12	ASET2/M	CEIG		
ASG	R2	ASG/3TRK	ASG/M	*Al1		
ASKEX	R6	ASKEX/12	ASKEX/M	K.		
ASKGEX	R6	ASKGEX/13	ASKGEX/M	KG		
ASkggo	R6	ASKGGO/9	ASKGGO/M	KG		
ASkgo	R6	ASKGO/7	ASKGO/M	K		
ASmEX	R6	ASMEX/15	ASMEX/M	M		
ASmGO	R6	ASMGO/7	ASMGO/M	M		
ASMQU	R3	ASMQJ/7	ASMQJ/M	TAB		
ATD	RJ	ATD/9	ATD/M	EKS	SM	
ATEXT	R3	F1T01/10	Fitoi/m	TAB		
BACKSL	R7	BACKSL/8	BACKSL/M	AUS	SSOL EIG	CEIG
BAFKG	F6	BARKG/7	BARKG:Mi	KG		

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Processors					
BEAMKG	R6	BEAMKG/5	BEAMKG/M	KG					
BEAMT	R6	BEAMT/5	BEAMT/M	M	KG	EQNF			
BEGIN	RP	BEGIN/15	BEGIN/M	PXY					
BFLLSH	RP	BFLUSH/11	BFLUS	PLTB					
BFLUSH	RP	BFLUSH/15	BFLUSH/15	PXY					
BIGLAB	RP	L6010/V70E	L.6010/M	PLTB					
BLIO	RA	BLIO/10	BLIO/M	SSBT					
BLKDAT	R2	BDAL/7	BDAL/M	*Al 1					
BNF	R9	BNF/ ${ }^{\text {P }}$	BNF/M	AUS					
BTA	R7	BTA/9	BTA/M	DR					
BTA1	R7	BTA1/9	BTA1/M	DR					
BTA2	R7	BTA2/9	BTAZ/M	DR					
BTA3	R7	BTA3/9	BTAJ/M	DR					
BTB	R7	BTB/9	BTB/M	DR					
BTX	R7	BTX/9	BTX/M	DR					
EWO2	RJ	BWO2/13	BW02/M	EKS	MN				
BWO3	RJ	BWO3/12	BWCS/M	EKS	MN				
CARDSA	R3	CARDSA/11	CARDSA/M	TAB					
CBABK2	RC	CBABK $/ 12$	CBABK2/M	ceig					
CBAL	RC	CBAL/12	CBAL/M	CEIG					
CBRD	R9	CBRD/16	CBRD/M	Aus					
CLVT	R9	CLVT/16	CLVT/M	EIG					
CMEXPE	H6	CMEXPE/ 12	CMEXPE/M	M					
COMHES	RC	COMHES/12	COMHES/M	CEIE					
COMLR2	RC	COMLR2/12	COMLR2/M	CEIG					
COP	R2	COP/6	COP/M	DCU					
CORCHK	R2	CORCHK/6	CORCHK/M	DCU					
CPUTIM	R2	CPUTIM/1	CPUTIM/M	*All					
CRDPLT	RP	L6015/V70I	L6015/M	PLTB					
CRRITZ	FC	CRRITL/ 12	CRRITZ/M	CEIG					
cubic	RF	L6011/V7OE	L6011/M	PLTB					
CXA	RJ	CXA/9	CXA/M	EKS	SM				
CXTYD	RC	CXTYD/12	CXTYD/M	CEIG					
EXTYG	RC	CXTYG/12	EXTYG/M	CEIG					
CYLQ	R5	F32A1/1	F32A1/M	TAB	E	Plta			
DAL	R2	DAL/9	DAL/M	*All					
DASKEX	R6	DASKEX/12	DASKEX/M	K					
DATIM	R2	DATIM/7	DATIM/M	*A11					
DAX	R2	DAX/9	DAX/M	DF					
DCROW	R8	DCROW/ 12	DCROW/M	FSF					
DECODE	R2	DECODE/1	DECODE/M	TAB	INV	AUS	SYN	SSET	VPRT
DEIGEN	R9	DEIGEN/5	DEIGEN/M	EIG					
DEL	R2	DEL/7	DEI./M	TOPO	DCU				
DELOC	RF	DELOC/ 1	DELOC/M	PLTA					
device	R2	DEVICE/1	DEVICE/M	*All					

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Processors		
DII	R9	DI1/9	DII/M	AUS		
DIRCOS	R5	F32A4/1	F32A4/M	E		
DIRX	RC	DIRX/12	DIRX/M	CEIG		
DMEXPE	RS	DMEXPE/ 12	DMEXPE/M	E		
DMFORM	RM	DMFORM/13	DMFORM/M	SM		
DMTEX	RC	DMTEX / 14	DMTEX/M	CEIG	SM	
DMULT	R7	DMULT/8	DMULT/M	AUS	SSOL	EIG
DMULTX	R7	DMULTX/8	DMULTX/M	AUS	SSOL	E.IG
DOTTED	RP	L6020/V70J	L6020/M	PL.TB		
DOTV	RP	DOTV/M	DOTV/M	PLTB		
DPAFEX	R6	DPAFEX/8	DPAFEX/M	INV		
DPC	RM	DPC/ 12	DPC/M	SM		
DPCHDL	R9	DPCHOL/16	DPCHOL/M	EIG		
DPN	RM	DPN/ 12	DPN/M	SM		
DPTRN3	R6	DPTRN3/12	DPTRNS/M	K		
DPTRN6	R6	DPTRNG/12	DPTRNG/M	K		
DPX	RM	DPX/13	DPX/M	SM		
DSCALE	RP	GPF04/V701	GPF04/M	PLTA		
DSGO	R7	DSG0/9	DSGO/M	SSOL		
DSLD	R7	DSLD/9	DSLD/M	SSOL		
DSMLA	RC	DSMUL/ 12	DSMLL/M	CEIG	SM	
DSUM	RiJ	DSUM/ 11	DSUM/M	EKS	SM	MN
DSX	R7	DSX/9	DSX/M	SSOL		
DTEX	R7	DrEx/10	DTEX/M	DR		
DTX1	R7	DTX1/9	DTX1/M	DR		
ECHO	R2	ECH:O/8	ECHO/M	*Al 1		
EIGEX	R9	EIGEX/16	EIGEX/M	EIG		
EIGGO	$R 9$	EIGGD/7	EIGGO/M	EIG		
EIGLD	R9	EIGLD/16	EIGLD/M	EIG		
EIGSOL	RA	EIGN/8	EIGN/M	STRP		
EISPAK	RC	EISPAK/13	EISPAK/M	CEIG		
ELCON	R4	F4C1/1	F4C1/M	TOPD		
ELDA	R9	ELDA/14	ELDA/M	AUS		
ELDATA	R9	ELDATA/12	ELDATA/M	AUS		
ELEFIL	RP	El_EFIL/ 1	ELEFTL/M	----		
ELEPLT	RP	L606/12	L606/M	PLTE		
ELESTR	RP	GPFOS/V70L	GPF0.3/M	PLTA		
ELSORT	R4	F4A/13	F4A/M	TOPO		
ELSUB	R4	F4C2/1	F4C2/M	TOPO		
ENCODE	R2	ENCODE/1	ENCODE/M	TAB	SYN	
ENUMBR	RF	L6019/V70K.	L6019/M	PLTB		
ERABT	R2	ERAHT/6	ERABT/M	*A11		
ERMSG1	F2	ERMSG1/8	ERMSG1/M	*All		
EVCHEK	R9	EVCHEK/5	EVCHEK/M	EIG		
EXCON	R4	F4C3/1	F4C3/M	TOFD		

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Processors			
EXDEM	R5	EXDEM/15	EXDEM/M	E			
EXDKDM	RM	EXDKDM/13	EXDKDM/M	SM			
EXEQNF	R7	EXEQNF/13	EXEQNF/M	EQNF			
EXPLCT	RA	EXPLCT/11	EXPLCT/M	SYN			
EXPND 1	R9	EXPND $1 / 8$	EXPND1/M	EIG			
EXPXY	RP	EXPXY/15	EXPXY/M	PXY			
EXVPRT	R7	EXVPRT/9	EXVPRT/M	VPRT			
EXXMAP	R6	EXXMAP/11	EXXMAP/M	XMAP			
F1E1	R3	F1E1/14	F1E1/M	ELD			
F1T15A	R3	F1T15A/9	F1T15A/M	TAB			
F32A	R5	F32A/15	F32A/M	E			
F34A	RE	F34A/14	F34A/M	E			
F3A	RS	F3A/14	F3A/M	E			
F3B	RS	F3B/14	F3B/M	E			
F3DX	RS	FSDX/12	FSDX/M	E			
F3GD	RS	FJGO/12	FJGO/M	E			
FJKEX	RS	FJKEX/15	F2KEX/M	EKS			
FJKG0	RS	F3KGO/12	F3KGO/M	EKS			
F3KLD	R5	F3KLD/12A	FSKLD/M	EKS			
FEUSE	RA	FEUSE/9	FEUSE/M	SYN			
FIL3	R7	FILJ/12	FILS/M	EQNF			
FILER	RJ	FILER/12	FILER/M	EKS	MN		
FIN	R2	FIN/10	FIN/M	* ${ }^{\text {al } 11}$			
FINAL	RJ	FINFiL/ 12	FINAL/M	MN			
FINSYN	RA	FINSYN/11	FINSYN/M	SVN			
FIF	R7	FJF/15	FJF/M	EQMF			
FL.DEF	R	F1E3/14	F1ES/M	E!D			
FORURD	R7	FORWRD/8	FORWRD/M	AUS	SS.J.	EIG	CEIG
FRAMEV	RP	TEK	TEK				
FRHEX	RJ	FRHEX/15	FRHEX/M	MN			
FRI	RC	FRI/12	FRI/M	CEIG			
FRMAUN	RP	LSO1D/V7OJ	L601D/M	PLTE			
FS3D	RJ	FS3D/15	FESD/M	MN			
FSBTMP	RA	FSETMP/日	FSBTMP/M	STRP			
FSUBMP	RA	FSUBMP/O	FSLBMP / M	STRP			
G3D	R5	G3D/12	G3D/M	E			
GAUSS 1	RJ	GAUSS $1 / 12$	GAUSS1/M	E	EKS	M	MN
GCYLQ	R	FS2A2/1	F32A2/M	TAB	E	PLTA	
GE2D	RS	GE2D/14	GE2D / M	E			
GE3D	RS	GE3D/14	GE3D/M	E			
GEFACE	RS	GEFACE/12	GEFALE/M	E			
GELDG	RS	GELDG/12	GELDG/M	E			
GESMRY	RS	GESMRY/12	GESMRY /M	E			
GGSGO	RF	GGSGO/9	GGSGO/M	PLTA			
GG:SLD	Fif	GGSLD/12	GGSLD / M	PLTA			

Table 7－4（Continued）

Name	File	Symbolic	Relocatatle	Proce	ssors	
GIDA	$R 2$	GIDA／7	GIDA／M	DR	PXY	
GK2DP	R6	GD2DP／4	GD2DP／M	K		
GL	R8	GL／4	GL／M	AUS	EQNF GSF	SSET
GOALFA	RP	GOALFA／15	GOALFA／M	PXY		
GOALPH	RP	GOALPH／11	GOALP	PLTB		
GOCEIG	RC	GOCEIG／12	GOCE IG／M	CEIG		
GODEM	R5	GODEM／8	GODEM／M	E		
GOEQNF	R7	GOEQNF／9	GOEQNF／M	EQNF		
GOFGK．M	R6	GOFGKM／11	GDFGKM／M	FSM		
G05MA	RM	GOSMA／13	GOSMA／M	SM		
GOSMB	RM	G05MB／12	GDSMB／M	SM		
GOSMC	RM	GOSMC／ 14	GOSMC／M	SM		
GOSMX	RM	G0SMX／ 12	GOSMX／M	SM		
GOSMX 1	RM	$\operatorname{GOSMX1/12}$	GOSMX $1 / \mathrm{M}$	SM		
G05mx2	RM	G0Smx2／12	GOSMX2／M	SM		
G0SMx 3	RM	G0SmX3／12	GロSMX3／M	SM		
G05s	RA	GOSS／11	G0S5／M	SYN		
GOSTRP	RA	GOSTRP／9A	GOSTRP／M	STRP		
Fnsyd	OA	Gnsvotis	ESEY发	Ev\％		
GOVEC	RP	GOVEC／ 15	GOVEC／M	PXY		
GOXMAP	R6	GOXMAP／11	GOXMAF／M	XMAP		
GPFCON	＋i＇	GPFO2／12	GPFO2／M	PLTA		
GPLXQT	RF	GPLXQT／10	GPLXQT／M	PLTB		
GQM	R6	GQM／5	GQM／M	KG		
GQP	R6	GQP／5	GQP／M	$K G$		
GSBTMP	RA	GSBTMP／日	GSBTMP／M	GTRP		
GSFEX	R8	GSFEX／15	GSFEX／M	GSF		
GSFLD	R8	GSFLD／11	GSFLD／M	GSF		
GSUBMP	RA	GSUBMF；9	GSUBMP／M	STRP		
GTM	R6	GTM／5	GTM／M	$K G$		
GTF	R6	GTP／5	GTP／M	KGG		
HAFMPY	RA	HAFMPY／8	HAFMPY／M	STRP		
HAFTMP	$\mathrm{RA} A$	HAFTMP／8	HAFTMP／M	STRP		
HEXNL	RJ	HEXNL／15	HEXNL．／M	MN		
HFB 1	R6	HFB1／11	HFB1／M	FSM		
HGEN	RJ	HGEN／11	HGEN／M	EKS	SM	
HGEND	RJ	HGEND／1	HGEND／M	EKS	SM	
HMBGEN	RJ	HMBGEN／11	HMBGEN／M	EKS	SM	
HOUSE	RA	HAS／10	HAS／M	STRP		
HQT	Rt	HCLT／1	HQT／M	K	SM	
HSETMP	RA	HSETMP／8	HSBTMF／M	STRP		
HSUBMP	FA	HSUBMP／8	HSUBMP／M	STRP		
I AM	RA	IAM／8	I AM／M	STRP		
ICSF	R2	ICSF／2	ICSF／M	＊A11		
IDCODE	R2	IDCDDE／8	IDCODE／M	DCU		

Table 7-4 (Continued)

Table 7-4 (Continued)

Name	File	Symbolic	Reloratable	Processors	
LABL	RP	L608/10	L608/M	PLTB	
LADJ	R2	LADJ/6	LADJ/M	*All	
LAM	RJ	LAM/11	LAM/M	TAB	
LCARD	RJ	LCARD / 14	LCARD/M	ELD	
LCBD	RC	LCBD/12	LCBD/M	CEIG	
LCBG	RC	LCBG/12	LCBG/M	CEIG	
LDCEIG	RL	LDCEIG/12	LDCEIG/M	CEIG	
LDDEM	RS	LDDEM/8	LDDEM/M	E	
LDDKDM	RM	LDDKDM/13	LDDK.DM/M	SM	
LDEQNF	R7	LDEQNF/12	LDEQNF / M	EQNF	
LDFGKM	R6	LDFGKM/12	LDFGKM/M	FSM	
LDPLTE	RP	LDPLTB/16	LDPLTB/M	PLTB	
LDSM	RM	LDSM/13	LDSM/M	SM	
LDSS	FRA	LDSS/11A	LDSS/M	SYN	
LDSTRP	RA	LDSTRP/10	LDSTRP/M	STRP	
LDSYN	RA	LDSYN/11	LDSYN/M	SYN	
LDXMAF	F6	LDXMAP/11	LDXMAF/M	XMFP	
LG	R8	LG/4	LG/M	AUS EQNF GSF	SSBT
EEE	EO	SEOt:	1 GCl $/$ M	AlS	
LINE 1	RP	LINE1/15	LINE1/M	PXY	
LINPLT	RP	L609/V70L	L609/M	PLTB	
LIO	R2	LIO/8	LID,M	*All	
LOCATE	RA	LOCATE/8	LOCATE/M	SYN	
LOCMK	RA	LOCMK/11	LOCMK/M	SYN	
LSTRAN	R6	LSTRAN/5	LSTRAN/M	----	
LTOC	R2	LTOC/7	LTOC/M	*All	
M 32	R6	M $2 / 5$	M32/M	M	
MS3	R6	M33/5	M3J/M	M	
M34	R6	M34/S	M34/M	M	
MSDO1	RJ	MSDOi/12	M3DO1/M	$E \quad M$	
M62	R6	M62/5	M62/M	M	
M62CUR	R6	M62CUR/15	M62CUR/M	M	
M63	R6	M63/5	M63/M	M	
M64	R6	M64/5	M64/M	M	
MAJTYP	FP	MAJTYF/13	MAJTYP/M	PLTB	
MATCH	R2	MATCH/7	MATCH/M	*All	
MATRIX	RA	MATRIX/11B	MATRIX/M	SYN	
MFTX2	R8	MFTX2/4	MFTX2/M	GSF	
MK.STR	RA	MKSTR/11	MKSTR/M	SYN	
MONTOR	RP	L604/12	L604 / M	PLTB	
MOVEXY	KP	MOVEXY/15	MOVEXY/M	PXY	
MFAUS	R9	MPAUS/16	MPAUS/M	ALS	
MFCEIG	RC	MPCEIG/12	MPCEIG/M	CEIG	
MPDCU	R2	MPDCU/16	MPDCU/M	DCU	
MPDR	R7	MPDR/9	MPDR/M	DR	

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Processors
MPE	R5	F3/8	F3/M	E
MPEIG	R9	MPEIG/8	MPEIG/M	EIG
MPEKS	R5	FSK/7	FSK/M	EKS
MPELD	R3	MPELD/15	MPELD/M	ELD
MPEQNF	R7	MPEQNF/9	MPEQNF/M	EQNF
MPFSM	R6	MPFGKM/11	MPFEKM/M	FSM
MPGSF	R8	GSFMP/9	GSFMP/M	GSF
MPINV	R6	AF/7	AF/M	INV
MPK	R6	ASK/7	ASK/M	K
MPKG	R6	ASKG/7	ASKG/M	KG
MPKMAP	R4	PFS/ 12	PFS/M	PKMP
MPM	R6	ASM/8	ASM/M	M
MPMFIL	R4	PF4/11	PF4/M	PAMP
MPMN	R5	MPMN/15	MPMN/M	MN
MPPLTA	RP	MPGGS/9	MPGGS/M	PLTA
MPFLTB	RP	MPPLTB/16	MPrLIE/M	PLTB
MPPRTE	R5	PF3/11	PF3/'1	PRTE
MPPS	R6	PRTSM/9	PRTSM/M	FS
MPPSF	R8	PSFMP/7	PSFPIP/M	PSF
MPFFSK	$\overline{\mathrm{K}}$	Mipfisfico	mitajorin	PSE
MPPXY	RP	MPPXY/15	MPP XY/M	PXY
MPSM	RM	MPSM/12	MPSIT/M	SM
MPSSET	RA	MPSSET/10	MPSSBT/M	SSET
MPSSDL	R7	DS/7	DS/M	SSOL
MPSTRP	RA	MPSTRP/8	MPSTRP/M	STRP
MPSYN	RA	MPSYN/8	MPSYN/M	SYN
MPTAB	RJ	MPTAB/15	MPTAB/M	TAB
MPTOPO	R4	TOPOMP/7	TOPOMP/M	TOPO
MPUPRT	R7	MPVPRT/11	MPUPRT/M	VPRT
MPXMAP	R6	MPXMAP/11	MPXMAP/M	XMAP
MTEX	RC	MTEX/14	MTEX/M	CEIG SM
MULMX	R9	MULMX/8	MLLMX/M	EIG
multex	R7	MULTEX/日	MULTEX/M	AUS SSOL EIG
NCALNA	RJ	NCALNA/11	NCALNA/M	EKS SM
NDEP	RJ	NDEF/15	NDEPIM	MN
NDEP2	RJ	NDEP2/15	NDEP2/M	MN
NEN	R2	NEN/6	NEN/M	*All
NEWX	R9	NEWX/8	NEWX/M	EIG
NFSD	R5	NF3D/15	NF.SD/M	MN
NFEEAM	R7	NFEEAM/15	NFBEAM/M	EQNF
NFSHEL	R7	NFSHEL/11	NFSHEL/M	EQNF
NLMCLD	R5	NLMCLD/15	NLMCLD/M	MN
NODPLT	RP	L605/V70L	L605/M	PLTB
NODVAL	RP	NODVAL/16	NODVAL/M	FLTB
NORM	R9	NORM/9	NORM/M	AUS

Table 7-4 (Continued)

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Proce	essors			
PS3D	R日	PS3D/12	PS23/M	PSF				
PSFEX	RB	PSFEX/12	PSFEX/M	PSF				
PSFLD	R8	PSFLD/12	PSFLD/M	PSF				
PSM	R6	PSM/9	PSM/M	PS				
PSMDP	R6	PSMDP/9	PSMDP/M	PS				
PSN	R8	PSN/11	PSN/M	PSF				
PSPACE	RP	PSPACE/12A	PSPACE/M	PLTB				
PTAB1	R2	PTAB1/9	PTAB1/M	DCU				
PUP	R7	PUP/8	PUP/M	TAB	AUS	EQNF GSF	PLTE M	M
PWR	R9	PWR/16	PWR/M	AUS				
QGENP	RP	GPF09/V701	GPFO9/M	PLTA				
QH	Rt	QH/1	QH/M	K	SM			
QTEQ	RA	QTEQ/11	QTEQ/M	SYN				
RANF	R9	RANF/7	RANF/M	EIG	CEIG			
RATIOS	RP	L6013/V70E	L6013/M	PLTB				
RBINT	R7	RBINT/9	REINT/M	DR				
RBVEC	R9	RBVEC/7	RBVEC/M	AUS				
RDIND	R2	RDIND/7	RDIND/M	* A11				
REmAT	R 0	FDimatia	PDMnt:M	O!				
RDTAB	R3	F1T/15	F1T/M	TAB				
REAC	R7	REAC/9	REAC/M	SSOL				
READ	R2	READ/7	READ/M	* All				
READD	RA	READD/9	READD/M	STRP				
READER	R2	READER/9	READER/M	*All				
REC	RA	REC/11	REC/M	SYN				
RECMAD	RA	DMAT/10	DMAT/M	STRP				
RECMAT	R9	RECMAT/S	RECMAT/M	EIG				
RED	R6	RED/8	RED/M	INV				
REDDP	R6	REDDP/8	REDDP/M	INV				
REDUCE	R9	REDUCE/16	REDUCE/M	EIG				
REFOSZ	RA	REPOSZ/9	REPOSZ/M	STRP				
RGEN	RJ	RGEN/9	RGEN/M	EKS	SM			
RIFIN	RC	RIFIN/12	RIFIN/M	CEIG				
RIGI	R9	RIGI/9	RIGI/M	AUS				
RINV	R9	RINV/9	RINV/M	AUS				
RIO	R2	RIO/9	RIO/M	*Al 1				
RLODP	R9	RLOOP / 13	RLOOP/M	AUS				
RMAT	R9	RMAT/9	RMAT/M	AUS				
RMET	R3	RMBT / 11	RMET/M	TAB				
RMP	R8	RMP / 10	RMP / M	FSM	GSF			
ROOTS	RC	RODTS/13	ROOTS/M	CEIG				
RFOINT	RS	FS2AS/1	F32A3.M	E				
RPRO	R9	RPRO/9	RPRO/M	AUS				
RRINZ	R4	RRINZ/4	RRINZ/M	TDPO	STRP			
RRMK	R9	RRMK/7	RRMK/M	EIG				

Table 7－4（Continued）

Name	File	Symbolic	Relocatable	Processors		
RROUTZ	RA	RROUT 7.19	RROUTZ／M	STRP		
RSEL1	RC	RSEL1／13	RSEL $1 / \mathrm{M}$	CEIG		
RSET	R2	RSET／16	RSET／M	＊All		
RTRA	R9	RTRA／9	RTRA／M	AUS		
RTV	RP	RTV／9	RTV／M	PLTB		
RWINDZ	R4	RWINDZ／6	RWINDZ／M	TOPC	STRP	
511	R9	S11／8	S11／M	AUS		
Siv	R9	S1V／8	Siv／M	Aus		
S21	R9	521／8	S21／M	AUS		
522	R9	522／8	S22／M	AUS		
520	R9	S2V／8	S2V／M	AUs		
SASCON	R3	F1T15B／10	F1T15B／M	TAB		
SBA	RA	SBA／11	SBA／M	SSBT		
SBA1	RA	SBA1／10	SBA1／M	SSBT		
SBA2	RA	SBA2／10	SBA2／M	SSBT		
SBB	RA	SBE／10A	SBB／M	SSBT		
SBE1	RA	SBE1／10	SSB1／M	SSBT		
SCLPLT	RP	L6012／V701	L6012／M	PLTB		
SCNTOC	R9	Scatceis	sentinim	Al：		
SCOMP	R8	SCOMP／13	SCOMP／M	GSF		
SDPLAY	RP	SD02／16	SD02／M	PLTB		
SDPXQT	RP	SDPXRT／11	SDPXQT／M	PLTB		
SE21	R8	SE21／15	SE21／M	PSF		
SECT2	R3	F1T09．12	F1T091／M	TAB		
SEGMPY	R9	¢ここッツY／16	SEGMPY／M	AUS		
SEQGEN	R3	F1T17／11	F1T17／M	TAB		
SETFNT	RP	SETFNT／15	SETFNT／M	PXY		
SFETCH	RP	SD03／11B	SDO3／M	PLTB		
SHADE	RP	L607／V70L	L607／M	FLTB		
SHRINK	R9	SHRINK／日	SHRINK／M	AUS		
51	R3	SI／6	SI／M	TAB		
SKEWP	R7	SKEWP／9	SKEWP／M	EQNF	GSF	
SLAEL	RF	5D05／16	SDOS／M	PLTB		
SMLD	R6	SMLD／15	SMLD／M	K	M	KG
SMSB	R8	5MSB／11	SMSB／M	PSF	PLTB	
SMSPDP	RC	SMSPDP／12	SMSPDP／M	CEIG	SM	
SMUL	RC	SMUL／12	SMUL／M	CEIG	SM	
SMLL T	R7	SMULT／日	SMLLT／M	AUS	SSOL	EIG
SNEW	RJ	SNEW／15	SNEW／M	MN		
SNEW2	RJ	SNEW2／15	SNEW2／M	MN		
SPECIO	RF	SPECID／1	SPECIO／M	FLTA		
SPFGKM	R6	SPFGKM／ 12	SPFGKM／M	FSM		
SPMOVE	RM	SPMOVE／12	SPMOVE／M	SM		
SPMX	RM	SPMX／ 12	SPMX／M	SM		
SPROD	R9	SPROD／16	SFROD／M	Aus		

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Proc	ssors		
SPRT	R8	SPRT/12	SPRT/M	PSF			
SPTRN3	R6	SPTRN3/12	SPTRN3/M	K	M		FSM
SPTRN6	R6	SPTRNG/12	SPTRNG/M	K	M	KG	
SQUARE	R9	SQUARE/5	SQUARE/M	EIG			
SRTOS	R8	SRTOS/11	SRTOS/M	PSF			
SSIV	Fi9	SS1V/B	SSIV/M	ALS			
S52V	R9	SS2V/日	SS2V/M	AUS			
SSHL	RP	SSHL/11	SSHL/M	PLTB			
SSMK	R9	SSMK/5	SSMK/M	AUS			
SSPREP	R9	SSPREP/8	SSPREP/M	AUS			
SSTM	RJ	SSTM/12A	SSTM/M	EKS	SM	MN	
SSUM	R9	SSUM/16	SSUM/M	AUS			
STATID	R2	STATIO/7	STATIO/M	*All			
STCHOL	RA	STCHOL/8	STCHOL/M	STRP			
STEXPE	R8	STEXPE/12	STEXPE/M	GSF			
STORE	RA	STORE/8	STORE/M	STRP			
STORS	RJ	STORS/11	STORS/M	K	SM		
STORS	R6	STORS3/12	STORS3/M	K			
STRDIA	RA	STRDIA/gA	STPDIA/M	StRp			
STRK2D	R8	STRK2D/11C	STRK2D/M	GSF			
STRLST	RP	STRLST/10	STRLST/M	PL'm			
STRNE	RJ	STRNE / 12	STRNE/M	EKS	IN		
STRPRT	RA	STRPRT/10	STRPRT/M	STRP			
STRS21	F8	STRS21/15	STRS21/M	GSF			
STRS3D	R8	STRS ${ }^{\text {S } / 13}$	STRSSD/M	GSF			
STRSYM	RA	STRSYM/8	STRSYM/M	STRP			
STRTAB	R3	STRTAB/10	STRTAB/M	TAB			
SVEC2	R9	SVEC2/9	SVEC2/M	AUS			
SVEC3	R9	SVEC3/10	SVEC3/M	AUS			
SVV	R9	SVV/16	SVV/M	AUS			
SYMINV	RJ	SYMINV/14	SYMINV/M	EKS	CEIG	SM	MN
SYMVRT	FJJ	SYMVRT/11	SYMVRT/M	EKS	SM		
SYSM	RC	SYSM/12	SYSM/M	CEIG			
T3D01	R7	T3001/12	T3D01/M	EQNF			
T3D02	R7	T3D02/12A	T3D02/M	EQNF			
TCB	RJ	TCB/9	TCB/M	EKS	SM		
TCLOCK	R2	TCLOCK/7	TCLOCK/M	*All			
TCOL	RM	TCOL/13	TCOL/M	SM			
TCOL 1	RM	TCOL1/13	TCOL 1 / M	SM			
TDMBRN	R7	TDMBRN/14	TDMBRN/M	EQNF			
TERMIN	RP	TERMIN/15	TERMIN/M	PXY			
TFB1	R6	TFB1/12	TFB1/M	FSM			
TGEN	RJ	TGEN/11	TGEN/M	EKS	SM		
THAFMP	RA	THAFMP/8	THAFMP/M	STRP			
THSBMP	RA	THSEMP/8	THSBMP / M	STRP			

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Proce	ssors				
TIC1	RP	TIC1/15	TICI/M	PXY					
TIC2	RP	TIC2/15	TIC2/M	PXY					
TIC3	RP	TIC3/15	TIC3/M	PXY					
TINT	R7	TINT/9	TINT/M	DR					
TIO	R2	TIO/6	TIO/M	DCU					
TITL	R9	TITL/9	TITL/M	AUS					
TK3D	R5	TK3D/15	TK3D/M	MN					
TKU	RJ	TKU/11	TKU/M	K	SM				
TLAB 1	RF	TLAB1/15	TLAB1/M	PXY					
TOCD	R2	TOCD/9	TOCD/M	ELD	AUS	EQNF	SSOL	GSF	MN
TOPOEX	R4	TOPOEX/12	TOPOEX/M	TOPD					
TOPILD	R4	TOPOLD/9	TOPOLD/M	TOPD					
TR1	R7	TR1/9	TR1/M	DR					
TR1A	R7	TR1A/9	TR1A/M	DR					
TRAML 1	RA	TRAML. 1 /11	TRAML 1 /M	SYN					
TRAML2	RA	TRAML2/11	TRAML2/M	SYN					
TRAN3	R6	TRAN3/5	TRAN3/M	SM					
TRANG	R6	TRANG/5	TRANG/M	SM					
TRGEN	RA	TRGEN/8	TRGEN/M	SYN					
Friz	FR	TRT:	TPI, \%	SYN					
TRIL	RJ	TRIL/11	TRIL/M	K	SM				
TRILJ	R6	TRIL3/12	TRIL3/M	K					
TRIMUL	RJ	TRIMUL/11	TRIMUL/M	K	SM				
TRINVG	R3	TRINVG/11B	TRINVG/M	TAB					
TRIOUT	RJ	TRIOUT/11	TRIOUT/M	K	SM				
TRIPRO	R7	TRIPRO/9	TRIPRO/M	EQNF	GSF				
TRISQ3	R6	TRISQ3/11	TRISQ3/M	FSM					
TRMC	RJ	TRMC/15	TRMC/M	MN					
TRMCO	RS	TRMCO/15	TRMCO/M	MN					
TSUBMP	RA	TSUBMP/8	TSUBMP /M	STRP					
TT10x3	RJ	TT10×3/9	TT10X3/M	EKS	SM				
TT6×3	RJ	TT6×3/9	TT6X3/M	EKS	SM				
TTE	RJ	TTE/14	TTE/M	ELD					
TTE1	R3	TTE1/14	TTE1/M	ELD					
TTGEN	RJ	TTGEN/9	TTGEN/M	EKS	SM				
TX2N	RS	TX2N/7	TX2N/M	EKS	SM				
TXFR	R2	TXPR/9	TXPR/M	TAB	PSF	PLTB			
U3D	R日	U3D/12	UED/M	GSF					
UBEND	R8	UREND / 11	UBEND/M	GSF					
UEVAL	R7	UEVAL/8	UEVAL/M	ALS	SSOL	EIG	CEIG		
ULOCJ	R5	ULOCJ/15	LLOC3/M	MN					
UMBRN	R日	UMBRN/ 11 C	UMBRN/M	GSF					
UNION	R9	UNION/9	UNION/M	AUS					
VIEWST	RF	GPF06/V70J	GPFOG/M	PLTA					
VLD	R9	VLD/9	VLD/M	AUS					

Table 7-4 (Continued)

Name	File	Symbolic	Relocatable	Proces	essors
VMISES	RJ	VMISES/15	VMISES/M	MN	
VR2	R8	VR2/15	VR2/M	GSF	PSF
WARPT	RJ	WARPT/11	WARPT/M	EKS	SM
WNU7	R4	F4B/11	F4B/M	TDPO	
WR	R2	WR/7	WR/M	*A11	
WRT IND	R2	WRTIND/7	WRT IND/M	*Al1	
WRTJKC	R3	F1T15C/1	F1T15C/M	TAB	
XATN2	R9	XATN2/16	XATNZ/M	AUS	
XBLOCK	R3	F1T051/8	F1T051/M	TAB	
XKALER	RP	1603	L603/M	PLTB	
XLIO	R9	XLIO/9	XLIO/M	AUS	
XNTI	R9	XNTI/16	XNTI/M	AUS	
XPARA	RM	XPARA/13	XPARA/M	SM	
XPRNT	R9	XPRNT/16	XPRNT/M	EIG	
XSI	RP	XSI/9	XSI/M	PLTA	
XTRANS	RC	XTRANS/12	XTRANS/M	CEIG	
XTY	R9	XTY/9	XTY/M	AUS	
$X T Y D$	RC	XTYD/12	XTYD/M	CEIG	
XTYG	RC	XTYG/ 12	XTYG/M	CFIR	5
	RE	XUEVL/122	XUEVL/M	CEIG	
XXMN	RS	XXMN/15	XXMN/M	MN	
$X Y 1$	RF'	$X Y 1 / 15$	$X Y 1 / M$	PXY	
$X Y 2$	RP	XYZ/15	$X Y 2 / M$	PXY	
$X Y 3$	RP	$X Y 3 / 15$	XY3/M	PXY	
XY 35	RP	$X Y 3 S / 15$	XY3S/M	PXY	
XY4	RP	XY4/15	XY4/M	PXY	
XYS	RP	XYS/15	XY5/M	PXY	
XY6	RP	XY6/15	XYG/M	PXY	
$X Y 7$	RP	$X Y 7 / 15$	$X Y 7 / M$	PXY	
XYEXT	RP	XYEXT/15	XYEXT/M	PXY	
XYLD	RP	XYLD/15	XYLD/M	PXY	
XYTEXT	RP	XYTEXT/15	XYTEXT/M	PXY	
YPARA	RM	YPARA/12	YPARA/M	SM	
2FMP	R8	ZRMP / 12	ZRMF/M	EQNF	GSF

8. PROCESSOR COMMAND SUMMARY

```
    This section contains a summary of processor commands and
resets. The following resets are common to all processors:
    CORE n
    ABORT
The following commands are cofmon to all processors:
    ERABt
    FIN
    FORMat
    GNLIne
    IOUT
```


Resets
 none

Commands

TOC
DISAble ENABIe PRINt COPY XCOPY LIBLib NTAPE ABORt NCPL SCALE
CLEAn
TREAd
RETRieve
REPOsition
XLOAd
REWInd
TīLz
CHANge
DUPLicate
STORE
STATUS
TWRIte
EXIT
STOP

```
Resets
    ncne
```


Commands

```
TEXT
MATC NSW ALTRef JLOC JREF MREF
BRL
BA
BB
BC
RD
SA
SB
CON
JSEO
RMASs
QJJT
TITLe
Fi
RM
STRA
STARt
STOP
MOD
NREF
UPDATE
TAB/RMASS
REPEat
CM
ZERO
TAB/SA
ISOTropic MEMBrane FLATe UNCOupl ed COUPled LAMInate W
INUM
INBT
NMAT
```

MATERial CONStants DISTribited weight ALTErnate REFErence frames JOINt LOCAtions JOINt REFErence frames BEAM ORIEntation BEAM RIGId links E21 SECTion properties BEAM S6X6
E23 SECTion properties
E24 SECTion properties
SHELI SECTion properties
PANEI SECTion properties
CONStraint definitions JOINt ELIMination sequence RIGId MASSes

Resets	$\frac{\text { Default }}{1}$
LIB	896
LREC	3

Commands

E2i
E22
E23
E24
E25
E31
E32
E3J
E41
E42
E43
E44
F41
F61
F81
541
561
581
STOP
EXPF
GROUP
NMATerial
NSECt
NNSW
NOFF
NREF
NDES
NPROp
MOD JOINT
MOD GROUP
MOD NSECT
MOD NMAT
MOD NNSW
MOD NREF
MOD NOFF
INC NSECT
INC NMAT
INC NNSW
INC NREF
INC NOFF

Resets	Default
	1
LRKMap	696
LRAMap	1792
LR7	896
MAXSub	1400
ILMAx	0
LAPR	0
TIME	0
SA	0
PRTKmap	0
PRTAmap	0
PRT7	0
HLIB	1
ILIB	1

Commands
none

Resets	Default
G	1.
PRTT	1
PRTE	1
LIM	50
RCH	.0001
LZERD	.001
MWARP	.05
Commands	
STOF	
T	
IERR	

$8-6$

Resets	Default
BLIB	1
ELIB	1
GAZEro	$1 . E-20$
CIZEro	$1 . E-20$
TIME	0
ZK2D	.0001
GIPT	2
NS4	1
NS6	3
NSB	3

Commands STOP
K3D
K.2D

FLUSh

Resets	Default
SEG1	2
SEG2	7

Commands

STOP
ele type e.g. E43

Resets	Default
LREC	2240
BLIB	1
ELIB	1
HLIB	1
QUTLib	1
SPDP	1
TIME	0
SA	0
MCURve	1

Commands

none

Resets	Default
LREC	2240
BLIB	1
ELIB	1
HLIB	1
OUTLIB	1
G	1.0
IBEAm	0
INERt	0
TIME	0
SA	0
MCURve	1

Commands none

Resets	Default
LREC	2240
BLIB	1
ELIB	1
HLIB	1
OUTLib	1
AZERO	$1 . E-10$
IZERO	$1 . E-10$
IKG2	0
IKG3	0
TIME	0
SA	0
MCURVE	1

Commands

none

8-11

Resets		Default
K		K
DZERO		$1 . E-5$
CON	1	
KLIB	1	
KILIb	1	
NJMAX	50	
LRA	3584	
ILIB	$k l i b$	

Commands
none

Resets
 Default
 none

Commands

STOP
LIB
J
data set name

Resets	Default
TL1	21
TL2	22
IGKM	3
LREC	2240
TIME	0
SA	0
BLIB	1
ELIB	1
HLIB	1
OUTLib	1
SPDP	1

Commands

G

Resets	Default
CLIB	1
ELIB	1
SLIB	1
ULIB	1
FLIB	1
SET	1
CON	1
ZDE	$1 . E-20$
LAYErs	5
NJSS	10
GIPT	2
NS4	1
NS6	3
NSB	3
ZYIEld	.001
Commands	
STOF	
TRMC	
INSS	
NF	
TK	
PRINt	

Resets	Default
	1
LI	1
L2	1
ELIB	1
INLIb	1
FEFLib	1
ISLIb	1
ISBL	896

Commands
STOP
T3D

Resets	Default
KLIB	1
KILIB	1
GLIB	1
TIME	0
EP	1
LI	1
LD	all records
CON	1
READ	1
SET	1
MAX	0

Commands

none

Resets
 none

```
Commands
LIB
COMPonents
HEADing
VECTors
JOINts
LINEs
ZERO (same as FILTER)
FILTer
I
J
STOP
PRINTt
TPRInt
```

Resets	Default
	1
QLIB	1
L1	1
L2	0
SET	1
CON	MASK
LREC	5600
IEA	1
EMBEd	0
ACCUm	0
KGF	0
Commands	
SOURCE	
STOP	

Fesets	Default
	1
QLIB	1
L1	1
L2	1
SET	1
IEA	1
LINES	56
DISPlay	1
NODES	1
CROS5	1
Z3DA	.00001
Z3DR	.00001

Commands

STOP
CFILter
DIV
SF ILter

Resets
INLIb
OUTLib

Default
1
1

Commands
"etype"

Resets
 none

Commands

STOP
DTEX
TR1
BACK

```
Controls Default
DT
NTERms calculated (1/8 period) 10
INLIb QUTLi'J N2
```

Controls	Default
PLIB	0
QXLIb	0
QX1Lib	0
QX2Lib	1
ALIB	1
QR2Lib	1
QRLIb	0
QR1Lib	0
INLIb	1
CASE	1
LB	896
N2	MASK
T1	
T2	

DR/
BACK

Controis	Default
M1	
M2	
DT	
TSTArt	1.0
LRZ	0.0
PRINt	896
NSREpeat	1
N4REpeat	1
FMAX	1
FMIN	$-1 . E+20$
BIG	$1 . E+20$
STAT	$1 . E+20$
SOURce	0
DEST	1

Commands

Z
EXT
ZC
T
Y

Resets	Default
SYSL	1
LR	896
CON	1
TOLR	$0.1 E-5$
TOLM	$1.0 E-30$
TOLK	$1.0 E-30$

Commands

STOP
K
M
FUNC

Resets	Default
${ } }$	-10. E10
FRQ2	$10 . E 10$
TQL	$1 . E-15$
SOURce	1
DEST	1
INT	0
NOUT	26

Commands
none
$\frac{\text { Resets }}{\text { JMG }} \frac{\text { Default }}{1}$

Commands
STOP
MODEs

Resets	Default
CM	-0
SOURCe	1
DEST	1
LTEMp	21
SET	1
CON	1
N	0
HIST	0
NDYN	6
CONV	$1 . E-5$
NREQ	0
V1	.0
V2	.0
NUIN	0
ZERO	$1 . E-20$
CMEThod	1
CBAL	0
ZMOD	$1 . E-30$
ZRI	$1 . E-4$
ZVEC	$1 . E-30$
KSEL	2
MSEL	1
RRPR	0

Commands none

Resets	Default
AZER	$1 . E-10$
IZER	$1 . E-10$
G	1.0
IKG2	0
IKG3	0
IBEA	0
INER	0
LREC	2240
TIME	0
SA	0
BLIB	1
ELIB	1
HLIB	1
OUTL	21
NUPAra	1
N4PAra	1
NPARas	0
NUMS	0
NUT	1
NUEIg	1
NSEIg	1
N4EIg	1
NUDK	22
NUXD	23
NUUX	24
PZERo	$1 . E-20$
NUDP	0
NSRR	0
NSEE	0
KTARget	0
KDPX	1
DPZEro	$1 . E-20$
NUDM	25
NEGL	0
ZDV	$1 . E-20$
COMmands	
OPER	
AOPE	

Resets
GGSL
Commands
SPEC
LCONtrol
VIEWs
ROTAte
SYM
AXES
STITle
S2TItle
MARGin
STOP
ANTIsYm
LINEs
TEXT
JLABel
LROTate
CONNect
LOCLabel
ALL
PRIN

Resete	$\frac{\text { Default }}{1200}$
BAUD	4016
NDEV	2

Commands
STOP
PLUT
INLIb
PSLI
SET
CASEs
VECTOR 5
CON
DNORm
ECHO
OPTIons
DISP
LAMI
DISP= UNDE
STAT VIBR
BUCK
TABLe

9. REFERENCES

1. Whetstone, W.D., "SPAR Structural Analysis System Feference Manual - Systen Level 13A. Volume 1 - Proaram Execution" NASA CR-158970-1, December 1978.
2. Oden, J.T. and M.L. Pearson, "SPAR Improved Structure/Fluid Dynamic Analysis Capability," LMSC-HREC TR D867285, August 1983.
3. Pearson, M.L., "SPAR Improved Structure/Fluid Dynamic Analysis Capability, Phase II - Final Report," LMSC-HREC TR D951490, June 1984.

Appendix A
SPAR REFERENCE MARIUAL UPDATES

Included as an attachment to this appendix are update pages to the SPAR Structural Analysis System Reference Manual (NASA CR 158970-1) dated December 1773. These updates describe changes and additions to the manual which are applicable to SPAR System Level 16.

Attachment to Appendix A
 Update pages to the SPAR Structural Analysis System Reference Manual (NASA CR 158970-1)

3. 2 ELD- ELEMENT DEFINITION PROCESSOR

3.2.1 General Rules, ELD Input
3.2.1.1 Error Conditions
3.2.1.2 Element Reference Frames
3.2.1.3 Element Group/Index Designation
3.2.1.4 The MOD Command
3.2.1.5 The INC Command
3.2.2 Structural Element Definition
3.2.2.1 Line Elements
3.2.2.2 Area Elements
3.2.2.3 Three-Dimensional Elements
3.2.3 Thermal Element Definition
3.3 E- E-STATE INITIATION
3.4 EKS- ELEMENT INTRINSIC STIFFNESS AND STRESS

MATRIX GENERATOR
SPAR FORMAT SYSTEM MATRIX PRDCESSORS

4.1	TOPD	ELEMENT TOPQLOGY ANALYZER
4.2	K-	THE SYSTEM STIFFNESS MATRIX ASSEMBLER
4.3	M-	SYSTEM CONSISTENT MASS MATRIX ASSEMBLER
4.4	KG- SYSTEM INITIAL STRESS (GEOMETRIC) STIFFNESS	
		MATRIX ASSEMBLER
4.5	INV-	
4.6	PSAR FORMAT MATRIX DECOMPQSITION PROCESSOR	

UTILITY PRCGRAMS
5.1 AUS- ARITHMETIC UTILITY SYSTEM
5.1.1 Miscellaneous
5.1.2 General Arithmetic Operations
5.1.2.1 SUM
5.1 .2 .2 PRODUCT
5.1.2.3 UNION
5.1.2.4 XTY, XTYSYM, XTYDIAG
5.1 .2 .5 NORM
5.1.2.6 RIGID
5.1.2.7 RECIP, SQRT, SQUARE
5.1.2.8 RPROD, RTRAN, RINV
5.1.2.9 LTOG, ETOL
5.1.2.10 COS, ACOS, SIN, ASIN, TAN, HIAN, COSH, SINH, TANH, EXF, ALDG, AL10, ABS
5.1.2.11 IFIX, FLOAT, POWER
5.1.2.12 ATN2, SRSS
5.1.2.13 NUM1
5.1.2.14 XNT1, XNT2, XNTS, XNT4
5.1.2.15 CBR, CBD, ACBR, ACBD
5.1.3 Data Set Constructors
5.1.3.1 TABLE
5.1.3.2 SYSVEC
5.1.3.3 ELDATA
5.1.3.4 ALPHA
5.1.4 Substructure Operations
5.2 DCU- DATA COMPLEX UTILITY PROGRAM
5.3 VPRT- VECTOR PRINTER
STATIC SOLUTIONS
6.1 APPLIED LDAD INPUT
6.1.1 Point Forces and Moments Acting on Joints 6.1.2 Specified Joint Motions
6.1.3 Inertial Loading
6.1.4 Nodal Temperatures
6.1.5 Nodal Pressures
6.1.6 Loading Defined for Individual Elements
6.1.6.1 Temperatures
6.1.6.3 Dislocations
6.1.6.3 Pressure
6. 2 EQNF- EQUIVALENT NODAL FORCF. GENERATOR 6.3 SSOL- STATIC SOLUTION GENERATUR
STRESSES
7.1 GSF- STRESS DGTA GENERATOR
7.2 PSF- STRESS TABLE PRINTER
7.3 PSR- PRINCIPAL STRESS GENERATOR
EIG- SPARSE MATRIX EIGENSOLVER

Table 1-2: SPAR Processor Functions (continued)
Name and
Section
Reference Function
AUS 5.1 The Arithmetic Utility System, comprised of an array of subprocessors in the following categories:

- Data set constructors, providing a general means of furnishing input data for use by SPAR. Applied load data of all types (mechanical, thermal, pressure, dislocational, transient dynamic) is usually defined via these subprocessors.
- Matrix arithmetic operations, e.g. sums, products, unions.
- Special functions, including subprocessors used in performing substructure analysis.

EQNF 6.2 Computes fixed-joint forces associated with thermal,
dislocational, and pressure loading. Computes element generalized initial strain arrays.

SSOL 6.3 Computes joint motions and reactions due to static loading.

GSF 7.1 Produces data sets containing element stresses and internal loads. GSF is used to compute both static and dynamic stresses.

PSF 7.2 Produces tabular stress reports from data sets generated by GSF.

PSR 7.3 Produces multi-block, table-format data sets containing principal stresses for both 2 -d and 3 -d element types.

EIG 8 Solves high-order eigenproblems involving system matrices in SPAR's sparse matrix format. Used to solve both vibrational and buckling eigenproblems.

CEIG 1.3 Computes complex modes and frequencies of damped, spinning structures. System matrices are in SPAR's standard sparse matrix format, permitting analysis of systems of very high order.

DF $\quad 9 \quad$ Computes 1 inear transient modal response.

$$
1.2-5
$$

which will cause the processor not to make an error abort if it encounters a serious error $\{e . g ., i f$ required input data sets do not exist:, and

```
RESET CORE \(=n\) (available on UNIVAC, only)
```

which will result in issuance of an executive request to change the available data space to n words.

On CDC systems, the user controls core size through RFL cards.

The statement, DATA SPACE $=n$, appearing at the beginning of execution of each program, indicates $n=a v a i l a b l e d a t a ~ s p a c e . ~$

Most SPAR programs generate little or no printed output. In some programs, the kind and quantity of output are controlled by a command (not a reset parameter) in the following form:

$$
\text { ONLINE }=\boldsymbol{n} \ddagger
$$

where $n=0$ for minimum printout, 1 for normal printout, and 2 for maximum printout. If desired, the ONLINE statenent may be used more than once within the same program execution.

$$
2.4-2
$$

Table 5-1 Summary of AUS Subprocessors

Mijcellaneous	General Arithmetic		Data Set Constructors	Substructure
INLIB	Sum	COSH	table	SSPREP
OUTLIB	PRODUCT	SINH	Sysvec	SSM
DEFINE	UNION	TANH	eldata	SSK
ZERO	XTY	EXP	ALPHA	SSID
FIND	XTYSYM	ALOg		
	NORM	ALIO		
	RIGID	ABS		
	RECIP	IFIX		
	SQUARE	FLOAT		
	SQRT	POWER		
	RPROD	SRSS		
	RTRAN	NUM1		
	RINV	XNT1		
	cos	XNT2		
	ACOS	XNT3		
	SIN	XNT4		
	ASIN	CAR		
	TAN	CBD		
	ATAN	ACBR		
	ATN2	ACBD		

5.1.2 General Arithmetic Dperations

Table 5.1.2-1 summarizes commands in this category. All are in the following form, except where specifically noted otherwise.

$$
\text { inb } Z=c \text { Oper }\left(c_{1} X_{2}, c_{2} X_{2},--\right)
$$

where Oper is one of the operation names, such as SUM, PRODUCT, etc., and the X_{1} 's are short-form names identifying source data. If a short-form name X has not appeared in a DEFINE $X=\ldots$ statement, it is assumed that X is a data set named X MASK MASK MASK that is contained in the current primary data source library identified by the last INLIB statement. The c's are floating-point constants which may be omitted (default is 1.0).

The data set produced as a result of the command will be stored in the library designated by lib, or in the current destination library designated by the last CUTLIB command if lib is omitted. The name of the output data set will depend on the form of Z, as summarized below:
Form of Z
N1
N1 N2
N1 N2 nJ
N1 N2 n3 n4

Output Data Set Name

N1	AUS	1	1
N1	N2	1	1
N1	N2	$n 3$	1
N1	N2	$n 3$	$n 4$

$$
5.1 .2-1
$$

Table 5.1.2-1 Summary of General Arithmetic Operations

Command Forms	Meaning
$\mathrm{Z}=\operatorname{SUM}(\mathrm{X}, \mathrm{Y})$	$\mathrm{Z}=\mathrm{X}+\mathrm{Y}$ (system matrices)
$\mathbf{Z}=\mathrm{PRODUCT}(\mathbf{X}, \mathrm{Y})$	$\mathrm{Z}=\mathrm{XY}$ (system matrices)
$\mathrm{Z}=\mathrm{UNION}\left(\mathrm{X}_{1}, \mathrm{X}_{2}, \cdots--\right)$	$\mathrm{Z}=\left[\mathrm{X}_{1}\left\|\mathrm{X}_{2}\right\| \mathrm{X}_{3}---\right]$
$Z=X T Y(X, Y)$	$Z=X^{t} Y$
$\mathrm{Z}=\mathrm{XTYSYM}(\mathrm{X}, \mathrm{Y})$	$Z=X^{t} Y$, symmetric
$\mathrm{Z}=\mathrm{XTYDLAG}(\mathbf{X}, \mathrm{Y})$	$Z=X^{\mathbf{t}} \mathbf{Y}$, diagonal
$Z=\operatorname{NORM}(\mathrm{X}, \mathrm{j}, \mathrm{k}, \mathrm{v})$	System vector renormalization
$\mathrm{Z}=\mathrm{RIGID}(\mathrm{j})$	Rigid body motion vectors
$\mathrm{Z}=\mathrm{RECIP}(\mathrm{X})$	Each element z $=1 . / \mathrm{x}$
$\mathrm{Z}=\mathrm{SQRT}(\mathrm{X})$	Each element $z=\operatorname{sign}(x) \sqrt{\|x\|}$
$\mathrm{Z}=\operatorname{SQUARE}(\mathrm{X})$	Each element $z=x^{2}$
$\mathrm{Z}=\mathrm{RPROD}(\mathbf{X}, \mathrm{Y})$	$\mathrm{Z}=\mathrm{X} \mathrm{Y}$ (rectangular matrices)
$\mathrm{Z}=\mathrm{RTRAN}(\mathrm{X})$	$\mathrm{Z}=\mathrm{X}^{\mathrm{t}}$ (rectangular matrices)
$\mathrm{Z}=\mathrm{RINV}(\mathrm{X})$	$\mathrm{Z}=\mathrm{X}^{-1}$ (square matrices)
$Z=\operatorname{LTOG}(\mathrm{X})$	Comverts system vector components from local joint reference frames to global
$Z=\operatorname{GIOL}(\mathrm{X})$	Complement of LTOG
$z=\cos (x)$	Each element $2=\cos (x)$
$z=\operatorname{ACOS}(x)$	Each element $z=\arccos (x)$
$Z=\sin (x)$	Each element $z=\sin (x)$
$Z=\operatorname{ASIN}(x)$	Each element $z=\arcsin (x)$
$z=\operatorname{TAN}(x)$	Each element $z=\tan (x)$

Table 5.1.2-1 (Continued)

Command Forms
$Z=A T A N(X)$
$Z=\operatorname{ATN} 2(X, Y)$
$Z=\operatorname{CoSH}(x)$
$Z=S I N H(X)$
$Z=\operatorname{TANH}(X)$
$Z=\operatorname{EXP}(X)$
$Z=A L O G(X)$
$Z=A L 1 O(X)$
$Z=\operatorname{ABS}(X)$
$Z=\operatorname{IFIX}(X)$
$Z=F L O A T(X)$
$Z=\operatorname{POWER}(X, P)$
$Z=\operatorname{SRSS}(X, Y)$
$Z=\operatorname{NUM1}(X, Y)$
$Z=X N T 1(X Y, A)$
$Z=X N T 2(X Y, A)$
$Z=X N T S(X Y, A)$
$Z=X N T 4(X Y, A)$
$Z=\operatorname{CBR}(X, Y)$
$Z=\operatorname{cBD}(X, Y)$
$Z=\operatorname{ACBR}(X, Y)$
$Z=\operatorname{ACBD}(X, Y)$

Meaning

Each element $z=\arctan (x)$
Each element $z=\arctan (x / y)$
Each element $z=\cosh (x)$
Each element $z=\sinh (x)$
Eaci: element $z=\tanh (x)$
Each element $z=e^{x}$
Each element $z=1 n(x)$

Each element $z=\log _{10}(x)$
Each element $z=$ abs (x)
Each element $z=i f i x(x)$
Each element $z=$ float (x)
Each element $z=x^{\text {r }}$
Each element $z=\sqrt{x^{2}+y^{2}}$
Numerical integration
Linear interpolation
Log-log interpolation
Linear-log interpolation
Log-linear interpolation
Matrix multiplication
Matrix multiplication
Matrix multiplication

Matrix multiplication

$$
5.1 .2-4
$$

Examples.

$\mathrm{K}+\mathrm{KG}=\operatorname{SUM}(\mathrm{K}, 4.7 \mathrm{KG})$	System stiffness matrix including effects of prestress.
M1= SUM(RMASS, DEM)	Diagonal system matrix composed of rigid mass data plus the lumped-mass equivalent of all distributed element mass.
M2= SUM (CEM, RMASS)	SPAR-format consistent mass matrix, plus rigid-mass data.
K24= SUM ($\mathrm{K},-24000 . \mathrm{M}$)	Shifted stiffness matrix to be used in EIG to compute eigenvalues near 24,000.

Core Requirement. One block of X plus one block of Y .

Note: For operations involving type A or iype D data sets, the core requirement stated above does not apply. If insufficient core is available to hold entire blocks, the blocks are loaded in segments using the available core.
5.1.2.2 PRODUCT. The general form of the command is as follow:

$$
\mathrm{Z}=\operatorname{PRODUCT}\left(\mathrm{c}_{\mathrm{x}} \mathrm{X}, \mathrm{c}_{\mathrm{y}} \mathrm{Y}\right)
$$

This statement means that Z is c_{x} times c_{y} times X post-multiplied by Y. In standard applications, X is of type S, D, or D, and Y is of type $V .7$ have the same number of blocks (vectors) as Y .

Example. Construct inertia force vectors due to rigid-body acceleration. The command $R=\operatorname{RIGID}(j)$ would result in production of a 6 -block data set containing system rigid-body motions in SYSVEC format. Where M is the system mass matrix,

$$
\mathrm{MR}=\mathrm{PRODUCT}(\mathrm{M}, \mathrm{R})
$$

would produce a 6-block data set, in SYSVEC format, containing inertia force vectors due to unit rigid-body accelerations.

In addition to the above, PROD can also be used to perform element-byelement multiplication of data sets, provided that X and Y have the same block length ($\mathrm{II}^{*} \mathrm{NJ}$), and both contain only real data. Where:
$x_{i}=$ the ith element in the first block of X,
$y_{i j}=$ the ith element in the j th block of Y, and
$z_{i j}=$ the i th element in the j th block of Z,
$z_{i j}=x_{i} y_{i j}$.

Core Hequirement. One block each of X, Y, and Z .
Note: For operations involving type A or type D data sets,
the core requirement stated above does not apply. If insufficient core is available to hold entire blocks, the blocks are loaded in segments using the available core.

$$
5 \cdot 1 \cdot 2 \cdot 2-1
$$

5.1.2.6 RIGID. The general form of the command is as follows:

$$
\mathrm{Z}=\operatorname{RIGID}(\mathrm{j})
$$

Z will be in SYSVEC form, containing six vectors (blocks) that define rigid-body motion of the system. The first three blocks correspond to unit translations in global directions 1, 2, and 3. The second three blocks correspond to unit rotations about axes parallel to the global frame, passing through joint \mathfrak{j}. If the integer \mathbf{j} is omitted, a default value of 1 is assumed.

Core Requirement. 18 times the number of joints in the structure.
5.1.2.7 RECIP, SQRT, SQUARE. These commands apply to single or multiblock data sets comprised entirely of real data. The output, Z, will be in the same form (block length, number of words, etc.) as the input, X. In the following definitions, z_{i} and x_{i} are the i th elements of Z and $c_{x} X$, respectively.

$$
\begin{aligned}
& Z=\operatorname{RECIP}\left(\quad c_{x} X\right) \text { indicates } z_{i}=1.0 / x_{i} . \\
& Z=\operatorname{SQRT}\left(\quad c_{x} X\right) \text { indicates } z_{i}=\left(\operatorname{sign} \text { of } x_{i}\right) \sqrt{\left|x_{i}\right|} \\
& Z=\operatorname{SQUARE}\left(c_{x} X\right) \text { indicates } z_{i}=x_{i}^{2} .
\end{aligned}
$$

The zero-test parameter established by the last $Z E R O=$ e statement (see Section 5.1.1) is used to avoid error stops in RECIP and SQRT. In these operations, $z_{i}=x_{i}$ if the magnitude of x_{i} is less than e.

> Core Requirement. No minimum requirement. Uses available core to load blocks in segments if insufficient core space is present to load an entire block.

AUS;		TANH
COS	TAN	EXP
ACOS	ATAN	ALDG
SIN	COSH	ALIO
ASIN	SINH	ABS

5.1.2.10 COS, ACOS, SIN, ASIN, TAN, ATAN, CUSH, SINH, TAR:H, EXP, ALOG, AL10, ABS

The general form of this class of commands is as follows:

lib $Z=$ c OPER $(C x X)$

X may be a single or multiblock data set and must contain only real data. The output, Z, will be in the same form block length, number of words, etc.) as the input, X. In the following definitions, z and x are corresponding elements of Z and x, respectively.

Core Requirement. No minimum requirement. Uses available core to laad blocks in segments if inscifiacieit core space is present to load an entire block.

$$
5.1 .2 .10-i
$$

5.1.2.11 IFIX, FLDAT, POWER. These rommands apply to single or multiblock data sets. IFIX and POWLR operate on real data. FLOAT operates on integer data. The output, Z, will be in the same form (block length, number of words, etc.) as the input, X. In the POWER command, p is a floating point constant which must be present. The floating point constants c and cx default to 1.0 if omitted. In the following definitions, z and x are corresponding elements of Z and X, respectively.

$\mathrm{Z}=$	IFIX (cx	X)	indicates	$z=i f i x(c x * x)$
$\mathrm{Z}=\mathrm{c}$	FLOAT	$x)$	indicates	$z=c * f l o a t(x)$
$\mathrm{Z}=\mathrm{c}$	PGWER (cx	$X, p)$	indicates	$z=c *(c x * x) P$

Core Requirement. POWER requires one block of X. IFIX and FLDAT have no minimum requirement. They use available core to load blocks in segments if insufficient core space is present to load an entire block.
5.1.2.12 ATN2, SRSS. These commands apply to single or multiblock data sets comprised of real data only. It is required that X and Y have the same block length and number of blocks. The output, Z, will have the same form cblock length, number of words, etc.) as X and Y. In the following definitions, z, x, and y are corresponding elements of Z, X, and Y, respectively.

$$
\begin{aligned}
& Z=c \operatorname{ATN} 2(c x X, c y Y) \text { indicates } z=c * a r c t a n(c x * x / c y * y) \\
& Z=c \operatorname{SRSS}(c x X, c y Y) \text { indicates } z=c * \sqrt{(c x * x)^{z}+(c y * y)^{2}}
\end{aligned}
$$

The zero-test parameter established by the last $Z E R O=$ e statement is used to identify the situation where both $5 x * x$ and cy*y in ATNZ are zero, in which case z is set to zero. The current value of the parameter e is also used to identify zero values of (cx*x) 2 and (cy*y) ${ }^{2}$ in SRSS.

Core Requirement. Two times the block length of X and Y.
5.1.2.13 NUM1. The general form of the command is as follows:

$$
\text { lib } Z=c \text { NUM1 (cx } X \text {, cy } Y \text {) }
$$

X is a single-block data set of real data containing n abscissa values. Y is a multiblock data set of real data consisting of m blocks containing n ordinate values each. The data set, Z, consists of one block containing m values derived by straight-line integration, each value being the integral of the curve represented by the corresponding block or ordinate values.

The following error codes are produced by NUM1.

Core Requirement. Minimum of $m+2 n$ words.
5.1.2.13 XNT1, XNT2, XNT3, XNT4. The form of these commands is as follows:

$$
\text { lib } Z=X N T 1(X Y, A)
$$

$X Y$ is a single-block data set containing n pairs of real numbers, (x_{1}, y_{1}), defining a piecewise linear function of X. A contains m real numbers representing abscissa values for which y values are to be determined. The output, Z, contains m ordinate values corresponding to the abscissa values in A.

XNT2 is similar to XNT1 except that straight-line interpolation is performed assuming logarithmic (base 10) x and y. XNTS assumes linear x and logarithmic $y . \quad$ XNT4 assumes logarithmic x and linear y.

The following error codes are produced by this subprocessor:

Code	Error
1	NJ less than 2 in $X Y$
2	NI not equal to 2 for $X Y$
3	Empty A

Core Requirement. m plus two times n words.

```
5.1.2.13 CBR, CBD, ACBR, ACBD. The form of these commands is
as follows:
```

Iib $Z=\operatorname{CBR}(X, Y)$
X is a multiblock data set representing a rectangular matrix.
Each block of X contains a column of the matrix. Y may be single
or multiblock. CBR performs the matrix product of X and Y. If Y
is multiblock, the block length must equal the number of blocks in
X. If Y is single-biock, TOC item NI must equal the number of
blocks in x.

The output Z is a multiblock data set containing n blocks, where n is equal to the number of blocks of Y (multiblock), or tie TOC item $N J$ for a single-block Y. The block length of Z is equal to the block length of X.

CBD is used for the special case where Y is a single-block data set representing a diagonal matrix. In this case Z has the same block size and number of blocks as X.

ACBR and ACBD perform the same functions as CBR and CRD except that each number in the data set X is replaced by its absolute value before the multiplication takes place.

Core Reguirement. The number of words contained in Y plus two times the block length of X.

$$
5.1 .2 .15-1
$$

7.3 PSR - PRINCIPAL STRESS GENERATOR

PSR reads multiblock, table-format stress data sets and computes and stores principal stresses in similar data sets. Input data sets have names of the form: ES Eij nu nu. Output data sets have names of the form: PSTR Eij n. \mathbf{n} n.

PSR is applicable to two-dimensional element types E31-E33 and E41-E43, and three-dimensional solid element types S41-S81.

The order of stress quantities in the data sets produced by PSR for 2-d element types are as follows: 1) ANG, 2) MAX PS, §), MIN PS, 4) MAX SHR, and 5) SEFF, effective stress.

The order of stress quantities for 3 -d solid element types are as follows: 1) NS1, 2) NS2, 3) NS3, 4) SS1, 5) SS2, 6) S53, 7) ONS, ard 8) OSS, octahedral shear stress.

RESET Controls

Name	Default Value	Meaning
INLIB	1	Source library for ES Eij nS ni data sets.
OUTLIB	1	Destination library for PSTF Eij n data sets generated by PSR.

Exscution Control

The PSR processor is executed as fallows:
EXQT PSR
"etype"
or
"etype" n3 n4

Examples:

@XQT	PSR						
E43			(reads	ES	E43	mask	mask)
			<creates	PSTR	E4S	n3	$n 4$)
	or						
E®3	1	2	(reads	ES	ESS	1	$2)$
			(creates	PSTR	ESJ	1	2)

Core Reguirements

Block length of input data set $\times 8 / 5$ (2-d)
Elock length of input data set $\times 7 / 3(3-d)$

10.2 PLTB- PRODUCTION OF GRAPHICAL DISPLAYS

Abstract

Function. As shown on Figure 10-1, PLTB (or PLTB/TEK: when using Tektronix scopes on the U-1110), is used to produce graphical displays. To cause images corresponding to plot specifications spec 1 through spec2 to be displayed, the following command is given:

PLOT speci, specz

The form of display resulting from a PLOT command will depend on the current values of an array of execution control parameters which the user selects through the control statements summarized below. vispīay formats include unuefor ined piots, static deformations, vibrational modes, buckling modes, or stress displays either from stress data sets produced by GSF, or from table-format data sets created by the user.

When plotting from data sets produced by GSF, complete element stress data sets must be created during the GSF execution; that is, the user must not restrict GSF output to a limited number of element groups, if it is to be read by PLTB.

The description of data set requirements (name and contents) for table-format data sets to be plotted by PLTB is given later in this section.

The PLOT statement and all control statements described below may appear any number of times during a single fLTB execution.

Control
Statement
DISPLAY=UNDE formed, STATic deformation, VIBRational mode, or BUCKling mode.

DISPLAY=TABLe N1 "etype" nset

DISPLAY $=\mathbf{S X}, \mathrm{TXY}$, . . . or
LAMINATE=5X, node, 1 ayer, TXY,...
(This form permits stress displays for elements with laminate section properties).

Meaning

Display mode selection. Default is DISPlay=UNDEformed.

Direct display of table-format data from data set identified by the names N1 "etype" nset ngroup

Selected stress or internal load data is displayed. See examples in Section 10.3. A complete list of available stress quantity display symbols is given in Table 10.2-1. The following form is also permitted (underlined quantities may be omitted)

DISPLAY $=5 X /$ div, node, 1 oc $, T X Y, \ldots$
SX is divided by div. Div must
be greater than or equal to 1 .
rode indicates the element node (1, 2, etc.) at which the stress is to be evaluated. For 3 and 4 node elements, node O is the center of the element. (Note than node must be present for laminate displays.)

For 3 and 4 node elements, loc values of 0,1 , and -1 indicate mid, outer, and inner surfaces, corresponding to points C, A, and B (in order) on Figure $7.3-1$ (FSF)

For laminate section types, "iayer" iruicaies tine layer for which stresses are to be displayed. (Must be present).

Control
Statement (Cont.)

DNORM=dnorm

INLIB=inlib
SET=nset
CON=ncon
CASES=cas 1 , case2
or
VECTORS=vect1, vect2
(The control statements CASES and VECTORS are synonymous.)

OPTIONS=n1, n2, ...

Meaning (Cont.)
Note: "node" and "layer" may be omitted for internal load (stress resultant) displays for laminate sections.
"layer" is meaningless for internal load displays.

Principal stress quantities are not available for laminate sections.

When plotting deformed structures, ii.e., if DISPLAY=STAT, or VIBR; or BUCK), joint displacements are normalized to dnorm. This command must be given, since there is no default value.

The following source data, if needed as a result of the prevailing DISPLAY statement, will reside in inlit.

STAT DISP nset ncon
VIBR MODE nset ncon
BUCK MODE nset ncon
STRS EIJ nset i,
for $i=c a s e 1$, casel+1, ... case2
Default values are INLIB=1, SET=1, CON=1, CASES=1.

List of options.
See Table 10.2-2

Table 10.2-1 Sumary of Available Stress Display Symbols

Symbol	Meaning Appl	$\begin{gathered} 1 \text { cabl } \\ \text { E31 } \\ \text { E41 } \\ \hline \end{gathered}$	$\begin{aligned} & E 1 \\ & \text { E } 32 \\ & \text { E } 42 \\ & \hline \end{aligned}$	$\begin{array}{r} \text { nent } \\ \text { E33 } \\ \text { E43 } \\ \hline \end{array}$	Type E44	LAM
SMAX	Maximum P/A + My/I beam stress X					
SMIN	Minimum " " ${ }^{\text {" }}$ " X					
P/A	Axial beam stress X					
Sl	Dir. l beam shear stress X					
S2	Dir. 2 " " ${ }^{\text {" }}$					
TS	Beam twisting stress X					
SX		X	X	X		x
SY		X	X	X		x
TXY	In-plane shear stress	X	X	X	X	X
PS 1	Maximum principal stress	X	X	X		
PS2	Minimum "	X	X	X		
TMAX	Maximum shear stress	X	X	X		
ANG	Angle between x-axis and PSl vector	X	X	X		
NX	Normal stress resultant, x-dir.	X		X		x
NY	In-plane shear stress resultant	X		X		X
NXY		X		X	X	X
PN1	Maximum principal stress resultant	X		X		x
PN2	Minimum " "	X		X		x
NMAX	Maximum shear stress resultant	X		X		X
NANG	Angle betweer. x-axis and PN1 vector	X		X		X
MX			X	X		X
MY			X	X		X
MXY	Twisting stress resultant		X	X		x
QX	Transverse shear resultant, $\begin{aligned} \text { " }\end{aligned}$		X	X		x
QY			X	X		X

The P/A display is also available for E23 and E24 elements.

Table 10.2-2 Meaning of OPTION Numerical Codes

Description of Option	Option Numeric Code

Specification Control
Plot error free specifications
only
Plot all specifications 2 ignoring error status
Plot all specifications 3 appearing on a single PLOT command to the same scale
Frame Labeling
Omit deformation identification 4
label
Omit specification titles 5
Omit "SPEC" identification 6
Omit "SCALE" 7
Omit all frame labeling 8
Collapse margin and omit all 9
labels
Geometric Construction
Dotted deformed structure 24
Curved lines, deformed structure 25
Superimpose deformed/undeformed 26
structures
Dotted undeformed structure 27
Plot Content
Joint numbers displayedJoint elimination order displayedLarge Char.10
Small Char.II
12 13
Joint labels displayed14
Element index numbers displayed16
Element group-index numbers 18
displayed
Element section property group 20 21
dispiayed
Element stress display size
28
28 293-Node elements are shaded22 (no size control)
4 -Node elements are shaded23 (no size control)
Automatic Hardcopy \& Frame Advance
Tektronix version only 30

Notes:
Select no more than one from options $10,11,12,13$.
Select no more than one from options $14,15$.
Select no more than one from options 16,17,18,19,20,21,28,29.
options 16-21 may only be used in conjunction with
DISPLAY=UNDE formed.

Table-Format Data Sets

A separate data set must be constructed for each group of each element type which is to be plotted. The data set may continin either one value per element, assumed to be at the center, values at each of the nodes, or values at each of the rodes plus the center of the element (NNODES+1 values). Stress displays may be created for 2 -node, 3 -node, or 4 -node elements. Depending on the number of values contained in the data set per element, stresses will be displayed at the center of the elemert, at the corners, or both, accordingly.

The data sets may be created in AUS and must rave names of the following form:
"namel" "etype" nset ng
where,

> "namel" is any name supplied by the user, which may describe the quantity contained in the data set,
> "etype" is a valid 2-d element type 'E21,E23,E24, ES1, E32,E33,E41,E42,E43,E44),
> nset is supplied by the user and may correspond to load set designation, and
> ng is the element group number to which the data set corresponds.

Example: ES E43 1
Descriptive information for frame labelling purposes may be placed in a data set named:

TABL TITL nset mask
where nset refers to the nset value in the stress data set names. If such a data set is present, the contents (up to 60 characters) will be displayed at the top of the plot frame.

The data set plotting is invoked in PLTB or FLTB/TEK with the DISPLAY command as follows:

DISPLAY=TABLe NAME1 "etype" nset
where, NAME1 "etype" nset, refers to the first three names of the data set desired to be piotted. The fourth name, ng, is not required on the DISPLAY command sirice a plot specification may contain elements from different groups, and the data set corresponding to the group designation of the eiements beino plotted is read automatically.

Rıaid inks

Rigid links, if any (see BRL ciscussion in TAB) are ignored ty PLTB in generating plots.

Reset Controls

RESET NDEV $=4010$ (fcr 4010 models)

RESET NDEV=4014 (for 4014 models without enhanced graphics)

Note: Defaults to 4014 models with enhanced graphics.

RESET CHRS $=$ n (defaults to 2)

Note: This reset applies to 4014 models with enhanced graphics only.

CHARACTER SIZE 1 Optional "large" character size
CHARACTER SILE 2 Default "large" character size (Options 10, 12, etc.)

CHARACTER SILE 3
Optirnal "large" character size

CMARAGTER SIZE 4
"Small" chararter size (options 11, 13, 15, etc.) (May also be selecteo for "large" character size, CHRS=4)

Gore reguirements
Where j is the number of joints in the structire, the data space required by PLTB as a follows:

For olotinn urdeformed strur.tures:

For plotcing deformpu 三tructures:

For plotting stresses:

```
2000+J
2000+13J
2000 + J + +rne length
of crie block of iapt:t
stress data, pl:Sz the
length of che shell section
froperty table (SA)
```


EXQT AUS

OUTLIE=2
ALFHA: TABL TITL 31
1.SX AT NODES AND CENTER

TABL ($N I=5, N J=1$): SX5 E43 31
$I=1,2, \Xi, 4,5: J=1: 11,0,12.0,13.0,14.0,15.0$

2XQT PLTA
SPEC 2
S2TITL' E43 ELEMENTS VIEW 1 E43
@XQT PLTB
OPT ION=29
INLIB=2
DISPLAY=TABL SX5 E4.3 3 PLOT 2

5\% AT NODES AND CENTER

:'冫WHNG PAGE BLANK NOT PILATM
$i 3 \cdot 1 t_{6} 10 \cdot 3-12$

E43 ELEMENTS

10.3-13

