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Two coupled,nonlineardifferentialequationsare proposedfor the
modelingof the elasticand rate (time)-dependentinelasticbehavior
of structuralmetalsin the absenceof recoveryand aging. The structure
of themodelis closeto the unifiedtheoriesbut containsessential
differences.The propertiesof themodelare delineatedby analytical
meansand numericalexperiments.

It is shownthat themodelreproducesalmostelasticregionsupon
initialloadingand in the unloadingregionsof thehysteresisloop.
Underloading,unloadingand reloadingin straincontrolthe model
simulatedthe experimentallyobservedsharptransitionfromnearly
elasticto inelasticbehavior. Thesepropertiesare essentialfor
modelingmean stresseffectsin tenslon-tenslonstraincycling. When
a formulationakin to existingunifiedtheoriesis adoptedthe almost
elasticregionsreduceto pointsand the transitionupon reloadingis
very gradual.

For differentformulationsthebehaviorundersuddenin(de)creases
of the strainrate by two ordersof magnitudeis simulatedby numerical
experimentsand differencesare noted.

The modelpresentlyrepresentscyclicallyneutralbehaviorand
containsthreeconstantsand two positive3 decreasingfunctions.It
is describedhow theseconstantsand functionscan be determinedfrom
testsinvolvingmonotonicloadingwith strainratechangesand
relaxationperiods.
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INTRODUCTION

Withinthe lastdecadethe modelingof inelasticdeformationthrough
unifiedconstitutiveequationshas made conslderableprogress[1-6].
Wlth the exceptionof [5],yieldsurfacesare not usedin these
approachesand creepand timeindependentplasticityarenot considered
separately.It is shownin [6]that theseconstitutiveequationshave
similarmathematicalstructurebut thattheydifferwith regardto the
specificchoicesof materialfunctions.

The modelsmake the inelasticstrainratea functionof the effec-
tive stressdefinedas stressminussome quantityreferredto as kine-
maticstress,rest stressor back stress. In examiningthemathe-
maticalpropertiesof a flrst-ordernonlineardifferentialconstitutive
equationit was shown[7]thatmakingthe inelasticstrainrate solely
dependenton the overstressgivesqualitativesolutionpropertiesof
thedifferentialequationsfoundin correspondingexperiments.The
overstressis thedifferencebetweenthe stressand the equilibri_a
stressand is equivalentto the effectivestressmentionedabove.

This approachhas beenverifiedformonotonicloadingof
Type 304 SS [8]and of a Ti alloy [9]. The purposeof the present
paperis to presenta furtherdevelopmentof the theoryof visco-
plasticitybasedon overstressfor cyclicloading. It will be shown
thatthisdevelopmentis similarto the unifiedtheoriesbut contains
essentialmodificationswhichare necessaryforreproducingregionsof
nearlyelasticbehaviorand realisticreloadingbehavior. Theseprop-
ertiesare basicfor themodelingof mean stresseffectsin zero to
maximumstrainstraincontrolledcycling.

THEMAINPROPOSEDMODEL

DifferentialFormulation

For the uniaxialstateof stresswith u and _ denotingthe engin-
eeringstressand infinitesimalstrain_respectively3 themodelis
givenby the two couplednonlineardifferentialequations

.e_ .in _" _ (I)=€ +€

] I" b[ ] l • <2)

In the aboveE is the elasticmodulusand squarebracketsfollowinga
symboldenote"functionof." The positive,bounded,decreasingfunc-
tion k is calledtheviscosityfunction,it has the dimensionof time
and controlsthe ratedependence.In the growthlaw for the equili-
brlumstressg thereare threepositiveboundedfunctions_$_ f and b_
the argumentof whichwill be determinedin the sequel. For this
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reason their arguments are not specified presently. A superposed dot 
denotes differentiation'with respect to time and the absolute value 
of a quantity is denoted by placing it between vert ical  bars. 

A t  the present this  constitutive equation does not have any prwi-  
sions for modeling recovery and/or aging, It is therefore only 
applicable i n  regions where these two phenomena are not pronounced. 

By using the chain rule (1) and (2) can be rewritten as 

The basic equations (1) - (4) w i l l  rurpt be reformulated so as to 
identify the as yet unspecified functions with physical properties and 
t o  obtain mathenatical properties of this  system of nonlinear differ- 
ential  equatiow . 

Integral Fohulation 

Following the procedures of (71, (1) and (2) can be transformed 
to the integral relations @ t 

t 
d7 

o - g =  (oo-go)up - J' r+ J' ( ~ 6 -  ~ ( e x p  - j'$)dr (5) 

=o to T 
and t t t l t i n  l 

g - = g o - o  - j'v dT + J ( l t - i ) ( e x p  - J Tds)dT 
t 
0 

t 7 
0 (6) 

respectively. A subscript zero indicates the value of the subscripted 
quantity a t  the i n i t i a l  t ime  t-to. 

Since the integrand of each f i r s t  term on the right-hand side of 
(5) and (6) is positive its value wil l  tend to zero for large times, 
provided that in  (6) 1 binl w i l l  be different from zero as time increases. 

The second terms tend to a limiting value for infini te  time [7] 
so that 

and 

where braces denote asymptotic values. By differentiation of (5) and 
( 6 )  and taking the l i m i t  for t-.- [7]  

s.a.phillips
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and 
It1 - [il 

are, respectively, obtained. 

It is evident that (1) and (2) require a, g and f to grow u l t i -  
mately a t  the same rate, p ided the functions have the properties 
stated i n i t i a l l y  and that  Fnl does not become rem for large times. 
Also from (7) and (8) it is required that  Z be bounded and constant 
for large times. 

Behavior Under Instantaneous Changes i n  Stress or Strain Rate 

The behavior of (1) under an instantaneous change i n  s t ress  or  
s t r a in  ra te  has been determined i n  (10-121. 

A superposed +(-) designates the value of a quantity immediately 
a f t e r  (before) the j q .  Then applying (3) and (4) before and a f t e r  
the jump yields (kin is continuous under a jump) 

and 
+ - .- 

= + (1 - z) L ) Q ~  s t ra in  control 
de dc .+ . + e c 

+ 0 - k , i ! ~ B , + ~  ( I-,- fi) hr stress  control 
dr d e g  a 

where a = . It is seen that the slope of g is related to that  
G / d c  

of 0 but the slope of 0 i s  not influenced by g a t  a l l .  A s  a conse- 
quence the properties of da/dc as determined in  (10-121 remain 
unaltered. 

I f  it is now asswned that the asymptotic properties (7) - (10) 
and do0/de r. Et <C E with Et 2 0 the tangent moduld i n  the inelast ic .  
range hold, then the slopes of o and g can be calculated for  increase, 
decrease, reversal, reversal with increase and reversal with decrease 
of the s t ress  or  s t ra in  rate. Under the abwe assumptions (12) 
simplifies to 

This designates the slope a t  the l i m i t  of the region of interest .  



d_+ _+_"de TM _ (Et"_) for straincontrol (13a)
€

and

dd-_e+"'+_ (Et-,)da+/d¢forstresscontrolEt (13b)

It can be observed that no changes in the slope of g are realized

whentheasymptoticvalueof $ isequaltoEt-

Valuesobtainedfrom(11)and(13a),(13b)aregivenin Table1
whereit isassumedthatratechangesinvolveat leastoneorderof
magnitude.

Creep and Relaxation Behavior

Duringrelaxation_.0 andfrom(I)and (2)

&=. _-_
k[_- g| (14)

and -'-

=-_ I_inl (151

respectlvely. It is seen that both & <0 and _ <0, if _-g> 0 and
g-f > 0. From (5) and (6),it can be deduced that these conditions
are met at any point during a prior tensile test provided } > 0 and

E - > 0 and_ - dr>0. (If_ <0 thesignof _-g andg- f reversesde
and_ and_ arepositive.)Therefore_ andg alwaysdecreaseinmagni-
tudebutnotuniformly.Indeedfrom(14)and(15)

=_ (16)

Unless(g-f)/b< E thequantityon therlght-handsideexceedsone
and6 > _ so that_ relaxesfasterthang.

Stressrelaxatlonstopsat _=g butsince_ is zeroatboth_= g
andat 8- f it isnotclearwhetherequillbriumis reachedat 8: f,or
at g> fwhenG- E- If therlght-handsideof (16)is greaterthanone
it is expected that &-O at g> f.

In creep (i) and (2) specializeto (_C is _he constantstress inthecreeptest)

= O
zk[% - g] (17)

and
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-g'f (is>b

respectlvely•It is seenby comparlns(18)and (2) thatthe Erow_hof
E in creepis slightlymodifiedcomparedto constantstrainrateloadlnS

•in
sincein creep_= € . Differentiationof (17)yields

J- (k-(%-g)k') (19)k2E

wherek' = dk[x]< 0 by initialstlpulatlon.Secondarycreepwillbedx df
obtainedwhen _= 0 and this is accomplishedwhen f = _ _= 0, i.e.3
when the tangentof f is ultimatelyhorizontal,see (I0). Primary
creepresultsif _ > 0. In thiscase creepterminatesat _o = E- If
_o > E forall valuesof g creepwillneverterminate.

REQUIREMENTSON A REALISTICMODEL

The followingrequirementsare put on themodel:

1) Thereis an initialnearlylinearelasticregionstarting
fromzero to some finitestress. In this reEionthereis not only

- d_/d¢_E but thereis alsono creepand relaxation.

2) AfterunloadinEthereis aEalnan elasticreEionwith the same
propertiesas I) whichstartsbelowthe stressat whichreversalbeEins
and can end at zerostressbut usuallyendsat a stressmaEnitudelarEer
thanzero•

3) When a creeptest is performedat zerostressafterpriorin-
elasticdeformationthe strainmagnitudewill eitherstayconstantor
willdecrease.However,equilibriumwillbe reachedvery closeto the
inelasticstrainat whichthe creepteststarted. In no way should
the strainmagnitudeincreasenor shouldzero strainbe reachedat
equilibriumif the strainmasnltudedecreases.(Aftereffect,recovery
test.)

4) Afterthe initiallinearelasticreEioninelasticdeformation
sets in characterizedby a tangentmodulusmuch lessthanthe elastic
modulus. The materialexhibitsnormalratesensitivity(an increase
in rate increasesthe stresslevel);creepand relaxation.(Theregion
of creepand relaxationmay alreadybeginupon loadingbefored_/d¢
decreasesappreciably.)

5) Primaryand secondarycreepmay be experiencedtogetherwith
possible"anomolous"creepbehavior. (Creepratemay not necessarily
increasewith stressincrease;at the samestresslevelcreeprate is
"higheron loadingthan on unloading,see [6,8;13,14].)
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6)Whenrelaxationbehavioris consideredit isnoruniformevery-
_hereon thehysteresisloop. It ismostpronouncedwherethetangent
moaulusis :ow. It isminimalwhenthetangentmodulusis closeto the
elasticmodulusbelowthestressatwhichunloadingstartedandabove
zerostress.At zerostressrelaxation,if itoccursjissmallandsuch
thatthestressmagnitudeincreases[14,15];seealso2).

7)Afterunloadingto zerostressandsubsequentreloadlngin
straincontrolthetransitionto inelasticdeformationisverysharp.
A smallhysteresisloopmaydevelopin thequaslelastlcregion.

8) In cyclicloadingcyclichardening,softeningor cyclicneutral
behaviorshouldbe reproduced.

9) Thebehaviorsllstedin 3)-8) shouldnotbe peculiartoa
certainstressor strainvalueor region.Rathertheyareinelastic
propertiesfoundin thenonelasticregions.

SELECTIONOF FUNCTIONS#, f ANDb

In thefollowingthesimplestchoiceforthesefunctionswillbe
madesuchthattherequirementslistedabovewillbe metas faras
possible.Thechoiceshavebeenarrivedat afternumerousnumerlcal
experiments[16,17]which includedother possibilitiesthan those
allowedby (1)and(2).

Inviewof(9)and(10)

f = Eta• (20)

Thisselectionpermitsthefinalslopeof thestress-straindiagramto
be selectedby theusualchoiceEt k 0. (Themodelpermitstheuseof
a negativeEt. Thiswillbe exploredin thefuture.)

Thechoice

with

_'< 0, _[oJ=_ < E

and $[-x]= _[x] helps to satisfyconditions1)- 3), 5), 7) and 9). (It
is not possible to have $ depend on =- g and to have $[0] = E. In thls
case (I) and (2) produce only linear elastic behavior. For this reason
E = 0.99 E is usually chosen.)

This choice makes g rare dependent, see (8). In this case k and g
would both be responsible for race dependence and inverse rate-sensitlvity
could be modeled (the stress decreases upon an increase in stress (strain)
rate). However, for the present purposes it was decided to make the
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asymptoticvalueof g- f and thereforeof g independentof rateby
selecting

A
= (22)

b _ [a- g| - Et

whereA > 0 is theasymptoticvalueof [g-f}. Withthischoice g will
be ratedependentaftertheinitialelasticregionandbeforethe
asymptoticsolutionis reached.However,the initialand finalproper-
tiesof g are independentof loadingrates.

Using(22),(I)and (2)reduceto

_" o"- _ (23)t =_+zkC_.gj

(s- zt,)(,[a-g]- zt) _in,l= $[_'g]e " A [ . (24)

In thisversionthemodelhas twofreefunctionsk and$ andthree
positiveconstants_rlthdimensionsof stressE_ Et andA whichpermit
fittingto experimentaldataof a givenmaterial. The functionsk
(dimension time) and $ (dimension stress) are restricted to be positive
and to decreasew_h increasingargument.Appropriatemathematical
formsmust be foundand theirchoicewill influenceratedependence(k)
and the shapeof the stress-straindiagramespeciallythe transition
fromelasticbehaviorto inelastlcbehavior($). A procedureforcurve
fittingis givenin theAppendix.

With this choice of functlons the model represents symmetry with
regardto the originand a generalizedMasinghypothesis.To illustrate
this consider a test startlng from the origin loaded wlth constant _ in
compression.Anothertestis firstloadedto some positivevalueof
stressand strain_so that_o" go > 0 and g - f > 0, beforeloadingwith
the same _ "in compression as the first test° F°om (5) and (6) we see

that ultimately both tests produce the same g- f and _- g. Since f= Ere
the same g and therefore the same u will be finally obtained_ see also
(7) and (8).

Because of these properties the model does not reproduce cyclic
hardening or softening. These properties require that one or more
constants be made dependent on an accumulating measure of history such
as the inelastic strain path length. Another possibility is to postu-
late an extra growth law for A which controls the stress level and/or
to make Et depend on, say, the inelastic strain-path length. These
additions are under development.

Whether or not these ultimate values are obtained at strain levels

of interest depends on how fast the first terms on the right-hand side
of (5) and (6) become negligible. Experience with numerical experiments
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has shownthat theseasymptoticvaluescan be obtainedwith reasonable
accuracyat strainsof one percent.

Asidefromthesegeneralpropertiesthe detailsmustbe evaluated
t-hroughnumericalexperlments_i.e.,the automaticintegrationof (23)
and (24)subjectto variousstressor strainhistories.Thiswillbe
done presentlyby selectingthe constantsand functions.Numerical
integrationwas performedusingthe IMSLprogramDGEARon an IBM 3033
or 3081Dcomputer.

DISCUSSION AND NUMERICAL EXPERIMENTS

Relation to Other Models

The presentmodelfallsin the generalcategoryof theunified
modelswhichdo not separatelyconsiderthe actionsof creepand
plasticity.Accordingto [6]_he unifiedmodelscan be writtenas

t=te+ tin (25)

_in=____];. F[0]=0; F[-x]=-F[x] (26)

fani inI.fsInI (27>

if f4%in- fbK]_in I - f6K (28)

where fl" f6 are either positive constants or positive functions of one,
two or three of the variables _3 _ and K.

Comparison of.(23) through (28) with (l) and (2) reveals the
following:

i) The functionsf3 and f6 are absent
ii) The variable K is not represented

iii) $ assumesthe role of fl but it is multiplied by
insteadof _in.

The reasonsforthesechoicesare:

i) Since the model is intended for regions where recovery of
hardening(annealing)are consldere_co be InsiEnifican__he recovery

termsf3 and f6 are omitted.

ii)The isotropicdrag stresstermis not includedsinceit implies
that rate sensitivitychangessignificantlywith deformationbehavior.
Inversionof (26)yields

-_= KF'I(_in). (29)
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It demonstrates that  the overstress (effect ive s t ress )  a -  Q is propor- 
t iona l  t o  K. Comparing two specimens a t  the same ine la s t i c  s t r a i n  
rate,  but different  h i s to r i e s  leading to  different  values of K would 
also lead to  d i f fe rent  e f fec t ive  s t resses  (wers t resses)  and therefore 
different  r a t e  sens i t iv i t i e s .  

Elevated temperature experiments aimed a t  determining whether 
hardening is due to  growth i n  (7 o r  t o  a growth i n  K o r  both a re  not 
known to  the authors. Indeed a recent review does not address t h i s  
question [18]. Hawever, i n  1301 a change i n  K was inferred from a change 
i n  the stress drop with cycling during constant s t r a i n  hold-time t e s t s  
on 316 s t a in l e s s  s t e e l  a t  600'~. Experiments a t  room temperature on the 
strongly hardening annealed Type 304 .SS [19,20] showed that  essent ia l ly  
a l l  hardening was due t o  an increase i n  Q. For cycl ical ly  neutral  T i -  
a l loy no changes i n  n and K due t o  p r io r  deformation were found 1211. 

Judging from a review of elevated temperature data 122,233 one 
might i n f e r  hardening primarily due t o  changes in  Q but t h i s  is not c lear .  

Because of these uncertainties it was decided to  stay with the 
cycl ical ly  neutral  model, see (23), (24). Moreover, even the room 
temperature experiments have shown resu l t s  [20,21] which demonstrate 
t h a t  strong cyclic hardening cannot be adequately modeled with the 
present approaches, see a l so  [24]. 

i i i )  The use of 6 instead of iin t o  multiply the i n i t i a l  term i n  
(24) w i l l  be disturbing to  materials s c i en t i s t s  who w i l l  argue that  g 
is a s t a t e  var iable  which should grow only when i ne l a s t i c  deformation 
occurs. Therefore the approach presented i n  (24) is not "physical." 
From (25), (26) and (27), and the chain ru le  

and 

'are obtained, respectively, a t  the or ig in  ( a =  0; Q =  0). On the other 
hand from (23) and (24) 

and 

so  that  the slope of g a t  the or ig in  can be controlled by 9. By a 
proper choice of $[O] nearly l i nea r  e l a s t i c  regions can be reproduced. 

The difference between the two approaches is  demonstrated i n  
Figures 1 and 2. I n  both figures the evolution of a and g under a 
s t r a i n  controlled loading, unloading and reloading experiment a r e  
plotted. The material functions used are  l i s t e d  i n  Table 2 ( t h e y .  



are not intendedto representa specificalloyand the difference

betweenFigure1 and Figure2 is only that_in is used to multlply$
in (2)or (24)in the formerwhereas_ is employedin the latter.

Regardingthe evolutionof u both figuresshow the sameinitial
slope. From thenon the _ curvein FigureI is more gradualthanin
Figure2. Upon reloadinga sizeablehysteresisloopdevelopsandthe
transitionis gradualin Figure1 whereasalmostno hysteresisand a
very sharptransitionis observedin Figure2. This sharptransition
correspondsto thatobservedin straincontrolledexperiments[25].

FigureI also demonstratesthe zeroslopeof the g (backstress)
curveatthe origin. Sincethe inelasticstrainratedependson (_-g)
and sincein straincontrolthe sametime is representedby the same
strainit can be seenthatonly theoriginand two otherpointsin
Figure1 where_ and g intersecthave zero inelasticstrainrate.
Elasticityis reducedtothreeisolatedpointsin FigureI. In all
otherregionscreepand relaxationcan be found. This factis of course
not noticeableif =he figuredoesnot containthe evolutionof g.

7n contrast2 in Figure2 thereare regionswhere_ and g essentlally
overlap. In theseregionsnearlylinearelasticbehaviorwithout
noticeablecreepand relaxationis reproduced.

Thisbehavioris closerto realitythanthe one depictedin
Figurei and partlyforthis reasonwe have chosento use _ insteadof
Gin in the growthlaw forg.

iAnsldefromthe existenceof elasticregionsthe use of _ instead
of _ makesquitea differencein the evolutionof mean stresswith
cyclesin a straincontrolledtestwith positivemean strain. Figures3
and 4 againdepictresultsof n,--ericalexperimentsundersuchloading.
The onlydifferencein the two graphsis theuse _in in Figure3 and of
in Figure4.

Qualitativelythe resultson Figure4 aremore realisticthanthose
in Figure3_ see [12]. Becauseof thisbehaviorthe formulationwith
is preferred.

Figure5 showsthe resultsof numericalsimulationssuchas depicted
in Figures3 and 4 fortwo strainrangesand two strainrates. The decay
of mean stressis plottedvs cycles. It is evidentthatat the slow
strainratethe decayis less rapidforthe _ than forthe _In formula-

tlon. However,when a faststrainrate (10-2 s"1)is used the difference
is lesspronouncedand the _ formulationpredictsthe smallermean stress
of the two.

The cycles depicted in Figures 3 and 4 occur in turbine disks and
buckets. For their life prediction the remaining mean stress must be
known from analysis. Figure 5 clearly demonstrates that the two formula-
tions predict considerably different mean stresses.

35



The Material Functions of the Theory

In the absence of recovery and of cyclic hardening the present
model has three constants and two material functions that must be
identified. The method of identification which requires considerable
expertise and uses the asymptotic solution properties (7) - (10) is
described in the Appendix.

In co_trast to other approaches [1-6] the specific forms of the
functions are not given rather general properties are stated, see (21).
Within these properties specific functions must be found to suit the
specificapplication.Itwasdemonstratedin [8,26]howk affectsrate
sensitivityand a selectionof specifick-functionswas given in [8].

The function$ affects the knee of the stress strain diagram and
the behaviorupon rate changes,see Table I. For the purposesof demon-
stratingits influencetwo forms of $ are given in Table 2. One leads
to an almost elasticviscoplastlcbehavlor_see Figure 6, the other to
a gradual transitionfrom elastic to inelasticdeformation,Figure 7.

CorrespondinghysteresisloopsareshowninFigures8 and9. It
is seen that Masing behavior is representedin either case and that
cycllchardening is absent. The regionsof nearly elasticbehavior are
clearly identifiedas those where _ and g coincide.

Note that the constantsof the functionsgiven in Table 2 are

selected to give the same Et and the same stress level, only the transi-
tion behavior is different.

Once the material functionshave been set the behaviorOf the model
is completelydetermined. As an example_ the behavior at different
strain rates and under strain rate changesshown in Figures 6 and 7 is
clted.

Both figuresshow an effect of loading rate on g in the transition
regionwhich disappears after some strainhas accumulated. The influ-
ence of rate on g is smallerbut seems to disappearslower in Figure 5
than in Figure 7.

The transition from elastic to viscoplastlcbehavior for u is
sharp in Figure 6 but gradual in Figure 7. As the strain rate increases
the sharpnessof transitionincreases.

At point A in Figures 5 and 7 the strain rate is increased(reduced)
by two orders of magnitude. Whereas little overshoot (undershoot)is
observed in Figure 6 it is considerablefor both the _ and g curves in
Figure 7. After some transientperiod the original curves are traced
over again. Again the transitionperiod is longer in Figure 6 than in
Figure 7.
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The difference in behavior is solely attributable to the change
in the function _. The question arises whether these overshoots
could lead to instabilities. A separate stability analysis [27] shows
that the critical points which are the asymptotic values of (23), (24)
are stable. Even if there are overshoots (undershoots), they ,_11 be
transient in nature, see also (5), (6).

Although overshoots (undershoots) are experienced in testing,
see Figure 9 of [19], and [28], and are similar to those shown in
Figure 7 the size of these transients is somewhat large.

If $ in (24) is multiplied by _in a simple analysis corresponding
to (12)and (13)showsthat

and

l _ "_' = "_' .+ (33)
o" o'

for strainand stresscontrol,respectively.It is clearthat (32)
and (33)lead to lessvariationsof dg+/d¢thanexperiencedwith the
$_ formulation,seeTableI. This is demonstratedin Figure10 where
the conditionsare ident$calto thoseused in Figure7, exceptforthe
multiplicationof _ by _in. Very llttleovershootis observedin this
case.

The secondtermin (2)or (24)is multipliedby I_inl andhas so
farnot beenvaried. If thistermis replacedby I_Ithe reloading
behavioris similarto thatshownin FigureI. (Seealso [16],

Figures5,21and 5.22.) It canbe seen from (4) that_ _ $ as longda
as _ _ E. Sinceunderthis condition_- g _ 0 and since$[0]_ Ed_
the slopeof g remainsvery closeto E as longas _ - E and the
behaviorresultsin the sharptransitionupon reloadingshownin

Figure2. If l_inlis replacedby I_Iin (2), (4)showsthatthe
secondtermon the rlght-handside is not negligiblefromthe begin-

nlng and_ decreasesfasterthan in the previouscase. (See [16]
for a furtherdiscussionof the subject.)

A comparisonof the hysteresisloopsin Figures8, 9 and IIshows
clearlythe linearelasticregionsfor the $_-formulationwhichare
absentin/Figureii. (Elasticregionsare thosewhereu= g.) It is
not possibleto modelregionsof no creepand no rela:_tionin Figureii
but Figures8 and 9 displaysuchregions.
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CONCLUSIONS

Mathematicalmethods permit the establishmentof some properties
of the proposed constitutiveequation,but numericalexperimentsare
very necessaryto investigatethe detailedproperties.

The proposedsystemwhichuses totalstrainrate in the growth
law for the equilibriumstress(orback stressor kinematicstress)
is able to reproduceregionsof almostlinearelasticbehavior. If
inelasticstrainrateis used instead,theseregionswere shownto be
absent.

Loading,unloadingand reloadingunderstraincontrolare repro-
ducedin a realisticmannerusingthe presentapproach.A much too
gradualtransitionis exhibitedwhen inelasticstrainrate is employed
instead.

Thesepropertieshave an influenceon the decayof mean stress
undertenslon-tenslonstraincontrolledcycling. It appearsthat the
presentapproachrepresentsa realisticdecayof mean stress. This
quantityis importantfor fatiguelifepredictionof turbinecomponents.

All comparisonsweremade by changingoneparameterat a time.
Althoughit is stronglysuggestedthatpresentlyavailablestate
variabletheoriessharethe qualitativepropertiesof the present
modelwith usingthe inelasticstrainrate insteadof the totalstrain
ratea proofis outstanding.Sucha proofrequiresnumericalintegra-
tionof the respectivetheoriesunderthe loadinghistoriesused in
thispaper.
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APPENDIX

Determinationof MaterialFunctions

The model is given by (23) and (24) and contains three material
constants (E, Et, A)* and t_o material functions (k, _). Both functions
must be continuous positive and decreasing functions. They are other-
wise not specified.In applicationsspecificformsmustbe chosen.

The elasticmodulusE and the tangentmodulusEt are easily
identifiedas the slopesof the stress-stralndiagramat theorigin
and at themaximumstrainof interest,respectively.

In determining k, $ and A the asymptotic solutions (7) - (I0) are
needed and used. Points of g and the viscosity function k are deter-
minedas shownin [8]or [26J. The strainratechangetestsproposed
in [8]are preferred.The relaxationtests [26]are alsousefulpro-
vided the solutionpropertiesof (14)and (15)are accountedfor (in
[26]g- g[¢]only). Candidatefunctionsfork are also givenin [8,26]
but new onesmay be easilyproposed. In thisstepextrapolation,
trialand errorwlth Judgementare required.

Oncea pointof g is known,the asymptoticvalueof [g- f}=A can
be determinedfromthe correspondingvalueof _ and f= Etc.

with [0j. c0J= [,=J=ztandatleastonepointofg
known_g can be approximatedby the functionsprovidedin [29]or by
otherrepresentations(i.e._RambergOsgoodrelatlon).A similar
procedureis usedto approximatethe stress-stralndiagram. These
two functionsare now used as inputsto

d__d¢" *[_"g; B,C,D] g_X _ 1 - g-d-col (A.1)

which is obtained from (24) and where b is given by (22). The argu-

ments B_ C_ D o£ _ are the free constants in the assumed representa-
tion of

C

=B + f(x/V) (A.2)

f_) is an increasing function. Examples of such functions are
where

given in Table 2. Since _[0]=_=B+C/f[0] only two constants need

E= $[0]is selectedto be slightlylessthanE.
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be determined in the subsequent nonlinear least square analysis* which 
employs (A. l), (A. 2) and the fitted analytical expressions for o and g 
(since the derivatives are needed in (A.l), analytical expressions 
are preferred). This analysis then yields the constants for (A. 2). 

With all the constants determined the.mode1 can now be integrated 
numerically and should reproduce the experimental results w e d  to 
determine the-constants. Due to the nonlinearity of the problem some 
iterations are probably necessary. These iterations may employ dif- 
ferent forms of $ and k consistent with the general requirements. 

jC The IMSL subroutine ZXSSQ is an example of possible algorithm 
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TABLE1

SLOPESAFTERA JUMPIN STRESSOR STRAINRATE

Change ConditionI) de+de dE+/dc

Strain Stress Strain Stress
Control Control Control Control

E E8+$Increase 0 < 8<<1 E $
1+ 8E/Et I+ 8E/Et

Decrease 8 >> 1 -6E Et/8 8(Et-$) Et

Reversal 8 =- 1 IE -Et 29-Et Et

Reversal -I<< 6< 0 E E E8+ $
increase 1+ 6E/Et $ i+ 8E/Et

Reversal 8 << -I _8E Et/8 8(Et- #) Edecrease t

I) 8= _:'/i:+ or 6"'/6"+.

TABLE2

MATERIALCONSTANTSAND FUNCTIONSUSED

E = Modulusof elasticity= 120,000MPa

Et = Asymptotictangentmodulus= 1200MPa
A = 120MPa

_"k[xl = 2.296X 10 "4 exp(21.275 exp I:'=1" 58.28/s

#1[x] = 48, 000 + 70, 800 exp(-O.12 Ix{) MPa

Used in all figures except in Figures 6 and 8

#2[x] =12, 000+106, 800 cosh(-0.2 Ix]) MPa
Used in Figures6 and 8

t All x used here are measured in units of MPa.
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muitiplied by _tn. Material functions used are given Regions of almost linear elastic behavior are those
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