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Two coupled, nonlinear differential equations are proposed for the
modeling of the elastic and rate (time)-dependent inelastic behavior
of structural metals in the absence of recovery and aging. The structure
of the model is close to the unified theories but contains essential
differences. The properties of the model are delineated by analytical
means and numerical experiments,

It is shown that the model reproduces almost elastic regions upon
initial loading and in the unloading regions of the hysteresis loop.
Under loading, unloading and reloading in strain control the model
simulated the experimentally observed sharp transition from nearly
elastic to inelastic behavior. These properties are essential for
modeling mean stress effects in tension-tension strain cycling. When
a formulation akin to existing unified theories is adopted the almost
elastic regions reduce to points and the transition upon reloading is
very gradual,

For different formulations the behavior under sudden in(de)creases
of the strain rate by two orders of magnitude is simulated by numerical
experiments and differences are noted.

The model presently represents cyclicaily neutral behavior and
contains three constants and two positive, decreasing functions. It
is described how these constants and functions can be determined from
tests imvolving monotonic loading with strain rate changes and
relaxation periods.

1 Now at NASA, Houston, Texas.
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INTRODUCTION

Within the last decade the modeling of inelastic deformation through
unified constitutive equations has made considerable progress [1-6].
With the exception of [5], yield surfaces are not used in these
approaches and creep and time independent plasticity are not considered
separately. It is shown in [6] that these constitutive equations have
similar mathematical structure but that they differ with regard to the
specific choices of material functioms.

The models make the inelastic strain rate a function of the effec-
tive stress defined as stress minus some quantity referred to as kine-
matic stress, rest stress or back stress. In examining the mathe-
matical properties of a first-order nonlinear differential constitutive
equation it was shown [7] that making the inelastic strain rate solely
dependent on the overstress gives qualitative solution properties of
the differential equations found in corresponding experiments. The
overstress is the difference between the stress and the equilibrium
stress and is equivalent to the effective stress mentioned above.

This approach has been verified for momotonic loading of
Type 304 SS [8] and of a Ti alloy [9]. The purpose of the present
paper is to present a further development of the theory of visco-
plasticity based on overstress for cyclic loading. It will be showm
that this development is similar to the unified theories but contains
essential modifications which are necessary for reproducing regions of
nearly elastic behavior and realistic reloading behavior. These prop-
erties are basic for the modeling of mean stress effects in zero to
maximum strain strain controlled cycling.

THE MAIN PROPOSED MODEL

Differential Formulation

For the uniaxial state of stress with o and ¢ denoting the engin-
eering stress and infinitesimal strain, respectively, the model is
given by the two coupled nonlinear differential equatioms

el .in
€ =

e=&" "4 &/E"'F?c;_-gg_] (1)
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In the above E is the elastic modulus and square brackets following a
symbol denote '"function of." The positive, bounded, decreasing func-
tion k is called the viscosity function, it has the dimension of time
and controls the rate dependence. In the growth law for the equili-
brium stress g there are three positive bounded functions, ¢, f and b,
the argument of which will be determined in the sequel. For this
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reason their arguments are not specified presently. A superposed dot
denotes differentiation with respect to time and the absolute value
of a quantity is denoted by placing it between vertical bars.

At the present this constitutive equation does not have any prdvi-'
sions for modeling recovery and/or aging. It is therefore only
applicable in regions where these two phenomena are not pronounced.

By using the chain rule (1) and (2) can be rewritten as

do g =& »
de " F " klo-gle 3

g _ z_fl ldo :
de V-5 |Il-gfgac|siemé. (4

The basic equations (1) - (4) will now be reformulated so as to
identify the as yet unspecified functions with physical properties and
to obtain mathematical properties of this system of nonlinear differ-
ential equations,

Integral Formulation

Following the procedures of [7], (1) and (2) can be transformed
to the integral relations

t t
o-g=(o,-g)em - | L+ [ @-p(em - [L)ar )
t t T
and t lé I i: t Ié I
T - Ry FUSS YR L S
%o s T (6)

respectively. A subscript zero indicates the value of the subscripted
quantity at the initial time t= to.

Since the integrand of each first term on the right-hand side of
(5) and (6) is positive its value will tend to zero for large times,
provided that in (6) |éi“} will be different from zero as time increases.

The second terms tend to a limiting value for infinite time (7]

so that
{o-g} = {E - %f} ék[{cr- s}] 7

o0 {r- 2

where braces denote asymptotic values, By differentiation of (5) and
(6) and taking the limit for t—o (7]

and

} ¢ (8)
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{5} = {8} (9)

and .
{g)} = (£} (10)

are, respectively, obtained.

It is evident that (1) and (2) require o, g and f to grow ulti-
mately at the same rate, proyided the functions have the properties
stated initially and that |é'®| does not become zero for large times.
Also from (7) and (8) it is required that & be bounded and constant
for large times,

Behavior Under Instantaneous Changes in Stress or Strain Rate

The behavior of (1) under an instantaneous change in stress or
strain rate has been determined in [10-12].

A superposed +(-) designates the value of a quantity immediately
after (before) the jump. Then applying (3) and (4) before and after
the jump yields (&I is continuous under a jump)

+ - .
ds_ _ e\t . (ég; . )--
(& - o) - (6 -2
and
25: = 23: é: + t(l - i for strain control (12a)
de de é+ é+ : ra
23.: - 23: i":- a+ #(1 - -6—- for stress control (12b)
de de .+ *F
o o
do+[de '
where o = ~ . It is seen that the slope of g is related to that
do /de

of o but the slope of o is not influenced by g at all. As a conse-
quence the properties of dg/de as determined in [10-12] remain

unaltered.

If it is now assumed that the asymptotic properties (7) - (10)
and do”/de ~ E_<<Ewith E; 2 0 the tangent modulus®’ in the inelastic
range hold, then the slopes of o and g can be calculated for increase,
decrease, reversal, reversal with increase and reversal with decrease
of the stress or strain rate. Under the above assumptions (12)
simplifies to

1 This designates the slope at the limit of the region of interest.
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%L = §+<-(E_-4V) for strain control (13a)
de é+ t _
and

de’ 5 dc+[de

Lnp+(E -9 for stress control (13b)

It can be observed that no changes in the slope of g are realized
when the asymptotic value of ¥ is equal to Et'

Values obtained from (11) and (13a), (13b) are given in Table 1
vwhere it is assumed that rate changes involve at least one order of
magnitude.

Creep and Relaxation Behavior

During relaxation €é=0 and from (1) and (2)

3

rm - =B
| c klo- g : (14)
and -
g =-B2E |ein (15)

respectively. It is seen that both G <0 and § <0, 1f o-g > 0 and
g-£>0. From (5) and (6) .it can be deduced that these conditioms
are met at any point during a prior tensile test provided € >0 and

E-%g>0andt--:—f‘>0. (If ¢ <0 the sign of 0- g and g~ £ reverses

and & and g are positive,) Therefore o and g always decrease in magni-
tude but not uniformly. Indeed from (14) and (15)

Unless (g~ £f)/b <E the quantity on the right-hand side exceeds one
and ¢ > §, so that o relaxes faster than g. .

Stress relaxation stops at o= g but since § is zero at both g=g
and at g- £ it is not clear whether equilibrium is reached at g=f, or
at g> f vhen o=g. If the right-hand side of (16) is greater than one
it is expected that g=0 at g> f.

In creep (1) and (2) specialize to (o

o is the constant stress in
the creep test) '

oo-g

t =2 ——
Ek[co - gl

17

and
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g=t - 2L Je] (18)

respectively. It is seen by comparing (18) and (2) that the growth of
g in creep is slightly modified compared to constant strain rate loading

since in creep ¢= éin. Differentiation of (17) yields

e 2 1
Fame 5= (k- (c_-)k") (19)
K%E o

where k' = é%éfl < 0 by initial stipulation. Secondary creep will be
obtained when =0 and this is accomplished when £= % €=0, i.e.,

when the tangent of £ is ultimately horizonmtal, see (10). Primary
creep results if g > 0. In this case creep terminates at g, = g. 1f

g > 8§ for all values of g creep will never terminate.

REQUIREMENTS ON A REALISTIC MODEL
The following requirements are put on the model:

1) There is an initial nearly linear elastic region starting
from zero to some finite stress. In this region there is not only
do/de = E but there is also no creep and relaxatiom.

2) After unloading there is again an elastic region with the same
properties as 1) which starts below the stress at which reversal begins
and can end at zero stress but usually ends at a stress magnitude larger
than zero.

3) When a creep test is performed at zero stress after prior in-
elastic deformation the strain magnitude will either stay constant or
will decrease. However, equilibrium will be reached very close to the
inelastic strain at which the creep test started. In no way should
the strain magnitude increase nor should zero strain be reached at
equilibrium if the strain magnitude decreases. (Aftereffect, recovery
test.)

4) After the initial linear elastic region inelastic deformation
sets in characterized by a tangent modulus much less than the elastic
modulus. The material exhibits normal rate sensitivity (an increase
in rate increases the stress level), creep and relaxationm. (The region
of creep and relaxation may already begin upon loading before do/de
decreases appreciably.)

5) Primary and secondary creep may be experienced together with
possible "anomolous" creep behavior. (Creep rate may not necessarily
~increase with stress increase, at the same stress level creep rate is
"higher on loading than on unloading, see [6,8,13,14].)
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6) When relaxation behavior is considered it is not uniform every-
where on the hysteresis loop. It is most pronounced where the tangent
modulus is “ow., It is minimal when the tangent modulus is close to the
elastic modulus below the stress at which unloading started and above
zero stress. At zero stress relaxation, if it occurs, is small and such
that the stress magnitude increases [14,15]; see also 2).

7) After unloading to zero stress and subsequent reloéding in
strain control the tramsition to inelastic deformation is very sharp.
A small hysteresis loop may develop in the quasielastic region,

8) In cyclic loading cyclic hardening, softening or cyclic neutral
behavior should be reproduced.

9) The behaviors listed in 3) - 8) should not be peculiar to a
certain stress or strain value or region. Rather they are inelastic
properties found in the nonelastic regions.

SELECTION OF FUNCTIONS ¥, £ AND b

In the following the simplest choice for these functions will be
made such that the requirements listed above will be met as far as
possible. The choices have been arrived at after numerous numerical
experiments [16,17] which included other possibilities than those
allowed by (1) and (2).

In view of (9) and (10)
£s= Ete . (20)

This selection permits the final slope of the stress-strain diagram to
‘be selected by the usual choice Et 2 0. (The model permits the use of

a negative Et‘ This will be explored in the future.)

The choice
¥=¢lo-gl >0 (21)
with
§/<0, ¢[0]=E <E

and §[-x] = §[x] helps to satisfy conditions 1) - 3), 6), 7) and 9). (It
is not possible to have ¥ depend on o- g and to have {[0] =E. In this
case (1) and (2) produce only linear elastic behavior. For this reason
E=0.99 E is usually chosen.)

This choice makes g rate dependent, see (8). 1In this case k and g
would both be responsible for rate dependence and inverse rate-sensitivity
could be modeled (the stress decreases upon an increase in stress (strain)
rate). However, for the present purposes it was decided to make the
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asymptotic value of g- f and therefore of g independent of rate by
selecting

A

b= Vlo-gl-E,

(22)

where A > 0 is the asymptotic value of {g- £}, With this choice g will
be rate dependent after the initial elastic region and before the
asymptotic solutiom is reached. However, the initial and final proper-
ties of g are independent of loading rates.

Using (22), (1) and (2) reduce to

. o o-£

€=z + Ek[o - g] (23)
(g-E_e)(¥[oc-8]-E)
g=ylo-glt - E— £ eln) . (26)

In this version the model has two free functions k and ¥ and three
positive constants with dimensions of stress E, E, and A which permit
fitting to experimental data of a given material., The functions k
(dimension time) and ¥ (dimension stress) are restricted to be positive
and to decrease with increasing argument. Appropriate mathematical
forms must be found and their choice will influence rate dependence (k)
and the shape of the stress-strain diagram especially the transition
from elastic behavior to inelastic behavior (). A procedure for curve
fitting is given in the Appendix.

with this choice of functions the model represents symmetry with
regard to the origin and a generalized Masing hypothesis. To illustrate
this consider a test starting from the origin loaded with constant € in
compression. Another test is first loaded to some positive value of
stress and strain, so that 9 = 8o >0 and g_- f° > 0, before loading with
the same ¢ 'in compression as the first test. From (5) and (6) we see
that ultimately both tests produce the same g- f and o- g. Since f£=E ¢
the same g and therefore the same ¢ will be finally obtained, see also
(7) and (8).

Because of these properties the model does not reproduce cyclic
hardening or softening. These properties require that one or more
constants be made dependent om an accumulating measure of history such
as the inelastic strain path length. Another possibility is to postu-
late an extra growth law for A which controls the stress level and/or
to make E. depend om, say, the inelastic strain-path length. These

additions are under development.
Whether or not these ultimate values are obtained at strain levels

of interest depends on how fast the first terms on the right-hand side
of (5) and (6) become negligible. Experience with numerical experiments
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has shown that these asymptotic values can be obtained with reasonable
accuracy at strains of one percent,

Aside from these general properties the details must be evaluated
through numerical experiments, i.e., the automatic integration of (23)
and (24) subject to various stress or strain histories. This will be
done presently by selecting the constants and functions. Numerical
integration was performed using the IMSL program DGEAR on an IBM 3033
or 3081D computer.

DISCUSSION AND NUMERICAI, EXPERIMENTS
Relation to Other Models
The present model falls in the general category of the unified

models which do not separately consider the actions of creep and
plasticity. According to [6] the unified models can be written as

ta ity 0 (25)
%2 Flo]=0; Fl-x)=-Flx] (26)
f= £ 87 g ,0/e'?| - £,]a| 2n
Ra£,87% - £ |e™) - £.x (28)

where £ - £ are either positive constants or positive functions of one,
two or three of the variables o, Q and K.

Comparison of (23) through (28) with (1) and (2) reveals the
following: : : :

i) The functionms f3 and f6 are absent
1i) The variable K is not represented
iii) ¥ assumes the role of fl but it is multiplied by ¢
.in
instead of &,

The reasons for these choices are:

i) Since the model is intended for regions where recovery of
hardening (annealing) are considerec co be insignificant the recovery

terms f3 and f6 are omitted,

11i) The isotropic drag stress term is not included since it implies
that rate sensitivity changes significantly with deformation behavior.

Inversion of (26) yields 1.1
c-Q=KF (™Y | (29)
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It demonstrates that the overstress (effective stress) o-Q is propor-
tional to K. Comparing two specimens at the same inelastic strain
rate, but different histories leading to different values of K would
also lead to different effective stresses (overstresses) and therefore
different rate sensitivities.

Elevated temperature experiments aimed at determining whether
hardening is due to growth in Q or to a growth in K or both are not
known to the authors. Indeed a recent review does not address this

question [18]. However, in [30] a change in K was inferred from a change
in the stress drop with cycling during constant strain hold-time tests
on 316 stainless steel at 600°C. Experiments at room temperature on the
strongly hardening annealed Type 304 .SS [19,20] showed that essentially
all hardening was due to an increase in (). TFor cyclically neutral Ti-
alloy no changes in Q and K due to prior deformation were found [21].

Judging from a review of elevated temperature data [22,23] one
might infer hardening primarily due to changes in QQ but this is not clear.

Because of these uncertainties it was decided to stay with the
cyclically neutral model, see (23), (24). Moreover, even the room -
temperature experiments have shown results [20,21] which demonstrate
that strong cyclic hardening cannot be adequately modeled with the
present approaches, see also [24].

iii) The use of & instead of éin to multiply the initial term in
(24) will be disturbing to materials scientists who will argue that g
is a state variable which should grow only when inelastic deformation
occurs. Therefore the approach presented in (24) is not "physical."
From (25), (26) and (27), and the chain rule

do
de E

and (30)
an

_30

de

are obtained, respectively, at the origin (c=0; Q=0). On the other
hand from (23) and (24)

do
de = E
and (31)
dg _
de viol ,

so that the slope of g at the origin can be controlled by §. By a
proper choice of §[0] nearly linear elastic regions can be reproduced.

The difference between the two approaches is demonstrated in
Figures 1 and 2., 1In both figures the evolution of ¢ and g under a
strain controlled loading, unloading and reloading experiment are
plotted. The material functions used are listed in Table 2 (they -
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are not intended to represent a specific alloy and the difference

between Figure 1 and Figure 2 is only that.éin is vsed to multiply ¢
in (2) or (24) in the former whereas ¢ is employed in the latter.

Regarding the evolution of ¢ both figures show the same initial
slope. From then on the o curve in Figure 1 is more gradual than in
Figure 2. Upon reloading a sizeable hysteresis loop develops and the
transition is gradual in Figure 1 whereas almost no hysteresis and a
very sharp transition is observed in Figure 2. This sharp transition
corresponds to that observed in strain controlled experiments [25].

Figure 1 also demonstrates the zero slope of the g (back stress)
curve at.the origin. Since the inelastic strain rate depends on (o - g)
and since in strain control the same time is represented by the same
strain it can be seen that only the origin and two other points in
Figure 1 where o and g intersect have zero inelastic strain rate.
Elasticity is reduced to three isolated points in Figure 1. In all
other regions creep and relaxation can be found. This fact is of course
not noticeable if the figure does not contain the evolution of g.

In contrast, in Figure 2 there are regions where o and g essentially
overlap. In these regions nearly linear elastic behavior without
- noticeable creep and relaxation is reproduced.

This behavior is closer to reality than the one depicted in
Figure 1 and partly for this reason we have chosen to use & instead of

¢in in the growth law for g.

Aside from the existence of elastic regions the use of & instead

of ¢ ™ makes quite a difference in the evolution of mean stress with
cycles in a strain controlled test with positive mean strain. Figures 3
and 4 again depict results of numerical experiments under such loading.
The only difference in the two graphs is the use &¢if in Figure 3 and of
¢ in Figure 4.

Qualitatively the results on Figure 4 are more realistic than those
in Figure 3, see [12]. Because of this behavior the formulation with &

is preferred.

Figure 5 shows the results of numerical simulations such as depicted
in Figures 3 and 4 for two strain ranges and two strain rates. The decay
of mean stress is plotted vs cycles. It is evident that at the slow
strain rate the decay is less rapid for the & than for the &IM formula-

tion. However, when a fast strain rate (10~2 s'l) is used the difference

is less pronounced and the & formulation predicts the smaller mean stress
of the two.

The cycles depicted in Figures 3 and 4 occur in turbine disks and
buckets. For their life prediction the remaining mean stress must be
known from analysis. Figure 5 clearly demonstrates that the two formula-
tions predict considerably different mean stresses.
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The Material Functions of the Theory

In the absence of recovery and of cyclic hardening the present
model has three constants and two material functions that must be
identified. The method of identification which requires considerable
expertise and uses the asymptotic solution properties (7) - (10) is
described in the Appendix.

In contrast to other approaches [1-6] the specific forms of the
functions are not given rather general properties are stated, see (21).
Within these properties specific functions must be found to suit the
specific application. It was demonstrated in (8,26] how k affects rate
sensitivity and a selection of specific k-functions was given in [8].

The function § affects the knee of the stress strain diagram and
the behavior upon rate changes, see Table 1. For the purposes of demon-
strating its influence two forms of y are given in Table 2. One leads
to an almost elastic viscoplastic behavior, see Figure 6, the other to
a gradual transition from elastic to inelastic deformation, Figure 7.

Corresponding hysteresis loops are shown in Figures 8 and 9. It
is seen that Masing behavior is represented in either case and that
cyclic hardening is absent. The regions of nearly elastic behavior are
clearly identified as those where o and g coincide.

Note that the constants of the functions given in Table 2 are
selected to give the same E_ and the same stress level, only the transi-
tion behavior is different.

Once the material functions have been set the behavior of the model
is completely determined. As an example, the behavior at different
strain rates and under strain rate changes shown in Figures 6 and 7 is

cited.

Both figures show an effect of loading rate on g in the tramsition
region which disappears after some strain has accumulated. The influ-
ence of rate on g is smaller but seems to disappear slower in Figure 6

than in Figure 7.

The transition from elastic to viscoplastic behavior for o is
sharp in Figure 6 but gradual in Figure 7. As the strain rate increases
the sharpness of transition increases.

At point A in Figures 6 and 7 the strain rate is increased (reduced)
by two orders of magnitude. Whereas little overshoot (undershoot) is
observed in Figure 6 it is considerable for both the o and g curves in
Figure 7. After some transient period the original curves are traced
over again. Again the transition period is longer in Figure 6 than in
Figure 7. '
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The difference in behavior is solely attributable to the change
in the function ¥. The question arises whether these overshoots
could lead to instabilities. A separate stability analysis [27] shows
that the critical points which are the asymptotic values of (23), (24)
are stable. Even if there are overshoots (undershoots), they vwill be
transient in nature, see also (5), (6). .

Although overshoots (undershoots) are experienced in testing,
see Figure 9 of [19], and [28], and are similar to those shown in
Figure 7 the size of these transients is somewhat large.

If § in (24) is multiplied by éin a simple analysis corresponding
to (12) and (13) shows that

o+ - L - -
dg _dg ¢ _ . &
de de é+ Et é-i- (32)

and

%

de’ _dg & _dd (33)

&
o
[, ]
Q;IQ
[, ]
Q;IQ

for strain and stress control, respectively. It is clear that (32)
and (33) lead to less variationms of dg*/de than experienced with the
y¢ formulation, see Table 1. This is demonstrated in Figure 10 where
the conditions are identical to those used in Figure 7, except for the
multiplication of § by ¢ 2 Very little overshoot is observed in this

case.

The second term in (2) or (24) is multiplied by |éin| and has so
far not been varied. If this term is replaced by |&| the reloading
behavior is similar to that shown in Figure 1. (See also [16],

Figures 5.21 and 5.22.) It can be seen from (4) that %% =~ § as long

as g—: =~ E, Since under this condition o-g =~ 0 and since {[0] ~E

the slope of g remains very close to E as long as %% = E and the
behavior results in the sharp transition upon reloading shown in

Figure 2. If Iéinl is replaced by |&| in (2), (4) shows that the
second term on the right-hand side is not negligible from the begin-
ning and g% decreases faster than in the previous case. (See [16]
for a further discussion of the subject.)

A comparison of the hysteresis loops in Figures 8, 9 and 11 shows
clearly the linear elastic regions for the {é-formulation which are
absent in Figure 11. (Elastic regions are those where o=g.) It is
not possible to model regions of no creep and no relaxation in Figure 11
but Figures 8 and 9 display such regions.
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CONCLUSIONS

Mathematical methods permit the establishment of some properties
of the proposed constitutive equation, but numerical experiments are
very necessary to investigate the detailed properties.

The proposed system which uses total strain rate in the growth
law for the equilibrium stress (or back stress or kinematic stress)
is able to reproduce regions of almost linear elastic behavior. If
inelastic strain rate is used instead, these regions were shown to be
absent.

Loading, unloading and reloading under strain control are repro-
duced in a realistic manner using the present approach. A much too
gradual transition is exhibited when inelastic strain rate is employed
instead.

These properties have an influence on the decay of mean stress
under tension-tension strain controlled cycling. It appears that the
present approach represents a realistic decay of mean stress. This
quantity is important for fatigue life prediction of turbine components.

All comparisons were made by changing ome parameter at a time.
Although it is strongly suggested that presently available state
variable theories share the qualitative properties of the present
model with using the inelastic strain rate instead of the total strain
rate a proof is outstanding. Such a proof requires numerical integra-
tion of the respective theories under the loading histories used in
this paper.
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APPENDIX

Determination of Material Functions

The model is given by (23) and (24) and contains three material
constants (E, Et’ A)* and two mterial functions (k, ¥). Both functiomns

must be continuous positive and decreasing functions. They are other-
wise not specified. In applications specific forms must be chosen.

The elastic modulus E and the tangent modulus Et are easily

identified as the slopes of the stress-strain diagram at the origin
and at the maximum strain of interest, respectively.

In determining k, ¥ and A the asymptotic solutioms (7) - (10) are
needed and used. Points of g and the viscosity function k are deter-
mined as shown in [8] or [26]. The strain rate change tests proposed
in [8] are preferred. The relaxation tests [26] are also useful pro-
vided the solution properties of (14) and (15) are accounted for (in
[26] g=gle] only). Candidate functions for k are also given in [8,26]
but new ones may be easily proposed. In this step extrapolation,
trial and error with judgement are required.

Once a point of g is known, the asymptotic value of {g- £}=A can
be determined from the corresponding value of o and £=E e

With ¥[0] = g% [0] = E, %f' [cmax]=Et and at least one point of g

known, g can be approximated by the functions provided in [29] or by
other representations (i.e., Ramberg Osgood relation). A similar
procedure is used to approximate the stress-strain diagram. These
two functions are now used as inputs to

g-E_¢
4 . - gt et |y _Lldo
de *[C’ 8: B,C’D] b[O"' 8] 1 E P (Aol)

which is obtained from (24) and where b is given by (22). The argu-
ments B, C, D of § are the free constants in the assumed representa-

tion of
C

¥=B + TD) (A.2)

where f(%) is an increasing function. Examples of such functions are

given in Table 2., Since \#[0]'=E=B+C/f[0] only two constants need

L .
E= §[0] is selected to be slightly less than E.
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be determined in the subsequent nonlinear least square analysis® which
employs (A.1l), (A.2) and the fitted anmalytical expressions for ¢ and g
(since the derivatives are needed in (A.l), analytical expressions
are preferred). This analysis then yields the constants for (A.2).

With all the constants determined the model can now be integrated
numerically and should reproduce the experimental results used to
determine the' constants. Due to the nonlinearity of the problem some
iterations are probably necessary. These iterations may employ dif-
ferent forms of § and k consistent with the general requirements.

* The IMSL subroutine ZXSSQ is an example of possible algorithm
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TABLE 1

SLOPES AFTER A JUMP IN STRESS OR STRAIN RATE

Change Condit ionl) do'de dg+/ de
Strain Stress Strain Stress
Control Control Control Control
E ES+ ¥
Increase 0<86X1 E 1T 6E/E GE/Et ¥ 1+ GE/Et
Decrease §>> 1 -8E E /8 6(Et - %) Et
Reversal § =-1 2E -Et 2y - Et Et:
E E8+
Reversal -1<<§<0 E ¥
increase 1+ &/ Et 1+ 8/ Et
Reversal § < -1 - 8E Et/6 6(Et' ¥) E
t
decrease
D s=eset or 6776
TABLE 2

MATERIAL CONSTANTS AND FUNCTIONS USED

E = Modulus of elasticity = 120,000 MPa

Et = Asymptotic tangent modulus = 1200 MPa

A = 120 MPa

4

- X
k[x] = 2.296 X 10 exp(21.275 exp - 5!3 l_s) s

¥, [x] = 48,000 + 70,800 exp(-0.12 |x|) MPa
Used in all figures except in Figures 6 and 8

¥,[x] =12,000+ 106,800 cosh(-0.2 |x|) MPa
Used in Figures 6 and 8

T All x used here are measured in units of MPa.
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