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A unified vixoplastic constitutive relation based on crystallographic 
slip theory is developed for the deformation analysis of nickel-base face- 
centered cubic superalloy single crystals at  elevated temperature. The 
single crystal theory is then embedded in a self-consistent method to  de- 
rive a constitutive relation for a directionally solidified material comprised 
of a polycrystalline aggregate of columnar cylindrical grains. One of the 
crystallographic axes of the cylindrical crystals points in the columnar 
direction whilst the remaining crystallographic axes are oriented at ran- 
dom in the basal plane perpendicular t o  the columnar direction These 
constitutive formulations are currently being coded in FORTRAN for use 
in nonlinear finite element and boundary element programs An experi- 
mental program to determine the biaxial tension-torsion behavior of PH'A 
1480 single crystal tubular specimens at  1600°F is also underway. 

I N T R O D U C T I O N  

This paper represents a first quarterly progress report on a program 
to develop anisotropic coirsritutive equations for use in modeling the mul- 
tiaxial viscoplastic st ress-st rain response of single crystal and directionall y 
solidified gas turbine alloys at  elevated temperature. Two approaches are 
being pursued. The first approach consists of modeling the anisotropic 
response from a macroscopic continuum point of view, whilst the second 
approach consists of taking a micromechanics viewpoint using crystal plas- 
ticity concepts. Tubular specimens of the single crystal superalloy PWA 
1480 are currently being machined. Tension-torsion experiments on tubu- 
l a r  specimens of PH'A 1480 will be conducted at  1600°F to provide a data 
base for exercising the theoretical formulations. The anisotropic visco- 
plastic theories will be incorporated into a nonlinear finite element code 
since the non-uniform stress distribution in the tubular specimens will 
require the solution of a boundary value problem for data reduction pur- 
poses. 



S I N G L E  C R Y S T A L  A N A L Y S I S  

An analysis of single crystal superalloys undergoing steady state 
creep deformation was presented by Paslay, Wells and Leverant [ I ]  in 
1970 using a theoretical formulation based on crystallographic d ip  theory 
of face-centered cubic materials. In 1971 the theory was applied by 
Paslay, Wells, Leverant and Burck [2] to  describe the creep behavior of 
single crystal nickel-base superalloy tubes under biaxial tension. Steady 
s ta te  creep formulations suitable for the analysis of single crystals were 
used by Brown [3] in 1970 and by Hutchinson [4] in 1976 to predict the 
behavior of polycrystalline materials whose aggregate consists of randomly 
oriented single crystal grains Recently, Weng [5] has developed a single 
crystal creep formulation which accounts for transient .(primary) iu -1eli 
as steady state (secondary) c r e e p  However, in order t o  describe the 
combined pIastic and creep behavior of polycrystalline materials, Weng 
combines the rate-independent and rate-dependent components of crystal 
behavior in such a way that each component is governed by a separate 
constitutive relation. The averaging of the single crystal creep relations 
to obtain the overall macroscopic creep response of the polytrystalline 
ag regate is easily accomplished by using X m r ' s  self-consistent method 
[68. 1 n a general analysis the constitutive relations for the overall mac- 
roscopic plastic response of the  polyc alline aggregate must be obtained 
using Hill's self-consistent method [7 T? Kroner's method for calculating 
the macroscopic creep properties of a polycrystalline aggregate of single 
crystals is explicit in nature; but Hill's method for calculating the macro- 
scopic ,plastic properties is implicit in na ture 'md requires lengthy itera- 
tive computations. 

In the  decade of the seventies the creep and plastic r nses of 
materials were combined into unified viscoplastic formulations These 
formulations differ from steady s ta te  creep theories by introducing history 
dependent s ta te  variables t o  account for primary creep and plasticity. 
Most of these unified theories exhibit an elastic response under instan- 
taneous deformation This instantaneous elastic response occurs 
because the inelastic strain ra te  is assumed to depend only on stress, 
state variables and temperature and not on the rates of these variables 
These unified theories may, therefore, be integrated in time by means 
of an explicit Euler forward difference method. Macroscopic properties 
of a poIycrystalline aggregate, comprised of single crystal grains which 
are assumed to  deform according . to a unified viscoplastic slip process, 
can therefore be obtained by means of K loner's explicit self-consistent 
m et hod. 

In the unit cell of the face-centered cubic crystal shown in Figure 1 
, we denote by $'a unit vector in the i* slip direction (say of type UlO) ), 

whilst n; is a unit vector in the normal direction t o  the slip .plane (of 
type { I l l )  ) of which 2; constitutes a slip direction The four octahe- 
dral (1111 planes and the twelve corresponding (110) slip directions 
(three on each plane) are shown in Figure 1. 

From the geometry of the  unit cubic cell in Figure 1 the unit 
vectors are given by 

H *l=(L0k)@ , n+=(-j+k)& LY , zs=( i - j ) / .  5) , ~+=(i-i),fi , 



with

_.,-__. _,,.(._-i-.k)/_,
where i_ j, k are tlrtit vectors along the x,y,z crystallographic axes.

Figure 2 shows a single crystal whose global axes are denoted by
• s I

x , y , z and whose crystallographic axes are denoted by x,y,z. If Q
denotes the orthogonai tensor which rotates the crystallographic (unstar-
red) axes into the global (starred) axes, viz., x_-_ Qtjx.j , then the
stress tensor er and the strain rate tensor /. in the crystallographic axes
may be obtmned from the stress tensor oJa_d the strain rate tensor _"
in the global system from the "usual transformation relations,

i-
The assumption is now made that Lny of the urtified viscoplastic

theories discussed in Reference [8], when specialized to the case of shear
deformation, is a valid constitutive relation in each of the twelve crystal-
lographic slip directions. In the rl'slip direction the resolvedlshear stress,I" is obtained from the relation

V' .
_M = _e._._- for r=l_2)- -jI2. (2)

It is further assumed, in a manner analogous to the unified isotropic vis-
coplastic models, that the applicable relation governing the inelastic shear
strainratein the r_ slipdirectionis

_,= z_{ (_-_:_)i='.-_;.I_'+,-C,;.- _Z.)l_Z.-_..1_'_

._.,,,(._:-_,)1_-,4_1_''', _=('_:,-,4,.)1_&-,4_{_'''
+_...(.._-_..)}-" -. ,.-,ll"z'_._.|" ._)"_tClr_-_a,z)lIl,,-t_n/r' , (3)

$

where _, and _ (with p and q = m,n,z) denote the drag stress and
equilibrium (rest or back) stress in the _'_ slip direction.. The expression
for • e_ is defined in equation (2). Terms such as r_mz denote, by an-
alogy, expressions of the type

_t=_= _.._. _, , (4)

where _e denotes _ unit vector perpendicular to the unit vectors mr and
n r The vector zr is in the slip plane containing the vector _,- and
the vectorsm_..,n,-, /.,. form an orthogonaltriadfor the r _' slipsys-
tem. In equatmn (3) the tensor _Xp_ representsthe effectof the non-
Schrnid factors [9] upon the inelastic strain rate in the r"_ slip dzre.,:tion.
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For example, the term containing _ represents the effect of the resolved
stress, normal to the slip plane containing the r4h slip direction, on the
inelastic strain rate in the t"_h slip direction. . Such terms can represent
the effect of a pressure dependent inelastic strain rate. The dominant
term in equation (3) is the Schmid type term containing the expression
_n ; estimates of the magnitude of the non-Schmid type terms con-

raining the tensor _l!l, have been given by Asaro and Rice in Reference
[i0].

To complete the con_itutive formulation it is necessary to specify
the growth relations for the equilibrium and drag s_ress, state variables.
The equilibrium stress in the ri slip system may be assumed to evolve
according to the evolution equation

r, s ml

where t_,_ 2 ,_ _e'. and m are temperature de?endent material constants.
A simplifying assumption is to take

_ ._ ,o . ,. _ _ _,,I _I"
. _ef.'_**_'m, :r,"" x,,_

where the cumulative inelastic strain is defined by

_.q_tion(6) =ares that the ratio of the _turated equilibrium(back)
stress,i.e. the equilibriumstressfor continuedinelastic retaining (_-_*-)
underfast strainingconditions( _,.-_,= ), to the resolvedshearstress in
the same direction, is equal for all the non-Schmid systems. Moreover,
the ratio is equal to the ratio of the saturatedequilibriummressto the
resolved shear s_ress for the Schmid-type components, &0_n and _,_ .
Under continued inelastic s_raining the equilibrium s_ress saturates and
_,--v0. Under fast straining conditions ( _-_ ,o ) equation (5) shows
that the saturated equilibrium mress is given by the relation

since the thermal recovery term containing the material con_ant _L'_
can be neglected for "/_.-_oo . The material cc.nstants _ must therefore
satisfy the relation

I I
(],'_ . (9)

=I"

I
A_suming the ¢on.s'tants_ and _ and the limitingsaturatedvalueof
the resolvedshear _re_ _ are known for the Schmid-wpe terms,
equation(9) determinesthe ratioof _[I_ to q_l, for the non-_hmid
terms. If it is further assumed that the initial" hardening rate for the
non-Schmid equilibrium _resses are all equal to the Schmid equilibrium

stress hardening rate, then _=_,_ for_=l,2 and _'_)n>L.
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The drag stress may be assumed to grow according to the e_lution
equation

Iml

in which the hardening moduIi are liven by
Lt

The hardening mod_i h_ defined in equation (10) account for the latent
hardening effects observed in single crystal materials, and equation (II)
is similar in form to that proposed by Hutchinson [II], Asaro [12] and
Peirce, Asaro and Yeedleman [13J. 1_lumerous forms for the hardening
meduli h,k have been proposed in the literature and a review of harden-
ing moduli may be found by consulting Havner's papers (cf. Reference
[14]). The drag stress evolution equation does not contain thermal recov-
ery terms, but these terms can easily be included in the formulation.

The shear slip strain rates may now be resolved into the crystal-
lographic system and summed for .each .slip system to obtain the inelastic
strain rate tensor with respect to the cry_ailosraphic axes in the form

Finally, the stress rate tensor with respect to the crystallographic axes
is determined from the relation

where J_ is the anJsotropic elasticity tensor for the face-centered cubic
crystal referred to the crystallographic axes.

The variables can now be updated in the Euler forward difference
form:

where _: is the current time increment. The process may then be re-
peated by integrating equations (I), (2), (3), (4), (5), (I0), (II? for
each time increment.

The preceding discussion has focussed on slip which occurs on the
_111}octahedral planes in the <110_ type directions of face-centered
cubic nickel-base superalloys. Paslay, Wells, Leverant and Burck [1,2]
also found that slip occurs under creep conditions on the _.III_ planes
in the Ql2}type directions. Cube slip on the crystallographic faces was
also found to occur. For each different slip system the foregoing theory
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is altered only by virtue of having different slip and normal vectors defin-
ing the triad m, n and Z-. In general, the total inelastic strain rate may
be written as the sum,

where _i is due to {111_ _II0_ type slip, _a is due to _.III_ t..112_
type slip, _,is due to cube slip, etc. Such a combination was stated to
be required to model primary creep behavior in Reference [I] by Paslay,
Wells and Leverant. It is possible that {111} _I12_ type primary creep
may evolve into till| (II0) type secondary creep as described by Lever-
ant, Kear and Oblak in Reference [15]. In this instance it may be nec-
essary to modify the theory so that the _.;. evolve with deformation, in-
elastic strain rate and temperature according to evolution growth equa-
tions similar to that employed for the equilibrium and drag stress state
variables. This mixing of different slip systems to model the anisotropy
of nickel-base superalloys was also stated by Ezz, Pope and Paldar [16]
to be necessary in order to model tension-compression flow stress asym-
metry observed in nickel-base superalloys.

DIRECTIONALLY SOLIDIFIED ANALYSIS

A model for directionally solidified alloys can be constructed by
making use of a suitable self-consistent method to average the results of
the single crystal visooplastic constitutive theory. The directionally solidi-
fied material consists of aligned columnar single cry_al grains which are
oriented at random in the basal plane perpendicular to the cylindrical
growth direction. This random orientation of the grains produces a mat-
erial with transversely isotropic properties.

The directionally solidified material comprised of an aggregate of
single crystal columnar grains may therefore be modeled in the following
manner. We first choose a particular single crystal columnar grain and
replace the aggregate of single crystal grains surrounding the chosen
grain by a transversely isotropic material. The properties of this sur-
rounding transversely isotropic material are found by averaging the prop-
enies of the chosen single crystal grain about its cylindrical growth axis.
h is then possible to relate the stress and strain increments in the+ single
crystal grain to those in the surrounding transversely i_otrol_i_ matrix
by means of the method proposed by Eshelby [.17] in 1957.

Viscoplastic formulations which exhibit an instantaneous elastic
response can be integrated by means of an Euier forward difference
method. In physical terms this integration process consists of letting

the material creep at constant stress at the levelt.,,_ appropriate to thebegiruling of the increment for a time interval . After the creep
increment is completed the material is subjected to an instantaneous
strain increment &_-A_, where &L is the total strain increment during
the time increment A(; and A_ is _he completed creep strain increment.
The instantaneous application of the strain increment A$_-/__ induces an
elastic stress increment given by Hooke's law in the form aS = D:(/_-_c)
where _ is the elasticity tensor for the material.
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Let J_=and _ denotethe fourth rank cubic and transverselyiso-
tropic elasticity tensors for the single crystal and the surrounding matrix,
respectively. In the cylindricalsingle crystal grain the inelasticstrain
increment is denoted by/19 and the corresponding quantity in the matrix
is denoted by <At}. The quantity(&_} is obtained from &£ by averag-
ing &c over ,,I] angularorientations(viz. from 0 to 2Tr) in the bass]
planeperpendicularto the cylindricalgrowthaxis. In the singlecrystal
=rain the constitutiverelationhas the form

A,;j=D,j ,l ), (16)

whilst in the directionally solidified matrix the constitutive form is

Given a known strain increment (_Eu_> in the directionally solidified
matrix, the object is to determine the corresponding inelastic strain
increment &Old in the single crystal cylinder and then average this
quantity by means of the relation

<ac >= 2,± S. ,tO, (is)
where 6 is the angle between the crystallographic axes x,y in the speci-
men and the global axes x*,y* in the matrix, with the z,z* axes aligned
in the cylindrical crystal's growth direction. The stress increment in the
directionally solidified matrix is then determined by equation (17).

The first step consists of determining the state of stress and strain
in the cylindrical crystal grain when the matrix and crystal undergo creep
for a time increment &¢ . A preliminary step in this analysis consists
of replacing the single crystal grain by a fictitious material which has
elastic and inelastic properties which differ from those of the single
crystal but in which the elastic properties are the same as that of the
transversely isotropic matrix with elasticity tensor J_'_. Eshelby's cutting,
straining and welding operations [17] are now applied to the fictitious
crystal grain.

The fictitious cylindrical grain is now cut out of the matrix and the
instantaneous shapes of the grain and resulting cylindrical hole in the
matrix are maintained by appropriate equal and opposite surface tract-
ions applied to the respective cylindrical surfaces of the grain and hole.
The stress in the matrix is denoted by <£_ and that in the fictitious
grain by _ , where g is the stress state in the actual single crystal
grain. From Eshelby's results, if the strain history in the matrix is
homogeneous, the resulting stress in the actual and fictitious cylindrical
grains will be constant throughout the cylindrical volume. This will be
demonstrated subsequently. The fictitious cylindrical grain and the sur-
rounding matrix are now assumed to undergo creep responses for a time
increment A*.at their respective stress levels of _ and (_. In the grain
the resulting creep strain increment is denoted by &ff and the corres-
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ponding creep strain increment in the matrix is <A€). If incremental
surface tractions are instantaneously applied to the cylindrical surface
of the fictitious train so that it is elastically strained by an amount
-A._ T , it will regain the original size and shape which it had upon re-
moval from the matrix prior to the creep response. If it is subsequently
elastically strained by an amount <2L.€.> through the application of a
further set of incremental tractions applied instantaneously to the cylin-
drical surface of the grain, it will fit back into the matrix from which
it was removed. The fictitious [[rain and matrix now fit compatibly
together, and the strain increment experienced by the train is-_., where

However, a layer of surface traction exists on the cylindrical surface
boundary between the grain and the matrix. This layer of surface trac-
tion is given in magnitude by the relation m

and can be removed by the application of an equal and opposite layer of
surface body force of magnitude

= D jkl • (20)nj "
The displacement increment b_ induced in the fictitious train due to
the application of surface tractions A:_;. over its cylindrical surface is
given by

= dS_. ) (_-1)"
where G_i(£_£1). is the elastic Green's function for the transversely
isotropic matrlx ana the fictitious train. Application of Gauss' diver-
gence theorem to the surface integral produces the result

The resulting strain increment _F._ in the fictitious grain due to this
annihilation of the incremental surface traction built up during the creep
responseof the fictitious grain and the matrix is

where the Eshelby tensor _ is defined by the relation

S_,. -" -i D:_,. f'_Zt SI_ '_cr'_')'_(r'n) _(_-r')_.') . (24)

The strain increment induced in the fictitious grain !_ order to make
it fit ¢ompatibl)' in the matrix is given by -_j , whilst the additional
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strain induced in the grain by removing the unwanted surface traction
increment _-L is given by _.._j . At the end of the creep increment the
total strain increment induced in the fictitious grain is given by _--_ij.,
or from equation (23), by _jkL_/_kt- _j . The stress increment m
the grain is therefore

where _ is the fourth rank identity tensor. _ote that the strain incre-
ment responsible for changing the size of the cylindrical grain from the
size it had when h was placed back into the matrix is _i_, S;jkl b_ ,
since the change in size is due to the annihilation of the surface traction
increment ht k by the equal and opposite traction increment &_..

gow consider the actual situation where the cylindrical grain has
its own anisotropic elastic constant tensor with cubic symmetry, D_
We remove the cylinder from the matrix_ as before, and let the c"ylin-"
drieal grain undergo a creep strain increment _ in time _ and the
matrix undergo a creep strain increment (A_> . If we now apply surface
traction increments instantaneously to the cylindrical boundary so that
the cylinder is elastically grained by an amount (_} - _ , it will
fit back into the matrix from which it was removed. Moreover, since the
matrix creep strain increment (b£> is the same as that in the problem
with the fictitious cylinder, the cylindrical grain will have the same size

shape as the fictitious cylinder had when it was p_ bark hto the
matrix. The strain increment res_r_ble for changing the size of the
cylindrical grain from the size it had when it was placed back into the
matrix to the size in its final cordiguration is _kh.,_ /_,.n • Hence, if

the actual cylindrical grain is strained by the increment- _1._^ .b/_,_+ <,bCk,> _C_! , it will have the same final size as the prevmusly
considered fictitious cylindrical grain with transversely isotropic elastic
properties. The stress increment in the actual cylinder due to the strain
increment SkL,._ /_,._ + _kt> - _ck+ is

_,_'ij - _kl [ Skt,_ _^ + <_--kl>"_::k, }" (26)
If the stress increments in eouations (25) and (26) are equal, the actual
cylindrical grain which has the elasticity tensor ,_€ appropriate to cubic
symmetry and which undergoes an increment of transformation strain _. ,
may be replaced with the fictitious cylindrical grain with elasticity tensor
_'_ equal to that of the matrix without upsetting continuity of dis-
placements and tractions across the cylinder-matrix interface. Equating
(25) and (26) shows that

" " € f _:I_ -<_''_,_}" (27)

If this. transformation strain increment occurs in a cylinder with elasticity
tensor ,1_" , the stress increment in the cylinder is equal to that which
actually occurs in the single crystal cylinder with elasticity tensor ,DD€
undergoing a transformation strain increment A_--<Ac._. Substitution of
the expression tot _,_ into equation (25) [or (26)] gives the stress incre-
ment in the cylindrical single crystal grain at the end of the creep re-
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sponse in the form

According to the Euler foward difference integration method the
crystal grain and matrix are now to be instantaneously loaded with the
elastic strain increment (/k_,_-_h£} . To this end we first consider
the single crystal to be replaced by a fictitious cylinder having the same
transversely isotropic properties as the surrounding matrix. If the tic-
titious cylinder undergoes a stress increment free uniform strain incre-
ment Ae T . the final strain increment inside the cylinder is ( ,_iikl -
_,_I ) _'_t " • A uniform strain increment _.._- (A_ may now be ap-
plied to the matrix and ficti_.ious cylinder to produce the final strain
increment of ( $;]_l-Z1jkl )_I + (/i_,_j'_ -- (_Acli_- The resuhmg
stress increment in the fictitious cylinder _s

- }
Only the strain increment _-_ . _-_Ac_ is responsible for

changing the size of the cylindrical volume, since the strain increment-/_v
is used to force the cylmdriead volume back to its original size afte_
removal from the matrix. If the actual cylindrical grain with elasticity
tensor ,_ is now subjected to the strain increment p.:h!_(A._- _h_, it
will aquire the same shape and size as the fictitious cylinder which has
elastic properties identical to the matrix. The stress increment in the
actual single crystal is then given by

The actual and fictitious cylinders now have the same final shape and size
and if the stress increments in equations (29) and (30) are equal, the
actual crystal cylinder can replace the transversely, isotropic cylinder and
still preserve continuity of displacemems and tracuons across the cylin-
der-matrix interface. Equating (29) and (30) gives

Substitution of this result into equation (29) for (30)] produces the stress
increment in the cylinder due to the instantaneous application of the
strain increment _-_€_ in the matrix in the form

- _ '_ _ " (31)

At the end of the creep response during the time interval h_ the
stress increment in the single crystal cylindrical grain is given by equation
(28). When the matrix is further elastically strained by the instantaneous
application of the strain increment <_- _,_ the additional stres._
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increment in the single crystal grain is given by equation (31). Accor-
dingly, the total stress increment in the single crystal due to the appli-
cation of the strain increment _A_> in the time interval 4+.. is given
by the Euler forward difference methed as the sum of the stress incre-
ments in equations (28) and (31), viz.

where the first term in equation (31) is the definition of the matrix
stress increment given in equation (17);

Provided the stress level _ is known in the single crystal at the
beginning of the increment, the single crystal analysis in the preceding
section furnishes the value of the inelastic strain increment A_ . Aver-
aging b£ over the basal plane for crystals of different orientation by
means of equation (18) then furnishes the value of /_bc_ Assuming
that the strain increment in the matrix is given, equation (i7) furnishes
the required stress increment in the matrix. The stress increment in the
single crystal constrained by the transversely isotropic matrix is given
by equation (32). All pertinent quantities can now be updated according
to the Euler forward difference procedure and the process repeated for
the next time increment. A procedure for evaluating the Eshelby tensor
S is given in the appendix.

WORK IN PROGRESS

The single crystal analysis has been coded into a FORTRA}_ sub-
routine and is currently undergoing numerical test experiments. Coding
of the directionally solidified analysis is due to commence shortly. Single
crystal tubular specimens of PWA 1480 are being machined and will
be tested at 1600°F under biaxial tension-torsion loading conditions.
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APPENDIX

The Eshelby tensor _ is defined by the relation

SII?,J ,,,
where _i(_.. £t) is the elastic Green's function for the transversely
isotropic matrix material. Although the Green's function for transver-
sely isotropic materials is known [18], it is more convenient to work with
the Fourier representation of the Green's function. The Fourier trans-
form of Fa_j (£-r t ) is known [19,20] and it can be shown, by taking
the Fourier transform of the defining equation, viz.

Vjk,_- _ . _j_(_-Z')= 0, (2)
and inverting the result, that

_il. ,._,.,)_ ± a3 .. -i._.C_,-_')"~ ~ " 81" _ e . (3)
In this equation the real part of the Fourier integral corresponds to the
Green's function, and the Christoffel tensor M is defined by

M

_U(._)-_ O_ _ (4)
with

being a unit wave vector in the direction of the Fourier wave vector _ .
Introduction of this result into one of the integral terms in the defini-
tion of _ gives, on reversing the order of the volume and wave vector

integrations, _2

9,. _ -! • _(,_

The volume integration extends over the cylind, rical volume of the fictit=
ious cylindrical grain and can be written as

Let xl,, _)'_):C_-_'._E). Then in cylindrical coordinates

where _. is the cylindrical radius. Since
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where _'( Ks) is the Dirac delta function, the integral takes the form

I-Y._K,} _ i cI(K'_+K_'_)
t'-o (_o

t=_ %.o

If we now set K_[_"_ - _o_6 t , then gz[_ : 55,8 t , so that

Since the integration extends over a whole circumference, ic is imma-
terial where the origin of _ is placed. The integral may therefore be

.,i.enis I: 2"_'_)_"_'_ _e_''_'e}.oq"a'l'

or _:O
i

where I o and _'t denote the usual Bessel functions.

Equation (6) can now be written as

sow _'_
_'_ =-_._ _'_'-_so that

.t -,_,--',C,.,_-,_),C_ K.'J_,_"I,_,)

If k=3 or g=3, the Dirac delta function_( X_ ) gives zero values for
the integral. Hence, the non-zero values of the Eshelby tensor 5 are
given by k=l,2 and gffil,2. This arises because there are no compon-
ents of the body force layer of surface tractions in the _ direction
at the cylindrical interface between the grain and the matrix. Invoking
the properties of the Dirac delta function gives
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so that the Fourier wave vector components K, and K_,correspond to the
_i and _.a axes, respectively. Then in cylindrical coordinates,

or 21_ 6=o 1_

== _iKr (17)

. ,_o K,so

Since _ is real, the real pan of the preceding integral is

But, (cf. Grad_m and Rizhik, p. 730, Eq. 6.671, No. 2)

_f_._'_,-I_>.then_'l ,,=._/,_'7_- =.s,/[,_'g/=]-=_/=,e- i.
Thus

LkI_j 1 2"

independentof positionr in the cylinderas expectedfrom Eshelby's
result. In this integral w_ have _-me,_t,,s_9,_=-O,l,l_'_.J=[_,d_.._,_,,)-a
and k and g are restricted to the values 1 and 2. The"Eshelby
tensor may now be written as

= o)}
For a transversely isotropic material the Chistoffel tensor _ has the
componentform
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O © C._

The Eshelby tensor can now be evaluated by inverting the matrix in equa-
tion (20) and integrating according to equation (19). Explicit results
may be deduced, according to the calculations in Mura's book [21], for
the resulting integrals. Checking of these integrals is currently in
progress.
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Fig. 1. The twelve (110) slip direction vectors on the four octahedral {111}
planes.
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