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The currently proposed viscoplastic material models include in their
formulation observed material response but do not generally incorporate
principles from thermodynamics, statistical mechanics, and quantum mechanics.
In the existing literature, numerous hypotheses have been made for material
response based on first principles. Many of these hypotheses have been tested
experimentally. Not only must the currently proposed viscoplastic theories be
checked against these hypotheses but the experimental basis of these
hypotheses must also be checked. The physics of thermodynamics, stitistical
mechanics and quantum mechanics, including the effects of defects, will be
reviewed for their application to the development of constitutive laws.

INTRODUCTION

The currently proposed viscoplastic material models include in their
formulation observed material response but do not generally incorporate prin-
ciples from thermodynamics, statistical mechanics, and quantum mechanics. In
the existing literature, numerous hypotheses have been made for material
response based on first principles. Many of these hypotheses have been tested
experimentally. Not only must the currently proposed viscoplastic theories be
checked against these hypotheses but the experimental basis of these hypothe-
ses must also be checked.

As an example of hypotheses commonly accepted but not usually tested,
consider the assumption that inelastic deformations in isotropic materials are
volume preserving. This is primarily based on the intuitive belief that under
large strains the volume must be preserved and on experiments that show the
hydrostatic yield stress is much larger than the shear yield stress. Even
though many tensile tests on round speclmens are performed little attempt is
made to check for a change in volume.

The response of engineering materials is generally described in terms of
the macroscopic behavior of large numbers of atoms. Such descriptions are
semi-empirical in nature and usually neglect the information available from
more fundamental theories, such as thermodynamics, statistical mechanics and
quantum mechanics. Actually the macroscopic response of materials depends
intimately on the quantum mechanical interaction of electrons in neighboring
atoms. To illustrate this dependence, the distribution of the outer (valence)
electrons of an atom determines the binding energy of the atoms in a solid.
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The distribution and motion of these electrons can be calculated using quantum
mechanics principles. The response of atoms bound by their outer electrons
can be "averaged" using statistical mechanics principles including the effects
of defects. The statistical mechanics analysis will result in the thermo-
dynamic mechanical response of the material.

Thermodynamic principles can be examined to determine constraints on the
mechanical response of materials. Allen in Ref. 1l presents a clear and
concise thermodynamic formulation. From thermodynamics, constraints on the
isothermal and adiabatic elastic moduli variation with temperature and strain
can be determined based solely on the definitions of the moduli. The second
law of thermodynamics has been used to determine the constraints that should
exist between state variables. Statistical mechanics can be applied to the
determination of material response. This theory has not been extensively
applied to solid materials but has been used to determine some relationships.

Quantum mechanics principles also have not generally been applied to the
determination of material properties because of the difficulty in analyzing
the interaction between electrons in many electron atoms. Recently a new
quantum mechanics analysis method, the pseudopotential method, has been
developed which examines only the outer valence electrons. The pseudopoten-—
tial method has been applied not only to electromic proprties but also to
mechanical and thermal properties.

The effects of defects on the response of materials can be described
using topological and statistical concepts. For example, atomic vibration
models near defects dictate that at moderate~to-high strain rates the yield
stress should vary linearly with the logarithm of the strain rate. The yield .
stresses and slip directions in a crystal lattice can be estimateigggggd/oﬁ/’///
atomic configurations, forces, and the effects of defects. Defec themselves
can be characterized based on topological considerations of atomic configura-
tions. The topological specifications of many defects and defect types can be

described statistically and the macroscopic response of the materials
specified.

In the discussion that follows, the thermodynamics of materials will be
discussed first including illustrations on the constraints it places on
material behavior. The derivation of thermodynamic principles from
statistical mechanics is then reviewed. The statistical mechanics results,
though, are dependent on the energy levels derived from quantum mechanics
principles. The analysis of the response of solid materials directly from
quantum mechanics principles is illustrated in the next section. The
following section discusses the effects of imperfections and the last section
summarizes the conclusions.
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THERMODYNAMIC CONSIDERATIONS

Reversible Process Large Strains

Thermodynamic restrictions for systems undergoing reversible processes
(e.g., an elastic response) can be quite severe and the restrictions are not
readily apparent. For a system of volume, V, the first law of thermodynamics
requires the increase in internal energy, U, to be equal to the heat added, b
plus the work done on the system, W

b= &0 (1)
The work done on the system is
W= ‘{ 9;3vi 34V (2)
where v. 1/2(U J ;) is the symmetric part of the velocity gradient, and

oij is tge Cauchy ot current stress, For a reversible process, the rate of

change of entropy is
¢ =0 (3)
T

where T is the temperature.

Consider a uniform closed system; a system with a small volume would be
nearly uniform. Refer all quantities to the original configuration. Then

= g..v..V = £~ 5..VE..
W OlJvlJV o SIJV'!!.‘1J (4)

where sij is the Kirchoff stress,

éij is the Lagrangian strain rate,
p is the current density, and

p. is the initial density.
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Consider the internal energy, u, and entropy, s, per unit mass of the system
where '

M= pV (5)

is the total mass, then Eqs. (1) and (3) become

£ (6)

=18+

1313
po

for a reversible process u and s are functions of the end points of the system
and not dependent on the path taken. Using the temperature, and the strain as
the state variables

u = u(T,E), s=s(T,E) (7)
or
¢ o Bug .3 3 . 1 :
Gt N £, =TS +2—8,;:. E.. (8)
i ij *i
oT aEij J pO J J
R R Rl ¥ (9)
oT aEij
From Eq. (8)
Su "1—315 (10)
asij s=const Po

This is not convenient if temperature is used as a state variable since
entropy will be a function of temperature and strain. Instead defining the
Hemholtz free energy as

a*®u-Ts = a(T,E) : (11)
then
1 da ¢ da )
a= -gf + — S..E | it + E:. (12)
po Yy aT SEij n
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or

da . da 1

— -g —_— 8 e S.., (13

T ? 3Ei: Do 1] )
J

From the mixed partials of Eq. (13)

1 3S.. ds
—_— 1l = 0 (14)
pO T 3Eij
and
Bii W 200 (15)
Consider a linear elastic material
Sij = Dijkl[Ekl - @ (T-T,)] (16)

where Dijkl’ @, and T  are constants. Then from Eq. (15)

Disk1 = Di1ij an

The symmetry of the stress (if there are no body moments) and strain tensors
yields
Dijk1 = Bjik1 (13

and
Disk1 = Dijik (19)

These results imply that there can be at most 21 elastic constants for a
generally anisotropic material. In addition, if the material is assumed to
have a specific heat at constant volume (strain), C,, that is not a function
of strain or temperature, then

C =-"-Q-'ri§'const : (20)
vV Mt 3T
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All of the thermodynamic functions can now be found for a linear elastic
material

=l T
8 = o Disk1Fijr1%1 * Cvln(_r—) (21)
o R

1 To

200 p
a=u, +C. 1 -1n(E)]+ LD, 1E::Epy - =D, . Eiiapq(T-T.) (23)

o v T 20 1jkl1®1j%kl o 1jkl™ij"kl o
R o o
where u, and Tp are arbitrary constants.

The thermodynamics of reversible processes places restrictions on the
manner in which the elastic constants can be defined for nonisothermal
loadings. Researchers have sometimes introduced the elastic constants as
instantaneous constants, see Ref. 2, where

From Eq. (13)

= 23 _ =
le Po 3515 Po a,Eij (25)
and
Iaaxg.. aa:E. o
= 1] 1]
SiJ po { T T+ aEkl Ekl} (26)
Comparing Eqs. (26) and (24)
aa’Eij 1 aa’ELi Dijkl
o gy iikl%LY g p 2n
o kl o
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But the mixed partials are equal, therefore

3a, 1 3D;. a_) 1 3D
Eij - ijmn mn ~ ijkl
oT aEkl Do aEkl Do aT
or
aDijkL . a(Dijmn“mn) =0 (28)
T 3Ek1

Equation (28) implies variations in the elastic moduli with temperature as
defined in Eq. (24), will produce variations with strain of the sum D

) _ : ijmn%mn-
For an isotropic material .

Dijk1 = 2W85p851 + A6;56 (29)
and Eq. (28) becomes
2 %; 8ikd51 * ;%_ sijakl.ilfééffiﬁll 835 = 0 (30)
If i #j in Eq. (30)
ol (31)
T

Hence, the shear modulus cannot vary with temperature! Contracting on i,j in
Eq. (30)

3[awe3n ] o

(32)
agkl_

2 s 2 2
—_ + 2 — +
3T kl 3T kl



If k #1

3[aC2u+3)] 0

(33)

the product a(2u+3)) is not a function of shear strain. Contracting Eq. (32)
again

3K , 3(aK) _ g (34)

where K = 1/3 (2u+3)1) is the bulk modulus.
The restrictions in Eqs. (31), (33) and (34) are mathematically quite
severe for elastic (or reversible) processes. Equations equivalent to

Eq. (28) are cited in Ref. 3 but the conditions of Eq. (24), are not stated
leaving the result confused. If instead of Eq. (24) the stress is given by

Sij = Disk1(THE) [Eq = o (T,ENT-T)] + 8%, (35)

Then sij = Sij(T,E) and Eq. (27) are automatically satisfied.

Irreversible Process Small Strains
For irreversible processes thermodynamics is not as clearly defined. Two
additional assumptions are made (Ref. 4): (1) the entropy is a function of

state, this will hold for sufficiently slow processes, and (2) the second law
is extended to the local level. Then for some wolume V

D D
2 dV = - ‘n;dA + — p 4V (36)
Dt fv be IA bing Dt Ieg

where &i = entropy flow vector,
& = internal entropy source, and

n; = is the normal to the surface element dA.
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Transforming the surface integral to a volume integral and using the
conservation of mass

DS 08
— B ad, « 4 Py
o b0+ - (37)

where the second law now requires

DS
— > 0 (38)
Dt —
The heat being added to the volume V is
DQ D Dq

where q is the heat added per unit mass in the volume dV

v?j is the symmetric part of the velocity gradient which is converted

to heat (the dissipative part). The total velocity gradient is

(of
vis = vi; + vlgj (40)

and v%j represents the part of the velocity gradient that is converted to
recoverable internal energy, the conservative part. The internal energy is
then governed by

Du Dgq 1 ¢
— = —+d g s (41)
Dt Dt 2 11

The change in entropy can be found by proceeding along a reversible path, or

Ds 1 Dq hi,i Gijvgj

— B e e B = + (42)
Dt T Dt pT oT
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Equivalently

D
Ds hi . hiT’i Gijvij
p——= '(—") - yi + (43)
Dt T ii T T
Comparing this with Eq. (37)
h.
$i =1 (44)
T
and
DS hyT,;  oy;v;
p—= = > + > 0 (45)
Dt T T =
For small strains take
vp. = éo. V:: = E.- (&6)
ij ij ij ij

where éij is the inelastic strain, and

[ ] . s
cij is the total strain.

For uniform temperature distributions and small strains, Eq. (45) becomes

Equation (47) is related to Drucker's postulate but in Ref. 5 there is no
mention to isothermal conditions. Equation (47) can be extended to states
with an initial stress and infinitesimal stress changes, Rz2f. 3. Note that
the condition in Eq. (47) holds only for systems with uniform temperature
distributions. Other assumptions in addition to the second law of thermo-
dynamics must be made for Eq. (47) to apply more generally. For example, if
linear phenomenological laws are assumed and Gibb's condition for a reversible
process is applied, then the internal entropy production must be a positive
definite function of the state variables. Consider the functional theory,
described in Ref. 6, where
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.. = (2 - f..
i3 (2 513 1J) (48)
whefe.si~ = °ij -1/3 °kk6ij on the deviatoric stress, and Qij is the
equilibrium stress.
Equation (46) requires
2 oo B » o o ¢ .
" 515513 Ny 2 SLJQLJ (49)
For uniaxial loading, Eq. (49) becomes
02 > o (50)

which means if the equilibrium stress and the stress have the same sign then
the stress must be larger in absolute value than the equilibrium stress.
Experimental evidence shows that Eq. (49) is violated. The reason for the
disagreement arises from the fact that all of the inelastic strain is not
dissipated initially, which is assumed in Eq. (39). 1Initially some of the
inelastic strain can raise the recoverable internal energy of the material.
This rise in recoverable internal energy can be pictured as an atomic
arrangement that is at a higher state, as shown in Fig. 1. This higher energy
state can be relatively stable, represented by the higher of the two relative
minimums. Thermal diffusion of the atoms to a lower state will gradually
dissipate some or all of the inelastic strain energy as heat. The quantity,
1, can now be viewed as representing structural changes in the atomic
arrangement of a material. '

1f Eq. (39) is replaced by
DO [ [h. . + (o:s =2 0..)vD.]av | -
o fv [-hs,; + (o5; %Qlj)vled ﬁ39 )
Then Eq. (49) will be converted to

This is always satisfied since A is positive.
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STATISTICAL MECHANICS CONSIDERATIONS

From statistical mechanics, which characterize the overall response of
large numbers of atoms, many of the postulates and results of thermodynamics
can be found. For example, the Onsager reciprocal relation, Ref. 7, for
materials with linear phenomenological laws, can be derived from statistical
mechanics considerations. Statistical mechanics is based on the assumption
that "all microstates of a system that have the same energy are assumed to be
equally likely" Ref. 8. By considering two large systems of atoms, A and B,
in equilibrium, the probability that the total system, A and B, is at energy
E,+Ep is

Ppep(Ep*Eg) = PL(E,)PR(Eg) (51)

This follows from the fact that the energy of atoms in system A (or B) where
system A and B are each in contact with a thermal reservoir will be

independent of the energy of the atoms in system B (or A). From Eq. (51) it
can be shown that the probability that a system is at energy, Ey is given by

-8E
P(E) =Le ¥ (52)
Z
k is the partition function, and (53)

where Z = 2 e
k

B8 is a parameter to be determined.

To determine this parameter, consider the internal energy which is now defined
as the average energy of the system, then

-8E,

U=E=) EP(E)=L ] E e (54)
k Z x

From Eq. (53)

U---a-%nﬂ (55)
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For a perfect monitonic gas, Ref. 8, the partition function is

3
z = yN (33) N/2 (56)
fm

where N is the number of atoms of mass, m, in volume V. From Eq. (55)

y =3l (57)
28
but the internal energy is also
v -‘f NKkT (58)

where k is Boltzmann's constant. Therefore comparing Eqs. (57) and (58)

=1 | (59)

The result in Eq. (59) is general and applies to all systems.

One thermodynamic function, the internal energy, is now determined from
the statistical response of the individual atoms. A second function needs to
be determined to specify the system. To accomplish this, consider

d(1nz) = 202 4g + 3InZ 4. . (60)
98 Beij J

Substituting for the first partial derivative using Eq. (55) and using

UdB = d(8U) - BdU (61)
d(1nz + 8U) = gdy + SLnZ 4, . (62)
aEij J
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From the first law of thermodynamics (i.e., the conservation of energy) for
reversible reactions,

dU = TdS + oideeij (63)

Substituting Eq. (62) with (63)

d(1nz + 8U) = L ds + [Bvo,. + &1BZ)4e. . (64)
k L 3€ij R

Equation (64) must hold for arbitrary changes in strain and entropy therefore

dS = kd(1lnZ + BU) (65)
and
o5 = - = 31nZ . _ kT 3lnZ (66)
v Beij v Beij

Statistical mechanics has been applied to the response of solids, (e.g.,
Refs. 9 and 10). For example, consider a solid to be a collection of N atoms
each of which can vibrate in three orthogonal directions. Then if the atoms
are assumed to be linear harmonic oscillations, quantum mechanics can be used
to determine the possible energy levels in Eqs. (52) and (53). These energy
levels are from Ref. 10 or the Appendix.

E; = (n1 +'§)hvl ni-oslszs"':° (67)
i'1,2‘3,.n |,3N
1 k; . .
where v; = ;— —L is the natural frequency of atom i. The total energy
T Ym;
i
for a state is
3N
E = l Ei
i=]
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and the partition function is

. -BE ° s ®  B(E 4B+, . . 4E
ze § e Fa p 7 .. o BEIERt..sEgy) (68)

states n1=0 n2~0 n3N-0

Substituting Eq. (67) into Eq. (68) and summing over each Nj

3N -Bhv;/2
z= ) 1——51;— (69)
i=] l-e
or
h hv.
InZ = 2 {- ji:ik - 1n(1-e - vl)} (70)

i=]

From Eq. (55)

and, at high temperatures B approaches zero (8 = 1/kT)

N 3N
h 1 hv;
U= (L-+-)-3Nk'1'+ 2—& (72)
i=] 2 8 i=1

the specific heat at coastant volume is then

c, = &L = 3 (73)
aT

which is the classical thermodynamic result and from experimental data is
accurate at high temperatures. For a complete discussion of this result, see
Refs. 9 or 10.
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The above result does not include the stress strain response. To
accomplish this, consider the atoms to be stretched to a new position a
distance x, from their relative equilibrium positions by an external applied
force. The energy levels will now increase approximately by

2

1
; kix,

or

=l 1 2
Ei ) hVi + ) kixo + nihvi (74)

is the approximate energy of atom i.

Using k; = Aﬂzmiviz and x, = 2ac where 2a is the distance between atomic

centers and € is the strain. Equation (68) can now be rewritten as

E; = é-hvi + 8ﬂ2§2mivizez + n;hv; (75)

Assuming the frequencies of each atom in each direction are the same, the
Einstein approximation, the partition function becomes

1nZ = 3N [- g hv - 8n2a2msv2e - 1n(1-e"5BV)] (76)

and the stress is from Eq. (66)

2,2 2
o = 48NT aTmvie o 4872pa2y2¢ (77

v

where p = nm/V is the density, then the elastic modulus
E = 48wzpa2v2 (78)

It should be possible to test Eq. (78) against available data.
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QUANTUM MECHANICAL APPLICATIONS TO THE RESPONSE OF MATERIALS

In considering the statistical mechanics aspects of material response,
quantum mechanics provided the means for determining the energy states of a
system. Only the potential energy between neighboring atoms was considered,
but actually this potential energy is determined by the chemical bonding
between adjacent atoms, which in turn is determined by the outer electrons.
Summarizing the mechanical properties of a solid are ultimately tied to the
binding energy present in the outer electrons. In the analyses discussed in
the section on statistical mechanics, the contribution to the energy of the
system from the electrons was neglected; an assumption that generally produces
accurate results, as quantum mechanics principles are considerably more impor-
tant for low mass particles such as electrons than for higher mass particles
like atomic nuclei.

Nevertheless the pseudopotential method for describing these outer
electrons is being developed,Refs. (12, 13),and shows promise for describing
elementary mechanical properties. The pseudopotential method is based on
assuming a potential which is approximately correct in the regions where the
outer electrons are likely to be. For example, in Ref. (13), the potential
energy, V, is assumed to be

v(r) = 2 (79)

where

r 1is the distance from an atomic nucleus

e 1is the charge on an electron, and

R, is a semi-empirical constant.

The approximation in Eq. (79) is referred to as the empty core model, and
is relatively accurate compared with numerical solutions. The approximation
is based on the assumption that when a valence electron enters the region of
an atom's core electrons that it moves as if there is little change in poten-
tial energy.

In Ref. (l4), several somewhat more complex approximations to the
potential are compared for their accuracy in predicting the bulk moduli of
solids and liquids at temperatures from absolute zero to over 1000 deg F. For
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example, one theory predicts a bulk modulus for aluminum at room temperature
that is within twenty percent of the experimental value and these results are
predicted using initially rough analytical calculations. Certainly the
pseudopotential method deserves careful examination.

Quantum mechanics has, since the early stages of its development, been
applied to the prediction of the interatomic potentials for diatomic hydrogen.
Using these results, it has been possible to determine higher order terms in
the energy eigenvalues, Ref. (15), as

1 £2v2
Ent(n-l--z-)‘hv-(a;)(n*--)z (80)

The first term is the same as Eq. (67) used in the discussion on statistical
mechanics, the second term is a correction. The constant D is the dissocia-
tion energy for the molecule, and the maximum energy level cannot exceed the
dissociation energy, or

SDCE, +l (81)
max max

The second term in Eq. (80) is quite small and has only a small effect on the
partition function, Eq. (68). A correction for the angular momentum can also
be included in Eq. (80) but again the effect on the partition function is
small. Better approximations to the energy levels lead to extremely accurate
results for the thermodynamic properties, for example, see Ref. 10.

EFFECTS OF IMPERFECTIONS

In principle it is possible to derive the properties of solids by
considering the energy levels of the atoms (and electrons). The discussion on
statistical mechanics has been applied to essentially perfect crystals.
Imperfections, or defects, have a profound effect on the response of solid
materials. These imperfections will generally lower the oscillation frequen-
cies of the atoms to such an extent that they will control the inelastic
deformation of the material.

For example, in Ref. (3), it is shown from a consideration of activation
energies and dislocation geometry that

a(e) = £[T(l-a 1n £-)] (82)

noln-
o
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where

éo and a are constants determined by the dislocation geometries
T 1is the absolute temperature

€ is the strain rate

0 1is the stress, and

f 1is an arbitrary function

The quantity

T = T(l-a 1n &) (83)

m

ﬂul(‘b

o

is referred to as the velocity modified temperature, and has been shown to
have some experimental validity.

An important concept employed in the derivation of Eq. (82) is Burgers
vector. The Burgers vector is found by comparing a path about a line imper-
fection (e.g., a screw dislocation) and a closed path in a perfect crystal.
The path about the imperfection follows the same atomic path as the path in
the perfect crystal. The path about the imperfection then will not close.
The vector required to close this path is the Burgers vector.

In a similar manner, it should be possible to represent plane and point
imperfections in addition to line imperfections by similar integrations. For
example, the line imperfection is described by performing a one dimensional
integration. A point imperfection can be described by performing an integra-
tion on a surface that surrounds the point and a surface imperfection can be
described by taking a difference between two points on each side of the
surface. In other words: (l) a zero dimensional (point) imperfection is
described by performing a two dimensional (surface) integration, (2) a one
dimensional (line) imperfection is described by performing one dimensional
integration and (3) a two dimensional imperfection is described by a zero
dimensional integration. The sum of the dimension of the imperfection and the
dimension of integration required to describe it is always the same number,
or

n+m=2 (84)

where

n is the dimension of the imperfection
m is the dimension of the integration
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Topological descriptions like those resulting in Eq. (84) have been applied to
material description (e.g. see Refs. 16-17).

Defects can be classified quantatively by performing the proper integra-
tion. Not all defects will be identical and there will be some probabilistic
distribution in the quantities used to classify the distributions. These
‘probability distributions will ultimately determine the inelastic response of
the material.

CONCLUSIONS

The effects of a defect on the stress-strain law can, in principle, be
found by using quantum mechanics to determine the energies from the potential
energy of the neighboring atoms. The energies in turn, determine the results
from a statistical mechanics analysis. Furthermore, the results of the
statistical mechanics analysis determine the thermodynamic response of the
material.

Although such a procedure is possible in principle, it is not practical
because the results would be overly complex for engineering applications.
However, such an approach should produce important results which place
constraints on the form of any newly proposed constitutive relations.
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