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The currently proposed viscoplastic material models include in their

formulation observed material responsebut do not generally incorporate

principlesfrom thermodynamics,statisticalmechanics,and quantummechanics.
In the existing literature,numeroushypotheseshave been made for material
responsebased on first principles. Many of these hypotheseshave been tested
experimentally. Nor only must the currentlyproposedviscoplastictheoriesbe
checkedagainst these hypothesesbut the experimentalbasis of these
hypothesesmust also be checked. The physicsof thermodynamics,stItistical
mechanicsand quantummechanics, includingthe effectsof defects,willbe
reviewedfor their applicationto the developmentof constitutivelaws.

INTRODUCTION

The currentlyproposedviscoplasticmaterialmodels includein their
formulationobservedmaterial responsebut do not generallyincorporateprin-

ciples from thermodynamics,statisticalmechanics,and quantummechanics. In
the existing literature,numeroushypotheseshave been made for material
responsebased on first principles. Many of these hypotheseshave been tested
experimentally. Not only must the currentlyproposedviscoplastictheoriesbe
checkedagainstthese hypothesesbut the experimentalbasis of these hypothe-
ses must also be checked.

As an example of hypotheses commonly accepted but not usually tested,
consider the assumption that inelastic deformations in isotropic materials are

volume preserving. This is primarily based on the intuitive belief that under
large strains the volume must be preserved and on experiments that show the
hydrostatic yield stress is much larger than the shear yield stress. Even

though many tensile tests on round specimens are performed little attempt is
made to check for a change in volume.

The responseof engineeringmaterialsis generallydescribedin termsof
the macroscopic behavior of large numbers of atoms. Such descriptions are
seml-empirical in nature and usually neglect the information available from

more fundamental theories, such as thermodynamics, statistical mechanics and

quantum mechanics. Actually the macroscopic response of materials depends
intimately on the quantum mechanical interaction of electrons in nelghborlnE
atoms. To illustratethisdependence,the distributionof the outer (valence)
electrons of an atom determines the binding energy of the atoms in a solid.
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The distribution and motion of these electrons can be calculated using quantum 
mechanics principles. The response of atoms bound by their outer electrons 
can be "averaged" using statistical mechanics principles including the effects 
of defects. The statistical mechanics analysis will result in the thermo- 
dynamic mechanical response of the material. 

Thermodynamic principles can be examined to determine constraints on the 
mechanical response of materials. Allen in Ref. 1 presents a clear and 
concise thermodynamic formulation. From thermodynamics, constraints on the 
isothermal and adiabatic elastic moduli variation with temperature and strain 
can be determined based solely on the definitions of the moduli. The second 
law of thermodynamics has been used to determine the constraints that should 
exist between state variables. Statistical mechanics can be applied to the 
determination of material response. This theory has not been extensively 
applied to solid materials but has been used to determine some relationships. 

Quantum mechanics principles also have not generally been applied to the 
determination of material properties because of the difficulty in analyzing 
the interaction between electrons in many electron atoms. Recently a new 
quantum mechanics analysis method, the pseudopotential method, has been 
developed which examines only the outer valence electrons. The pseudopoten- 
tial method has been applied not only to electronic proprties but also to 
mechanical and thermal properties. 

The effects of defects on the response of materials can be described 
using topological and statistical concepts. For example, atomic vibration 
models near defects dictate that at moderate-to-high strain rates the yield 
stress should vary linearly with the logarithm of the strain rate. The yield . 

stresses and slip directions in a crystal lattice can be estimated bas 
atomic configurations, forces, and the effects of defects. Defec / themselves 
can be characterized based on topological considerations of atomic configura- 
tions. The topological specifications of many defects and defect types can be 
described statistically and the macroscopic response of the materials 
specified. 

In the discussion that follows, the thermodynamics of materials will be 
discussed first including illustrations on the constraints it places on 
material behavior. The derivation of thermodynamic principles from 
statistical mechanics is then reviewed. The statistical mechanics results, 
though, are dependent on the energy levels derived from quantum mechanics 
principles. The analysis of the response of solid materials directly from 
quantum mechanics principles is illustrated in the next section. The 
following section discusses the effects of imperfections and the last section 
summarizes the conclusions. 



THERMODYNAMIC CONSIDERATIONS 

Revers ib le  Process  Large S t r a i n s  

Thermodynamic r e s t r i c t i o n s  f o r  systems undergoing r e v e r s i b l e  p roces se s  
(e .g . ,  an e l a s t i c  response)  can be q u i t e  s eve re  and the  r e s t r i c t i o n s  a r e  no t  
r e a d i l y  apparen t .  For a  system of volume, V,  t h e  f i r s t  law of  thermodynamics 
r e q u i r e s  t h e  i nc rease  i n  i n t e r n a l  energy,  8 ,  t o  be equal  t o  t h e  hea t  added, 4, 
p l u s  t h e  work done on the  system, \j 

The work done on the  system i s  

where vim is  t h e  symmetric p a r t  of t he  v e l o c i t y  g r a d i e n t ,  and 
uij i s  t i e  Cauchy o r  c u r r e n t  s t r e s s .  For a r e v e r s i b l e  process ,  t h e  r a t e  of  
change of en t ropy  i s  

where T is  t h e  temperature .  

Consider a  uniform c losed  system; a  system with a  small  volume would be  
n e a r l y  uniform. Refer a l l  q u a n t i t i e s  t o  t he  o r i g i n a l  con f igu ra t i on .  Then 

where S . .  i s  t h e  Kirchoff  s t r e s s ,  
=J 

Pi j  i s  t h e  Lagmngian s t r a i n  r a t e ,  

P i s  t h e  c u r r e n t  d e n s i t y ,  and 

po i s  t h e  i n i t i a l  d e n s i t y .  



Consider t he  i n t e r n a l  energy,  u,  and en t ropy ,  s ,  per  u n i t  mass of t he  system 
where 

i s  t h e  t o t a l  mass, then  Eqs. (1) and ( 3 )  become 

f o r  a r e v e r s i b l e  process  u and s a r e  func t ions  of t he  .end po in t s  of the  system 
and not dependent on the  path taken.  Using the  temperature,  and the s t r a i n  a s  
t he  s t a t e  v a r i a b l e s  

From Eq. (8)  

This  i s  not  convenient  i f  temperature is  used a s  a  s t a t e  v a r i a b l e  s i n c e  
en t ropy  w i l l  be a  func t ion  of temperature and s t r a i n .  Ins tead  d e f i n i n g  t h e  
Hemholtz f r e e  energy a s  

then  



From t h e  mixed p a r t i a l s  of Eq. (13)  

1 as.. as 
3 . r  0 
Po aT aE i j  

and 

as.. askl 
2,- 
aEkl  a E i j  

Consider a  l i n e a r  e l a s t i c  m a t e r i a l  

where D i j k l ,  4cl and To a r e  cons t an t s .  Then from Eq. (15)  

The symmetry of the  s t r e s s  ( i f  t h e r e  a r e  no body moments) and s t r a i n  t e n s o r s  
y i e l d s  

and 

These r e s u l t s  imply t h a t  t h e r e  can be a t  most 21 e l a s t i c  cons t an t s  f o r  a 
gene ra l ly  a n i s o t r o p i c  m a t e r i a l .  I n  a d d i t i o n ,  i f  t he  ma te r i a l  i s  assumed t o  
have a  s p e c i f i c  hea t  a t  cons tan t  volume ( s t r a i n ) ,  CV, t h a t  i s  not a  func t ion  
of s t r a i n  o r  temperature,  then 



All of the thermodynamic functions can now be found for a linear elastic 
material 

where uo and TR are arbitrary constants. 

The thermodynamics of reversible processes places restrictions on the 
manner in which the elastic constants can be defined for nonisothermal 
loadings. Researchers have sometimes introduced the elastic constants as 
instantaneous constants, see Ref. 2, dhere 

From E q .  (13) 

and 

Comparing E q s .  (26) and (24) 



But t h e  mixed p a r t i a l s  a r e  e q u a l ,  t h e r e f o r e  

Equa t ion  (28)  i m p l i e s  v a r i a t i o n s  i n  t h e  e l a s t i c  moduli wi th  t empera tu re  a s  
d e f i n e d  i n  E q .  (241 ,  w i l l  produce v a r i a t i o n s  wi th  s t r a i n  of t h e  sum Dijmn%n.  
For an i s o t r o p i c  m a t e r i a l  

and Eq. (28)  becomes 

I f  i * j i n  Eq. (30)  

Hence, t h e  s h e a r  modulus cannot  v a r y  w i t h  t empera tu re !  C o n t r a c t i n g  on i , j  i n  
Eq. (30)  



t h e  product a (2~+3X)  i s  not  a  func t ion  of shear  s t r a i n .  Contract ing Eq. (32)  
aga in  

where K = 113 (2u+3X) i s  t h e  bulk modulus. 

The r e s t r i c t i o n s  i n  Eqs. (311, (33) and ( 3 4 )  a r e  mathematical ly  q u i t e  
severe  f o r  e l a s t i c  ( o r  r e v e r s i b l e )  processes .  Equations equiva len t  t o  
Eq.  (28) a r e  c i t e d  i n  Ref. 3 bu t  t h e  cond i t i ons  of Eq. (241, a r e  not  s t a t e d  
leaving  the  r e s u l t  confused. I f  i n s t ead  of Eq.  (24)  t he  s t r e s s  i s  given by 

Then S.. Sij(T,E) and Eq. (27 )  a r e  au toma t i ca l ly  s a t i s f i e d .  
1 J CI 

I r r e v e r s i b l e  Process Small S t r a i n s  

For i r r e v e r s i b l e  processes  thermodynamics i s  not a s  c l e a r l y  defined.  Two 
a d d i t i o n a l  assumptions a r e  made (Ref. 4): (1 )  t h e  entropy i s  a  func t ion  of 
s t a t e ,  t h i s  w i l l  hold f o r  s u f f i c i e n t l y  slow processes ,  and ( 2 )  t h e  second law 
i s  extended t o  the  l o c a l  l e v e l .  Then f o r  some volume V 

*ere Ji = entropy flow v e c t o r ,  

8 = i n t e r n a l  en t ropy  source ,  and 

n i  = i s  the  normal t o  t he  s u r f a c e  element dA. 



Transforming t h e  su r f ace  i n t e g r a l  t o  a  volume i n t e g r a l  and using the  
conserva t ion  of mass 

where t h e  second law now r e q u i r e s  

The hea t  being added t o  t he  volume V i s  

where q is the  hea t  added per u n i t  mass i n  the  volume dV 

vD i s  the  symmetric pa r t  of t h e  v e l o c i t y  grad ien t  which i s  converted ii  
t o  hea t  ( t h e  d i s s i p a t i v e  p a r t ) .  The t o t a l  v e l o c i t y  grad ien t  i s  

and v l  r e p r e s e n t s  t he  p a r t  of t h e  v e l o c i t y  g rad i en t  t h a t  i s  converted t o  
lj 

recoverab le  i n t e r n a l  energy, t h e  conse rva t ive  p a r t .  The i n t e r n a l  energy i s  
then governed by 

The change i n  entropy can be found by proceeding along a  r e v e r s i b l e  p a t h ,  o r  



Equivalently 

Comparing this with Eq. (37) 

and 

For small strains take 

D v.. = 
1J 'i j vij = iij 

where iij is the inelastic strain, and 

iij is the total strain. 

For uniform temperature distributions and small strains, Eq. (45) becomes 

Equation (47) is related to Drucker's postulate but in Ref. 5 there is 
mention to isothermal conditions. Equation (47) can be extended to states 
with an initial stress and infinitesimal stress changes, ?.+f. 3. Note that 
the condition in Eq. (47) holds only for systems with uniform temperature 
distributions. Other assumptions in addition to the second law of thermo- 
dynamics must be made for Eq. (47) to apply more generally. For example, i 
linear phenomenological laws are assumed and Gibb's condition for a reversi 
process is applied, then the internal entropy production must be a positive 
definite function of the state variables. Consider the functional theory, 

f 
ble 

described in Ref. 6, where 



where S.. = a.. - 1 / 3  a (5.. on t h e  d e v i a t o r i c  s t r e s s ,  and S 1 . m  i s  t h e  
1 J 1 J  kk 1J equi l ibr rum s t r e s s .  1J 

Equation (46)  r e q u i r e s  

For u n i a x i a l  loading ,  Eq. (49)  becomes 

which means i f  t he  equ i l i b r ium s t r e s s  and the  s t r e s s  have the  same s i g n  then  
the  s t r e s s  must be l a r g e r  i n  abso lu t e  va lue  than the  equi l ibr ium s t r e s s .  
Experimental evidence shows t h a t  Eq.  (49)  is  v i o l a t e d .  The reason f o r  t h e  
disagreement a r i s e s  from the  f a c t  t h a t  a l l  of the  i n e l a s t i c  s t r a i n  i s  not 
d i s s i p a t e d  i n i t i a l l y ,  which i s  assumed i n  Eq. (39). I n i t i a l l y  some of t he  
i n e l a s t i c  s t r a i n  can r a i s e  the  recoverable  i n t e r n a l  energy of t he  m a t e r i a l .  
This r i s e  i n  recoverable  i n t e r n a l  energy can be p i c tu red  a s  an atomic 
arrangement t h a t  i s  a t  a  h ighe r  s t a t e ,  a s  shown i n  Fig.  1, This  h igher  energy 
s t a t e  can be r e l a t i v e l y  s t a b l e ,  represented  by the  h ighe r  of t he  two r e l a t i v e  
minimums. Thermal d i f f u s i o n  of the  atoms t o  a  lower s t a t e  w i l l  g r adua l ly  
d i s s i p a t e  some or  a l l  of t he  i n e l a s t i c  s t r a i n  energy a s  hea t .  The q u a n t i t y ,  
n, can now be viewed a s  r ep re sen t ing  s t r u c t u r a l  changes i n  t he  atomic 
arrangement of  a  m a t e r i a l .  

I f  Eq. (39) i s  rep laced  by 

Then Eq. (49) w i l l  be converted t o  

a 

This  i s  always s a t i s f i e d  s i n c e  X i s  p o s i t i v e .  



STATISTICAL MECHANICS CONSIDERATIONS 

From s t a t i s t i c a l  mechanics, which c h a r a c t e r i z e  t h e  o v e r a l l  response of 
l a r g e  numbers of atoms, many of  the  p o s t u l a t e s  and r e s u l t s  of thermodynamics 
can be found. For example, t he  Onsager r e c i p r o c a l  r e l a t i o n ,  Ref. 7 ,  f o r  
m a t e r i a l s  with l i n e a r  phenomenological laws, can be der ived  from s t a t i s t i c a l  
mechanics cons ide ra t ions .  S t a t i s t i c a l  mechanics i s  based on the  assumption 
t h a t  " a l l  m i c r o s t a t e s  of a system t h a t  have the  same energy a r e  assumed t o  be 
e q u a l l y  l i k e l y "  Ref. 8. By cons ider ing  two l a r g e  systems of atoms, A and B ,  
i n  equ i l i b r ium,  the  p r o b a b i l i t y  t h a t  the t o t a l  system, A and B ,  i s  a t  energy 
EA+EB is 

This  fol lows from the  f a c t  t h a t  t h e  energy of atoms i n  system A ( o r  B) where 
system A and B a r e  each i n  c o n t a c t  with a thermal r e s e r v o i r  w i l l  be 
independent of t he  energy of t he  atoms i n  system B ( o r  A). From Eq. (51)  i t  
can be shown t h a t  the  p r o b a b i l i t y  t h a t  a system i s  a t  energy,  EK i s  given by 

where Z 1 e -Bk is  the  p a r t i t i o n  func t ion ,  and 
.k 

6 i s  a parameter t o  be  determined. 

To determine t h i s  parameter ,  cons ider  t h e  i n t e r n a l  energy which is now de f ined  
a s  t he  average energy o f  t he  system, then 

From Eq. (53)  



For a perfect monitonic gas, Ref. 8, the partition function is 

where N is the number of atoms of mass, m, in volume V. From Eq. (55) 

but the internal energy is also 

where k is Boltzmann's constant. Therefore comparing Eqs. (57) and (58) 

The result in Eq. (59) is general and applies to all systems. 

One thermodynamic function, the internal energy, is now determined from 
the statistical response of the individual atoms. A second function needs to 
be determined to specify the system. To accomplish this, consider 

Substituting for the first partial derivative using Eq. (55) and using 

UdB = d( BU) - BdU (61) 



From the  f i r s t  law of thermodynamics ( i . e . ,  t h e  conserva t ion  of energy) f o r  
r e v e r s i b l e  r e a c t i o n s ,  

dU - TdS + u..Vde.. 
J 1J 

(63 

S u b s t i t u t i n g  Eq. (62)  with (63)  

Equation (64)  must hold for a r b i t r a r y  changes i n  s t r a i n  and ent ropy  t h e r e f o r e  

and 

0 . .  . - L a l n Z , - U a l n Z  
LJ BV a s . .  

LJ 
v a s . .  

13 

S t a t i s t i c a l  mechanics has  been appl ied  t o  t he  response of s o l i d s ,  ( e . g . ,  
Refs.  9 and 10) .  For example, cons ide r  a  s o l i d  t o  be a  c o l l e c t i o n  of  N atoms 
each of which can  v i b r a t e  i n  t h r e e  or thogonal  d i r e c t i o n s .  Then i f  t h e  atoms 
a r e  assumed t o  be l i n e a r  harmonic o s c i l l a t i o n s ,  quantum mechanics can be used 
t o  determine the  poss ib l e  energy l e v e l s  i n  Eqs. (52) and (53) .  These energy 
levels a r e  from Ref. 10 o r  the  Appendix. 

is the  n a t u r a l  frequency of atom i. The t o t a l  energy where v i  = - 
2n m i  

f o r  a  s t a t e  i s  



and the partition function is 

states nl=O 19-0 n3N=0 

Substituting Eq. (67) into Eq. (68) and summing over each Ni 

3N Bhv 
In2 = 1 {- + - ln(l-e-Bhvi)} 

From Eq. (55) 

and, at high temperatures 0 approaches zero (8 = l / k ~ )  

the specific heat at constant volume is then 

which is the classical thermodynamic result and from experimental data is 
accurate at high temperatures. For a complete discussion of this result, see 
Refs. 9 or 10. 



The above r e s u l t  does not  inc lude  the  s t r e s s  s t r a i n  response.  To 
accomplish t h i s ,  cons ider  t he  atoms t o  be s t r e t c h e d  t o  a  new p o s i t i o n  a 
d i s t a n c e  xo from t h e i r  r e l a t i v e  equi l ibr ium p o s i t i o n s  by an e x t e r n a l  appl ied 
force .  The energy l e v e l s  w i l l  now inc rease  approximately by 

i s  the  approximate energy of atom i. 

2 Using k i  = 4 n  m.vm2 and xo = 2ac where 2a i s  t h e  d i s t a n c e  between atomic 
1 1  

c e n t e r s  and c  i s  t he  s t r a i n .  Equation (68) can now be r e w r i t t e n  a s  

Assuming the  f requencies  of each atom i n  each d i r e c t i o n  a r e  t he  same, t h e  
E i n s t e i n  approximation, t he  p a r t i t i o n  func t ion  becomes 

and the  s t r e s s  i s  from Eq. (66)  

where P = nm/V is t h e  d e n s i t y ,  then  t h e  e l a s t i c  modulus 

It should be poss ib l e  t o  t e s t  Eq. (78) a g a i n s t  a v a i l a b l e  d a t a .  



QUANTUM MECHANICAL APPLICATIONS TO THE RESPONSE OF MATERIALS 

In considering the statistical mechanics aspects of material response, 
quantum mechanics provided the means for determining the energy states of a 
system. Only the potential energy between neighboring atoms was considered, 
but actually this potential energy is determined by the chemical bonding 
between adjacent atoms, which in turn is determined by the outer electrons. 
Summarizing the mechanical properties of a solid are ultimately tied to the 
binding energy present in the outer electrons. In the analyses discussed in 
the section on statistical mechanics, the contribution to the energy of the 
system from the electrons was neglected; an assumption that generally produces 
accurate results, as quantum mechanics principles are considerably more impor- 
tant for low mass particles such as electrons than for higher mass particles 
like atomic nuclei. 

Nevertheless the pseudopotential method for describing these outer 
electrons is being developed,Refs. (12, 13) ,and shows promise for describing 
elementary mechanical properties. The pseudopotential method is based on 
assuming a potential which is approximately correct in the regions where the 
outer electrons are likely to be. For example, in Ref. (131, the potential 
energy, V, is assumed to be 

where 

r is the distance from an atomic nucleus 
e is the charge on an electron, and 
Re is a semi-empirical constant. 

The approximation in Eq. (79) is referred to as the empty core modei, and 
is relatively accurate compared with numerical solutions. The approximation 
is based on the assumption that when a valence electron enters the region of 
an atom's core electrons that it moves as if there is little change in poten- 
tial energy. 

In Ref. (141, several somewhat more complex approximations to the 
potential are compared for their accuracy in predicting the bulk moduli of 
solids and liquids at temperatures from absolute zero to over 1000 deg F. For 



example, one theory predicts a bulk modulus for aluminum at room temperature
that is within twenty percent of the experimental value and these results are

predicted using initially rough analytical calculations. Certainly the

pseudopotential method deserves careful examination.

Quantum mechanics has, since the early stages of its development, been

applied to the prediction of the interatomic potentials for diaromic hydrogen.
Using these results, it has been possible to determine higher order terms in

the energy eigenvalues, Ref. (15), as

Zn-(n. - (n. )2 (80)

The first term is the same as Eq. (67) used in the discussion on statistical

mechanics, the second term is a correction. The constant D is the dissocfa-

tion energy for the molecule, and the maximum energy level cannot exceed the

dissociation energy, or

< D < (81)
Enmax -- Enmax .1

The second term in Eq. (80) is quite small and has only a small effect on the

partition function, Eq. (68). A correction for the angular momentum can also
be included in Eq. (80) but again the effect on the partition function is

small. Better approximations to the energy levels lead to extremely accurate
results for the thermodynamic properties, for example, see Ref. IO.

EFFECTS OF IMPERFECTIONS

In principle it is possible to derive the properties of solids by
considering the energy levels of the atoms (and electrons). The discussion on
statistical mechanics has been applied to essentially perfect crystals.

Imperfections, or defects, have a profound effect on the response of solid
materials. These imperfecrlons will generally lower the oscillation frequen-
cles of the atoms to such an extent that they will control the inelastic
deformation of the material.

For example, in Ref. (3), it is shown from a consideration of activation

energies and dislocation geometry that

Go
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where

to and _ are constantsdeterminedby the dislocationgeometries
T is the absolute temperature

is the strain rate

a is the stress, and
f is an arbitraryfunction

The quantity

:m" :C*-oIn&) (83)
Co

is referred to as the velocity modified temperature, and has been shown to
have some experimental validity.

An important concept employed in the derivation of Eq. (82) is Burgers

vector. The Burgers vector is found by comparing a path about a line imper-
fection (e.g., a screw dislocation) and a closed path in a perfect crystal.

The path about the imperfection follows the same atomic path as the path in
the perfect crystal. The path about the imperfection then will not close.

The vector required to close this path is the Burgers vector.

In a similar manner, it should be possible to represent plane and point
imperfections in addition to line imperfections by similar integrations. For
example, the line imperfection is described by performing a one dimensional

integration. A point imperfection can be described by performing an integra-

tion on a surface that surrounds the point and a surface imperfection can be
described by taking a difference between two points on each side of the

surface. In other words: (I) a zero dimensional (point) imperfection is
described by performing a two dimensional (surface) integration, (2) a one

dimensional(line)imperfectionis describedby performingone dimensional
integration and (3) a two dimensional imperfection is described by a zero

dimensional integration. The sum of the dimension of the imperfection and the
dimension of integration required to describe it is always the same number,
or

n + m = 2 (8z_)

where

n is the dimension of the imperfection

m is the dimension of the integration
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T~pological descriptions like those resulting in Eq. (84) have been applied to 
material description (e.g. see Refs. 16-17). 

Defects can be classified quantatively by performing the proper integra- 
tion. Not all defects will be identical and there will be some probabilistic 
distribution in the quantities used to classify the distributions. These 
'probability distributions will ultimately determine the inelastic response of 
the material. 

CONCLUSIONS 

The effects of a defect on the stress-strain law can, in principle,, be 
found by using quantum mechanics to determine the energies from the potential 
energy of the neighboring atoms. The energies in turn, determine the results 
from r statistical mechanics analysis. Furthermore, the results of the 
statistical mechanics analysis detefmine the thermodynamic response of the 
material. 

Although such a procedure is possible in principle, it is not practical 
because the results would be overly complex for engineering applications. 
However, such an approach should produce important results which place 
constraints on the form of any newly proposed constitutive relations. 
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