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A numerical algorithm based on the finite element
method of analysis of the boundary value problem in a
continuum is presented, in the case where the plastic
response of the material is given in the context of en-
dochronic plasticity. The relevant constitutive equation
is expressed in incremental form and plastic effects are
accounted for by the method of an induced pseudo-force
in the matrix equations.

The results of the analysis are compared with observed
values in the case of a plate with two symmetric notches
and loaded longitudinally in its own Plane. The agreement

between theory and experiment is excellent.

INTRODUCTION
The greatest difficulty encountered in the application
of the classical theory of plasticity is the lack of
knowledge of the configuration of the subsequent yield
éurface for the particular material at hand, and the
experimental difficulties encountered in finding it in the

fully three dimensional case. More importantly, however,
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it has been observed by many experimenters that the shape
of the subsequent yield surface and its position in stress
space depends very strongly on the definition of the yield'
point, particularly in situations following prior deform-
ation [1-3].

The essential premise of the classical plasticity
theory is the assumption of an a priori existence of a
yield surface. This implies a finite elastic domain.

From the mathematical standpoint, a finite domain is
necessary because of the requirement that the increment
in plastic strain be normal to the yield surface. Thus,
the direction of the plastic strain increment is dictated

by the yield surface configuration.

If plastic effects were to begin immediately upon
loading, perforce, the domain of the yield surface would
collapse to a point, thus making the direction of the
plastic strain increment indeterminate since all directions
are normal to a point. Thus, the classical plasticity
theory cannot deal with materials that yield immediately
upon loading. There are other difficulties associated with
experimental attempts to describe and analyze a two-or
three-dimensional response of a material (4]. For instance,
investigationé in the hardening rule are much discussed in
the current literature, but definitive functional forms out-
side the Prager-Ziegler rule are very few, and lack firm
experimental verification. This rule specifically can have

only limited application, and is inappropriate for
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complicated loading histories. Moreover, it gives rise to

large discrepancies between calculated and experimental data

in loading-unloading processes [l]. Other numerical
difficulties arise from the fact that the loading increments
cannot be assigned arbitrarily a priori. When the current
loading increment makes the stress state of a particular element
traverse the yield surface it is necessary to come back to

the previous loading state and adjust the magnitude of the

new increment of loading to ensure that the new stress state

is located just on the yield surface. Certainly, this process

increases the time of computation.

In 1971, Valanis proposed an alternative theory of
viscoplasticity called "endochronic theory" (5,6], which
is based on irreversible thermodynamics and the concept of
intrinsic time. The theory provides a unified point of view
to describe the elastic-plastic behavior of materials since
it places no requirement for a yieldlsurface and a "loading
function" to distinguish between loading and unioading.

In a series of recent works, Valanis, Wu and others
(7-10] demonstrated that the endochronic theory could apply
more precisely to situations involving unloading and cyclic
behavior of metals, as well as wave propagation in the plastic
region.

However, in all of the works, involving.more than one
dimension, where the loading was quasi-static, the stress

fields were homogeneous.
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In the present paper a numerical algorithm is first
implemented in a computer program, which can be used to
analyze the material response in monotonic and cyclic loading
in the case of plane stress or plane strain. The calculated
results are then compared with the data obtained from a
specially designed experiment on a notched plate cyclically
loaded in its own plane. The validity of the endochronic
analysis, using this numerical algorithm, is thereby

demonstrated.
AN INCREMENTAL FORM OF THE ENDOCHRONIC ELASTOPLASTIC

CONSTITUTIVE EQUATION IN TERMS OF {do} and {dc}

The following are the formulae concerning the endoch-
ronic constitutive equations for plastically incompressible

isotropic materials and small deformation (71

z 2eP
s = [ p(z-2') v dz' (2.1)
o
ac = ||deP|| (2.1a)
dz = E?—g;— - (2.1b)

where p(z) and £(g) are two material functions namely the kernel

function and hardening function respectively.

Oy = 3Kekk (2.2)
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p = - .
df d? 2u d?. . (2.3)
By definition
1
delj = deJ_J 3 dsaasij (2.4a)
1
dsij dolJ 3 doaaaij (2.4b)

In this paper the form of p(z) given by equation (2.5)

was used in equation (2.1)

-or.rz
p(z) = ] «cee . (2.5)

r=1

with the conditions that Br-and Rr are positive for all

r and

I ecp==, [ = <= | (2.6a,b)

This form of p(z) is continuous and differedtiable in (0,%)
and therefore the incremental form of equation (2.1) specified
below can be used in cohjunction with a finite element code.
Specifically in the case where the infinitely large value
of p(0) is approximated by a suitably large value, as is done
in this paper, one may differentiate equation (2.1) with
respect to z to obtain the following differential form of

the endochronic constitutive equation:

ds = p(0)de® + n(z)dz (2.7)
where
2 PN 3ep
h(z) = [ p(z-2') 3o+ dz! (2.8)

o
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and
- =—°—
p(2) dz (2.8a)

The elastoplastic constitutive equations (2.3) and (2.7),

can then be combined and expressed in the differential form

= o l |
where
T = p(0),-1
H p(0) {1 + —ia—} (2.9a)

Alternately, for computational purposes the incremental

form given by equation (2.10) may be used, i.e.,

= 0 1
Asij 2y {Aeij + -Q_(-O—T hij(Z) Az} (2.10)

Substituting (2.4a,b) into (2.9) and using (2.2) one obtains
the operational incremental form of the elastoplastic con-

stitutive equation in matrix notation as follows:

{do} = (D} {de} + {de} (2.11)
where ( -
cl c2 0
{D} = <Cz Cl 0 & (2.12)
o 0 u
\ up/
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and ‘ . \
dex
{aga_} = < daH_ >

ki

In plane stress

12Ky + 4u2

3K + 4u

€1

A A2
= OKu = 4u

c
2 3K + 4y

= 2H(3k-2u)
3k + 4u

Dy

dex = {Zuhx(z) - Dlhz(z)} dz/p (0)

dey = {Zuhy(z) - Dlhz(z)} dz/p (0)

dexy = 2uhxy(z)dg/p(0)

In plane strain

3K + 4u

€ = 3
= 3K - 2y

€2 3
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an__ = 21 h (z)dz/p(0) (2.22)

pX
dey = 2y hy(z)dz/o(O) (2.23)
dey = 2y hxy(z)dz/o(o) (2.24)

We note that {D} is an adequate approximation to the elastic
matrix {E}. It is evident from equation (2.9a) that when
p(0) » =, {D} becomes the elastic matrix {(E}. Take plane

stress as an example on the simple tension curve (Fig. 1) draw

f :
2 2v 0
. E
Lin (0} = (B} = yypirp=oyd2y 2 0 p(2.29)
p(0)+= 0o 0 (1-v)

We use axial tension to show the geometric meaning of equatibn
(2.11). From a point A on simple tension curve (Fig. 1) draw
a straight line AB, the slope of which is Young's modulus

E and its horizontal projection is de. For simple tension

{D} {de} = Ede (2.26)

and

BD = Eds

so BD can be considered as the first term of right hand in
(2.11). Since CD is equal to do, the geometric meaning of
de is represented by the segment BC the value of which is

negative for simple tension.
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A FINITE ELEMENT CODE FOR THE ENDOCHRONIC THEORY OF PLASTICITY

Using (2.11) and the principle of virtual work (ll], one
may formulate an initial stress finite element computational

algorithm of the endochronic theory. In fact, we have

féf{c}T{GE}dv = {p, } 6{q; (3.1)

and {pex} and {q} are respectively the vectors of nodal external
forces and displacements of the element. Substituting (2.11) into

(3.1) one finds that
{K} {aq} =°{Apex} + {App} (3.2)

where {K} is the stiffness matrix of the element and is the same
as the stiffness matrix 6f an element in the usual elastic analysis
but the constants Cis C, are obtained from equations (2.14 - 2.16)
or (2.20 - 2.21).

The gquantity {APP} is the incremental plastic pseudo-force
vector for a typical triangular element used in the analysis and

has the form

=-£
(Apr)i 3 (g0, + B 0H )

i=12,2,3 (3.3)

(AP_ ) = = § (8;4H

+ a.
Py’ ; By alAH )

pXy
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Where the components of {Aﬁp} are given in equations (2.17 =19)
or (2.22-24) by changiné operator "d" to "A". & and 8, are
related to the differences of nodal coordinates, i.,e.,

@; = % ey ykl¥y ¢ By T T % e; 5x4%5k (i = 1,2,3)

J J
, (3.4)

where ijk = yj-yk ’ ijk = xj-xk and eijk is.the permutation
symbol.

From equations (3.2) and (3.3) one obtains the total
stiffness matrix {k}, total plastic pseudo force matrix

Z{APP} and the linear simultaneous equations for the structure.

THE CALCULATION OF h(z)

Equations (2.17) through (2.19) show that h(z) plays
a central role in the calculation of {AHP} and plastic pseudo-
force {APP}. To calculate h(z) numerically, we divide the

domain of integration (0,2) in equation (2.8) into n subregions

whereupon
z z,
L aeP i, 3eP
h(zy) = [ plz~2") 3T dz'c.cie. * [ elz~2') zZ+ dz'.....
° Zi-1
z
m ~ Bep
. - ! -~ )
Zn-1

where zi-l, z; are the Lnt;al and end values, respectively,

of the intrinsic time scale of ith interval, which corresponds
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to the ith incremental loading process, and Zn is the current

value of the intrinsic time scale.

The mean value theorem, and the smoothness of gp allows

the approximation

z z

t P I L.

[ etz ~2") %%T dz' = %%— [ olz -z')dz
zZ=z, 2z,

zi.1 i %i-1

(4.2)
provided that there is no strain reversal in the interval
considered. In the present work we approximate the series
on the right hand side of equation (2.5) by three terms, i.e.,

3 -a 2
p(z) = } c.e (4.3)

r=]
Substituting equation (4.3) into equation (4.1) and

using equation (4.2) we obtain the result

3 m P
Je -a_(z_=2. .) a_(z, 2z, )
hzg) = [ Te g o © @ i-lp ot i-fi-1')
r=1 i=l z=zy

(4.4)

This form of h is unsuitable for numerical compulation.
The term ar(zm-zi_l) may in the course of calculation become
very large of ther order of S x 104. Consequently, the
value of the function exp{-a (z -2, ;) } becomes a very
small number leading to serious truncation errors. To avoid
this difficulty we proceed as follows. By mathematical

induction the following formula can be shown:
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3 3 JeP

-a_Az -a_Az ~
= r i r°% _,, = -
h(z;) ) h(z,_;le + ] c.(e 1) 3z 2=z, (1 =1,..m
r=l r=1

(4.5)
where E(O) = 0 and Azi = 2,725 4
This is an important result to the effect that the
history dependence of the material response (through g(zi)) at

the intrinsic time z; will be determined by h(z;_,) and the

3eP '
new incremental step (through 3%‘ and zi). This formula
- 1s also of value in the computer program, because (a) one need
only store the information at z;_1 to obtain results at z;, and
(b) when using (4.5) instead of equation (4.4), the value
of the term exp(arAzi) is no longer small thus aveoiding

truncation errors present in the previous formulation -

(equation 4.4).

THE ITERATIVE PROCESS

For every increment of loading or unlocading an initial
value 4z° is assigned to the increment of intrinsic time.
The linear simultaneous equations are then solved and the
displacement increments are obtained, from which the total
deviatoric strain de is calculated. Also As and Agp are
calculated using equations (2.10) and (2.3) respectively.
Je
== and
9z
h are obtained. Also, from equations (2.17)-(2.19) or (2.22)-

Upon use of equations (2.la), (2.1b) and (4.5) Az,
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(2.24) Apr, Apr, Apry and finally (APp) are ob#ained.
Substituting {APP} into the simultaneous equations (4.2) we
then obtain a new solution for the displacement increments
~as well as the other variables, including Az. The iteration
process is continued until the difference in two consecutive
values of Az, corresponding to two consecutive iterations, is
less than some defined tolerance. Results are stored for
the next step. The new loading process is then repeated.

In this initial stress method of classical plasticity
one [12] usually stops the iteration process if the difference
in the magnitudes of the plastic pseudo-force vector corresponding
to two consecutive iterations is sufficiently small. We use
the scale Az as a criterion of convergence instead of the pseudo-

force vector, not only because of its simplicity but because

of its crucial role in endochronic plasticity.

CONVERGENCE AND TOLERANCE

The rate of convergence is very important because it
relates to consumption of computer time, truncation error
and other related considerations. The key of accelerating the
convergence rate is how to choose the initial Az in order to
begin the iteration process of a new incremental loading
(unloading) step. An accelerator K, was used to determine
the starting value of the increment of intrinsic time Azg by
the relation

8z = KlAzp_, "(6.1)
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where the subscript I denotes the current incremental loading
step and I-1 denotes the preceding step. The superscript o
denotes the initial value, L denotes the last value and Ki

is called the accelerator for the I'th increment. Egquation

(6.1) is not suitable for reversal points, at which Azg is

taken equal to zero, because at the onset of unloading the
response is elastic. The value of the accelerator was determined
by the ratio of the final value of Az in the two previous

steps, i.e.,

Az
gkt = —2=1 (6.2)
a L
I=2

Wwith the exception of the first few (three) increments

I
a

its utility and average value of 1.24 was used and the number

the value of K. was substantially constant. To illustrate
of iterations needed for convergence was compared in cases
where K§ = 1 and Ki = Q, See Fig. 2 where n pertains to

YP i3 the plastic strain near the

the fifteenth increment and ¢
tip of the notch. Curve 1 (Ka = 0) shosws that the convergent
process is very slow. The reason is that at the first iteration
Azg = 0 since Ka = 0 and therefore {aP}P = o0, i.e., the loading
process so initiated is elastic and is far away from the real
case., Curve Z(Ka = 1) shows the convergent rate is much better
than in curve 1, because it takes the final value of Az in the
previous incremental loading step as the initial value of Az

in the current step. However, in this procedure the plastic

pseudo~load is underestimated. A value of Ka greater than
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unity does increase the rate of convergence as shown in curve
3 (Ka = 1.24). Figure 3 shows the effect of accelerator

factor Ka on the average iteration number N per incremental

ave
loading step.

By definition the relative error ERR is defined as

Azn-Azn_l

Azn

ERR = (4.41)

-where n is the number of iteration steps. Tolerance
is defined as the maximum acceptable value of ERR.
‘FPigures 4 and 5 show the effect of tolerance on the

accuracy and rate of convergence. In the example shown

the smaller the tolerance the higher the accuracy (Fig. 4),
but the number of iterations increases (Fig. 5). One however
must guard against an excessively small tolerance, which may
lie outside the inherent accuracy of the numerical computation
and computer capability, leading to accumulation of truncation

errors. In the present work the tolerance was 1l%.
COMPARISON BETWEEN EXPERIMENTAL DATA AND CALCULATED RESULTS

To verify the wvalidity of the endochronic analysis, using
the present numerical algorithm, the distribution of strain of
a notched specimen (made of OFHC copper) cyclicly loaded in
its own plane was calculated and measured. One quarter of
the specimen is shown in Fig. 6. The material functions p(2)

and £(z) were determined by means of an experiment on a round
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specimen of precisely the same material as the notched specimen,
in terms of purity, grain size and treatment. The method of
determination of these functions will not be given here but
may be found in Ref. 13. Suffice it to say that they are of

the following form:

3
-2
p(z) = ¥ A_e o (GPA)
r=1
where A, , 3 = (592, 220, 46) and @ ,2,3 = (27.5, 11.5, 7.67)

b4 lO3 and
£(z) = 1 + 0.53z9-72

The calculations were conducted on an electronic computer
(AMDARL 470 V/7A, close to IBM 370) in the computer center of
the University of Cincinnati. There are 413 elements and 230
nodes in one gquarter of the specimen (Fig. 6). The side of
the smallest element is 0.25 mm. By "varying band storage" the
amount of storage for the total stiffness matrix is 17698.

The incremental loading for each step is 4% of the maximum

load. The average number of iterations for each incremental
loading waS'ébout 10, varying from 3 to 20. The computer time
for each iteration was about 3.36 sec., most of which is used

to solve the 460 simultaneous equations. The experiments were
conducted in Metcut Research Associates Corporation. The

strain distribution was measured using strain gauges, the
smallest nominal length of which was 0.2 mm. Since the locations
of the elements and the strain gauges did not coincide exactly,
we compared the calculated results with experimental data in

terms of plotted curves. Comparisons were made over a wide
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range of magnitude of applied maximum stress, location and type

of histories. -

v Aiong the Notch
Center Line oo' are Shown, for Applied Stress Amplitude 3.7 x 107PA

Measured and Calculated Strain Distributions e

(1) at first tensile peak A. Fig. 7
(ii) at first unloading point C. Fig. 8
(iii) at first compressive loading peak B. Fig. 9

Letter designations as shown in those Figures.

Measured and Calculated Strain Distributions ey Along the

Vertical Line ob are Shown for Applied Stress Amplitude 2.3 x 10'P:

(1) - at first tensile peak E. Fig. 10
(ii) at first compressive peak L. Fig. 11
(iii) at second loading peak H. Fig. 12
Letter designations as shown in above figures,
| Despite the complexity of the boundary value problem and
the inherent experimental difficulties the agreement bétween
axperimental and célculatéd results is excellent both from

the aspect of tendency and magnitude.
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