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This paper develops an algorithmic solution strategy which enables
handling the positive/indefinite stiffness characteristics associated with
the pre and postbuckling of structures subject to complex thermomechanical
loading fields. The flexibility of the procedure is such that it can be
applied to both finite difference and element type simulations. Due to
the generality of the algorithmic approach developed, both kinematic and
thermal/mechanical type material nonlinearity including inelastic effects
can be treated. This includes the possibility of handling completely
general thermomechanical boundary conditions. To demonstrate the scheme,
the results of several benchmark problems is presented.

INTRODUCTION

Literally a multitude of studies have been reported on the isothermal
simulation of problems wherein kinematic and/or material nonlinearity is
excited. In recent years, most typically such work involved the use of the
powerful finite element (FE) scheme [1]. In contrast, much less work is
available for nonisothermal versions of such problems. This is an outgrowth
of several main factors namely:

i) Unlike mechanical type loads which are generally applied at-specific
points around a given structure, transient thermally induced loads
occur at every body point causing complex distributed loading and un-
loading fields which typically induce difficulties in simulating proper
inelastic type behavior; '

ii)  Since thermal loads are internally induced, for nonlinear situations,
it is typically quite difficult to adequately forecast the level of
incrementation necessary for nonlinear equation solvers to yield con-
verged solutions without involving an expensive time consuming trial
and error procedure;

iii) . For problems with highly nonlinear kinematic behavior, little is under-
stood of the process of thermomechanical interaction; and lastly,

iv)  Thermomechanically induced pre and postbuckling behavior exhibits in-
definite stiffness characteristics [2]; such behavior precludes the
use of the classical form of the incremental Newton Raphson (INR)
scheme which is restricted to problems with a given definiteness [2,3].

Since.numerous thermomechanical problems fall into the foregoing cate-
gories, this paper will consider the development of a solution strategy which
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bypasses the difficulties denoted by items i) - iv) noted earlier. Specific-
ally, a constrained type strategy [4-7] will be developed for use with either
the finite element [1{ or difference methodologies. The generality of the
procedure is such that both pre and postbuckling behavior can be handled
along with arbitrary kinematic and material nonlinearity. In this context,
problems exhibiting indefinite stiffness characteristics can be handled.

GOVERNING EQUATIONS: MECHANICAL

Assuming the possibility of large deformations, the equations of motion
complementing the thermal formulation are given by the expression

2
aui Icu,

_ i
33; ) + 90i ~ Po 3T (2.1)

3
2] (Syp (85 *
where goi designates the body force vector, &i is the Kronecker delta, Sjj
the second Piola Kirchhoff stress tensor, uj the deflection vector and aj the
Lagrangian coordinates. For the current purposes, the Lagrangian strain
measure Lij is employed in conjunction with Sij namely

aui auj aul aul
2a * Ja * da; 3 a (2.2)
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In terms of the Sij and Ljj measures, the thermoelastic-plastic be-
havior is handled in terms of the usual yield surface flow rule assumption.
The creep effects will be treated in terms of strain hardening concepts
wherein variations in creep rate depend on the existing strain rate. From a
computational point of view, the overall thermoelastic-plastic-creep behavior’
is solved via incremental type flow rules. Under the condition of large de-
formation moderate strain behavior and the usual flow rule assumption, the
following incremental type constitutive relation is adopted, that is [8]

15 = [Dgp(aL - alg - aly) (2.3)

where [Dep] is the elastic-plastic material stiffness and aL, ALC and ALT

are increments in Lagrangian creep and thermal strain. For the current work,
ALc is expressed in terms of mechanical equations of state. In particular,
it takes the form

L

=1
TR

aLe = 8t v Sy (2.4)
where Sq is the deviatoric stress and
o€
=L _c
Y Gd at (2.5)

d¢e
such that o4 and 5?2 are respectively the equivalent stress and creep strain

rates. Lastly, the increment in thermal strain appearing in (2.3) is de-
fined by

AET = aAT (2.6)

~

154



where g is the thermal expansion coefficient matrix and aT is the temper-
ature increment. Note, based on the thermal fields generated earlier, it
follows that the various coefficients are temperature dependent.

In the context of (2.3) it follows that depending on the load step,
the current stress state is given by the expression

S = zAS (2.7)

where the matrix S takes the form

(S. .S , »S +S 45 ) (2.8)
- -117 <227 =337 -127 =23’ L3l

-

Noting the linear structure of AS, we see that the incremental scheme
enables the following segregation of contributing components namely

§ ) §ep * §epc * §epT (2.9)
where

§ep = £A§ep (2.10)

§epc ) 5A§epc : (2.11)

§epT = ZA§epT }(2.12)
such that

A?ep = [Dep] AE (2.13)

A§epc = - [DepJ oL (2.14)

A?epT = - [Dep] ALs (2.15)

As will be seen later, such a partitioning of the stress state will enable
the establishment of an improved control of successive iterates during the
incrementation process.

FE FORMULATION/SOLUTION ALGORITHM: MECHANICAL

Following the thermal formulation, we shall employ a displacement
type procedure to develop the requisite mechanical FE expressions. In this
context, the deflection field is approximated by

U= [NU}\: (3.1)

Whe‘e
U = u, u ’ u 3.2
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such that [N, ] is the displacement type shape function while Y is ?he qoda]
deflection véctor. For consistencies sake, the same order poTynomial is used
for both the thermal and mechanical phases. Based on (3.1) and_the virtual
work principle, the following FE expression can be developed [1]

.e *
- - 303
yTF + s (B8 av = oy (3.3)
0
where
*
(8, = [B,] + [8,](6] (3.4)
[Mul = 6 pO [NU]‘[NU] dv (3-5)
0
Fext = Froda1 * 6 [NU]‘ 9oxt 9V (3.6)
0
such that
Jext = (9,5 9,5 9,) (3.7)
Note Fnodal represents the externally applied nodal loads.

Since dynamic postbuckling problems will be the subject of another
paper, for the current purposes, we shall consider quasi-static thermo-
mechanical problems. In this context, (3.3) reduces to the form

! [Ba]‘ Sdv=F
v

- -ext (3.8)
)

To simplify the development of the requisite solution algorithm, the
partitioned form of § will.be used to recast (3.8) into a more tractable
form. Before doing so, we note that due to their analytical form, the
creep and thermal partitions of S can be Tumped with Fext to yield a

pseudo applied force field namely

»*
F=Faxt " 6 |:BU:l (§epc * §epT) dv (3.9)
0
Hence (3.8) reduces to the form
*
)

Since Sepc and SepT are time dependent terms, the solution to (3.10)
requires the introduction of a time stepping algorithm to generate the
requisite solution. This is achieved by expanding (3.10) in truncated
Taylor series. To start, Y(t+at) is expanded to yield

!(t+At) = !(t) + A! (3.11)
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Substituting (3.11) into (3.10) and truncating higher order terms yields
the expression

* %*
;o[B8,]°s, dv| =r[B,°S.. dv ]| +[K]]| aY (3.12
vo U= Zep tat Vo U= Zep t U L - )

where

[k | = 7 ([61Ts06] + (81 (oG J08D) | av (3.13)
0 t

such that [S(t)] is the prestress matrix at time t. Based on the defi-
nition of pseudo force, Eq. (3.9), it follows that

F F oo | rBI S +S. )| d (3.14)
= - ‘ : v .
- t+at Xt teat v, UT ¢ '=epC  ZepT® i .t

Now in terms of (3.10), (3.12) and (3.14), we obtain the following
time stepping Newton Raphson type algorithm, that is

Foee | = 1 81" | (Sooe * Seor) | dv =
-ext LAt vo u t ~epC  TepT trat
*
5 [BU]‘ §ep L dv + [KU] L A! (3.15)
0
Based on the use of such a relation, successive time steps lead to the
following thermomechanical history namely
t  T(t) s(t) L(t)
0 T(0) s(0) L(0)
at  T(at) S(at) L(at) cen
2at  T(2at) s(2at) L(2at) ...
3at  T(3at) S(3at) L(3at)
4at  T(4at) S(4at) L(4at)

iat  T(iat) S(iat) L(iat)

As noted earlier, the NR base of (3.15) suffers from several short-
comings. The more important of these are:

1. Cannot handle turning points (buck]ing);

2. No direct control on successive iterations; and,

3. Difficult to ascertain zones of convergence as solution proceeds.

Such drawbacks will be circumvented through the use of constraints in
the manner of Padovan and Arechaga [6]. Specifically the load increments
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associated with successive time steps will be constrained. Such a process
leads to nonuniform time stepping. From the nature of (3.15) it follows
that constraints must be imposed on increments in the pseudo load F. For
the current purposes the hyper-elliptic constraint surface (HECS) of

Padovan, Tovichakchaikul and Arechaga [7] will be employed to control succes-

sive iterations of a given time step. Such a process is illustrated in

Fig. 1. The development of the requisite constraint algorithm for the given
problem requires several main steps, namely:
i) Establish form of INR extrapolation for a given iteration;
ii) Establish shape and size of HECS;
iii) Determine intersection of HECS and INR extrapolation;
jv) Establish iterative/time stepping aspects of solution algorithm; and,
v) Establish information required for next time step.

To start the development, it follows from Fig. 1 that the hyperline
defining the INR extrapolation takes the form

[kygd(y-yg) = (f-fp) (3.16)
On solving for y we obtain

y = yg *+ kgl ™ (F-F5) (3.17)
such that

f5=fs-Fa (3.18)

8 = T = a (3.19)

The HECS appearing in Fig. 1 is given by the following normed poly-
nomial expression

16112 + wply112 = 15,112
such that

fe=Fc-Fa

The parameter up appearing in (3.21) regulates the aspect-ratio (abscissa/
ordinate) of the HECS.

(3.20)

(3.21)

The intersection of the HECS and INR extrapolation occurs at point I
as defined in Fig. 1. Specifically the coordinates of position I are

given by
yre¥r-Y% (3.22)
¢
fr =2 (Fg - Fp) (3.23)
such that AI is a single parameter constraint on the allowable load step

size and hence the interval in time utilized. Based on (3.22) and (3.23),
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it follows that (3.17) and (3.20) yield the expressions
- -1 _ -1,.1
Y1 = ¥ * [Rygl (fy-fg) = yg + [kygl (3 F¢ - ) (3.24)

-~

HE T2+ gLy 12 = [1£112 (3.25)
In terms of (3.24), (3.25) takes the form
I -1
[ fe 12+ ugllyg + [kyg™ A = £0)112 = |)£0 12 (3.26)

I

Expanding (3.26) and collecting like terms in A" yields the following

polynomial identity namely

(AI)zalI + ZAIQZI ta =0 (3.27)
where

ayp = HFCII2 + gl Téygd 'R 12 (3.28)

2,1 = ualyg) “lkygl“fy (3.29)

ayp = llyg - [Kygl ' Fgl12 = [1£,112 (3.30)
Solving (3.27) for AI, we obtain

Byt Jlg - e (3.31)

e 21

Based on (3.22), (3.24) and (3.31), YI the nodal deflection associated with
the Ith intersection of the INR extrapolation and the HECS takes the form

- e e+ 2 . .
fa* ¥g * [Kygl™ (g (rayp 2y (a)? - aypayy) f - fgb (3.32)

Y
~ alI

I

To establish the requisite time stepping aspects of the solution algo-
rithm, the following variables must be redefined in terms of incrementation
namely Ya, Y8, ¥1-¥8> FA» Fg» Fc and [Kyg]l. Letting 2 denote the time step
number and i the iteration count, it follows that positions A, B and I in
Fig. 1 designate the location of the Oth, ith and (i+1)th iterations. 1In
this context, it follows that

- yO0
A= Yo (3.33)
. i .
= y! = O i
Y= Y1 = Vo ¥ k£1AY2+1 (3.34)
yp - ¥g = avIe (3.35)
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The time associated with point A is the summation of the & preceed1ng con-
strained time steps. Hence, since the interval utilized over a given load

step
by_

such

step.

is Afat, it follows that the time at the end of the sth step is given
SR

t, = I At (3.36)

L k=l k

that AZ is the finally converged value of the constraint for the kth

Employing the foregoing nomenclature, it follows that

. 0
EA 6 [B (Yz+1)] §ep (!z+1) dv (3.37)

)
Fo=s (87 (Y. )7°s. (v).) dv (3.38)
.8 v U oo+l -ep 2+

0

1

F.=f l -f [B (Y )] (S )| dv  (3.39)
.c .ext t +At o vo A+ epC epT tA+At "

The various stress components appearing .in (3.37) - (3.39) take the form

such

(vl+]) = kil 8S, (Yk) (3.40)
Sep! z+1) = Se (Yg+1) (Yz+]) (3.41)
c(t )= 3 85¢p (tﬁ_, + Azat,) " (3.42)
k=1
s1oclth +at) = s (th) + as] (theat) (3.43)
~epC' g ~epC —epC' "2 '
Ay o
§epT(tz) - kE1 ASepT(tk 1% Atk) (3.44)
T(t +At) = T(t )+-AS T(t +at) (3.45)
that the various increments are given by
AS (Y£+]) [D (Y2+])]AL(Y2+]) (3.46)
* i i 0
(Y1) = B (Y)Y = Youp) (3.47)
A v - A v
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BSept(tiq + Aeat) = - [0gy (Y ) Ia(T(E)) (T(t)+r7at) - T(£)))  (3.49)
BSepc(thrat) = - [0, (¥Y3,q) 8L (£ ,a8) (3.50)

ept(t tat,q) = - [0, (Y2+1)]a(T(t ))(T(t) Jtot) - T(t ))  (3.51)

To check the convergence of the foregoing algorithm, several tests are
employed. These include:

i) Definiteness check:
‘cnzl)2 R 0 (3.52)
i) Pseudo force norm check:

AL, 1+1 A, -
[TE(tg+a, qat) = E(tg+r, qat)]]

2+1
X, i+ € (3.53)
ii4) Displacement norm check:
i+l
[1Yoer = Yourll
2+l ~o+]
||Y1;T]} < ey (3.54)
2+1
jv) Constraint check:
A1‘+} _ i
o+ +1
'AiT—- < e)‘ (3.55)
2+1

The preceeding tests are applied at different phases of the iteration
process. Test i) is used to resize the HECS by self-adaptively readjusting
up the aspect ratio so as to guarantee an intersection with the INR ex-
trapolation and thus ensure a convergent solution [6]. Test ii) is employed
to monitor the monotonicity of successive load excursions. Lastly tests
ii1) and iv) are used to quantify when adequate convergence has been achieved.

Once convergence is obtained for a given time step, the overall solu-
tion algorithm must be prepared for the next interval. This requires that
the various field variables are properly updated. Specifically this in-
cludes such terms as Y, Sep, SepC» Sepr and t. In this context, if we let
I9+1 desi nate the number of 1terat1ons required to yield convergence of
the (2+1)th time step, then Y at the outset of the (g+2)t th is given by the
expression I

o] =
Yz+2 Yz+] * kfl AYz+1 (3.56)
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Note as the iteration process converges, the constraints A1+1 represent a
sequence which approaches the limit (cluster) point AJ+] namely

i v '
1 2 3
Xp‘_‘.], k2+~|’ X2+],oco, )\z+],oo‘o, Az+] . (3.57)

In this context, the time at the start of the (2+1)th step is given by
A s ti +27.. at 5 (3.58)

t9,+1 2+]

Now, based on (3.56) and (3.58), it follows that the various stress
partitions take the form

0 . 0 0
§ep(!z+2) - §ep(!z+1) * A§ep(!2+2) (3.59)
0 _ A 0 A
Sepc I - §epc(tz+1) * A§epc(tz+1+At) (3.60)
£} +at
2+1
0 - A ) A
§epT | §epT(tz+1) * A§epT(tz+1+At) (3.61)
td sat
2+1

such that the various increments are defined by the expressions:

0 . 0 A
A§ep(!z+2) - [Dep(!z+2)]AE(tz+1) (3.62)
A = ra¥(y0 0 o
oL{tgy) = [BU(Xz+2)](!z+2 - Yo (3.63)
A e+l A v
Sepc(tae1) ™ 2, SSepc(tha1 ¥ Aot (3.64)
A 241 A v
§epT(tz+1) - k£1 A§epT(tk-1 At (3.65)
as® (t} .+ at) = - [D_ (Y2 ,)IaLa(t), s At) (3.66)
~epC' "2+] ep' 2+2/4°2C "e+1? *
0 (A . 0 A A A
8Sgpr(tesr + 0E) = - [0gp (Ypup) TalTlty  N(T (g, + at) - T(ty,q))
(3.67)

Note for the present purposes, to enhance the speed of calculation
of the stiffness inverse, the BFGS [3,7] scheme is employed. This
approach was chosen over the straight updating scheme which is particu-
larly expensive when several iterations are involved. Such situations
typically occur in the vicinity of buckling points.

As was noted earlier, if the INR type scheme is employed to solve
the thermomechanical problem, uniform time stepping in the thermal phase
of calculations also leads to equal time intervals for the mechanical
stage. In contrast, the use of constraints in the INR methodology yields
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unequal time stepping requirements for the mechanical phase. Namely,
the following type thermomechanical history is obtained, that is

t T(t) S(t)
0 T(0) §(0)
Ajat T(A]at) §(A¥At)

A,V AL L7 A,V
t] + ;\zat T(t1 + xzat) §(t1 + szt)

AL,V A
t+ A0t T(tzu

v
2+1

v

z+1At)

At) S(t;: +2

where here the sequence 0, 21, VAt,...tp)j + Ag+]At is typically nonuniform.
Because of this, the temperature data required to generate the thermal
strains and material properties are interpolated from the uniformly gener-
ated data.

BENCHMARKING

In the preceeding sections, a specialized HECS constrained BFGS up-
dated INR time stepping strategy has been developed. The methodology
enables the static solution of pre and postbuckling thermomechanical prob-
lems. In order to thoroughly -evaluate the procedure, several highly non-
Tinear benchmark problems were undertaken. The main thrust of this work
was to ascertain the capability of the constraint methodology to deal
with thermomechanical problems involving:

a) Large deformation kinematics including the possibility of pre
and postbuckling behavior;

b) Thermoelastic-plastic-creep material behavior;

c) Temperature dependent thermomechanical material properties;
as well as,

d) Time dependent thermomechanical loads with varying combinations/
interactions between the thermal and mechanical components.

This was achieved by programming the solution scheme into ADINA [9]
and its complementing thermal code ADINAT [10]. Such an approach enabled
benchmarking over a wide variety of geometric configurations, material types
and boundary conditions. For the present purposes, the demonstrational
benchmarking consists of calculating the pre and postbuckling response of
an arch to various types of thermomechanical loading fields.

For demonstration purposes, Fig. 2 illustrates the geometry of the
centrally loaded arch used for the benchmarking. The creep law employed
is given by the expression

ca e 1%

€ " o |
As seen from Fig. 2, eight noded plane stress isoparametric elements are
used to generate the FE simulation.
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To demonstrate the numerical efficiency and stability of the improved
constrained MINR time stepping scheme, the thermoelastic-plastic-creep pre-
postbuckling problem depicted in Fig. 3 is considered. As can be seen from
this figure, the problem is driven into the postbuckling range of behavior
by the time dependent growth of creep. Overall, the creep generated re-
shaping initiates a redistribution in the internal loads hence causing a
change in load carrying capacity. Due to the nature of redistribution,
plasticity is initiated in the later stages of postbuckling. Noting Fig. 3,
teritical marks the time at which the pre to postbuckling transition occurs.
This time zone is marked-by changes in the definiteness of the structural
stiffness. Table 1 illustrates the numerical efficiency/stability of the
BFGS updated constrained scheme in capturing such behavior. In the case of
At = .8 hours, Table 1, the improved algorithm yielded 210% reduction in
computer time over the constrained MINR scheme. Note the classical un-
constrained INR scheme completely fails in such zones of behavior for any
choice of at. As the time step is increased further, unless some inter-
mediate updating is employed, even the constrained MINR approach fails.

This is in contrast to the BFGS updated scheme which shows significantly
enhanced convergence, efficiency and stability characteristics.

As a more severe test of the scheme, we shall consider the case of
cyclical creep loading problems wherein buckling occurs after several cycles.
Figure 4 illustrates the load deflection behavior of the arch under a
cyclically applied external load. As can be seen, as the load is cycled
the accumulated creep over the various cycles progressively reduces the

buckling 1imit of the arch. In essence, after several cycles the arch
behaves as a structure with shape imperfections. Such reductions in
load carrying capacity are illustrated in Fig. 5. Specifically, this
figure depicts successive families of load-deflection curves which ii-
lustrate the decrease of buckling strength with time. Note, due to the
efficiency and stability of the improved constrained MINR time stepping
scheme, problems involving variable/cyclic loading environments can be
handled moré effectively.

The last example considered consists of the thermally induced buck-
1ing of the bimetallic arch depicted in Fig. 6. Noting Fig. 7, as the
arches temperature is raised, a critical value is reached wherein exces-
sive deflections occur with no essential raise in T. Such behavior con-
stitutes the thermal equivalent of buckling. This follows from the fact
that the structural stiffness is indefinite during the event.

SUMMARY

As noted earlier, the main thrust of this work has been to develop an
improved solution procedure for elastic-plastic creep pre-postbuckling
problems. Also of major importance is the maintenance of maximum algo-
rithmic compatibility with currently available general purpose codes such
as ADINA, ANSYS, MARC, NASTRAN, etc. As can be seen from the proceeding
benchmarking, the improved constrained scheme developed herein significantly
enhances the numerical operating characteristics of MINR type algorithms.

It should be further noted that due to the manner of formulation, the over-
all procedure can be encoded into most general purpose codes with little
rearchitecturing of the programming.
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