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Several unified constitutive models were tested in uniaxial form by
specifying input strain histories and comparing output stress histories.
The purpose of the tests was to evaluate several time integration methods
with regard to accuracy, stability, and computational economy. The sen-
sitivity of the models to slight changes in input constants was also in-
vestigated. Results are presented for IN100 at 1350°F and Hastelloy-X at
1800°F.

INTRODUCTION

The characterization of the constitutive behaviour of metals has its
roots in the early work of Tresca, Levy, vonMises, Hencky, Prandtl, Reuss,
Prager, and Ziegler (Refs. l-8). These early models are incremental in
nature, assume that plasticity and creep can be separated, and they incor-
porate a yield function, flow rule, and hardening rule to define the plastic
strain increment. These original incremental theories have been expanded
and modified by many researchers so that they provide adequate, and often
very good predictions of rate-independent plastic flow (see for example
Refs. 9-10). However, they are sometimes criticized as having no formal
micromechanical basis upon which to make the assumption of an uncoupling
of the inelastic strain into rate-independent (plastic) and rate-dependent
(creep) strain components. Nevertheless, the classical incremental theories
are widely used.

During the last ten years, a number of unified constiutive models have
been proposed which retain the inelastic strain as a unified quantity with-
out aritifical separation into plasticity and creep components. These in-
clude the models developed by Bodner (Refs. 11-13), Stouffer (Refs. 14-15),
Krieg (Ref. 16), Miller (Ref. 17), Walker (Refs. 18-19), Valanis (Refs. 20-
21), Krempl (Ref. 22), Cernocky (Ref. 23-24), Hart (Ref. 25), Chaboche (Ref.-
26), Robinson (Ref. 27), Kocks (Ref. 28), and Cescotto and Leckie (Ref. 29).
The applicability of these viscoplastic constitutive theories (mostly to
high temperature applications) has been investigated by several researchers.
Walker (Ref. 19) compared the predictive capability of several models (Walker,
Miller and Krieg) for Hastelloy-X at 1800°F. More recently, Milly and Allen

169



(Ref. 30) provided a qualitative as well as quantitative comparison of the
models developed by Bodner, Krieg, Walker and Krempl for IN100. Both Refs.
19 and 30 conclude that these models generally provide adequate results
for elevated isothermal conditions, they provide poor and overly-square
results at low temperature, the material constants are often difficult to
obtain experimentally, the resulting rate equations are "stiff" and sensi-
‘tive to numerical integration, and the models do not provide any satisfac-
tory transient temperature capability. Beek, Allen, .and Milly (Ref. 31)
have shown that all the unified viscoplastic models mentioned above can be
cast.in a functionally similar form (in terms of internal state variables).

None of the published literature provides a thorough evaluation of cur-
rent viscoplastic constitutive models with comparison to experimental re-
sponse for complex input histories. Such an evaluation is difficult at pre-
sent for many reasons, namely: 1) Material constants for most models are
usually available only for a single material and often for a single temper-
ature; 2) The experimental procedures given by model developers for deter-~
mining material constants from experimental data are often sketchy at best;
3) Material constants for some models are often obtained by trial-and-error
and are not based on experiments; and 4) There is a lack of good experimental
data against which the models can bé evaluated (that is, test data which is
significantly different from that used to generate the material constants).

The purpose of the present paper is to report some preliminary evalu-
ations of several of the unified viscoplastic models (Bodner, Krieg, Miller,
and Walker). These four models are evaluated with regard to 1) their sen-
sitivity to numerical integration and 2) their senmsitivity to slight changes
in input material constants.

CONSTITUTIVE MODELS CONSIDERED

The constitutive theories which have been studied to date include Bodner's
(Refs. 11-15), Krieg's (Ref. 16), Miller's (Ref. 17), and Walker's (Refs.
18-19). These particular models were selected for this initial study be-
cause materlal constants for Hastelloy-X were available for three of the
models. Other models are currently being considered as material constants
become available. Each model is listed below in uniaxial form using a con-
sistent notation as presented by Beek, Allen and Milly (Ref. 31). In Ref.

31, it is shown that all of the current viscoplasti: zicdels considered mar
be written in uniaxial fomm as

g = E(e - o - eT) (1)

where g is stress, E is Young's modulus, € is strain, a; is the inelastic
strain (internal state variable), and ET is the thermal strain. Each vis-
coplastic theory postulates a particular growth law for the internal state
variable(s) and the inelastic strain is obtained by time integration of
the growth law for % i.e.
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In equations (2) and (3), t is time, T is temperature, ay is the back stress
(related to the dislocation arrangement and produces kinematic hardening

or the Bauschinger effect), and a3 is the drag stress (which represents

the dislocation density and produces isotropic hardening).

Bodner's Theory

The growth law for the inelastic strain in Bodner's model may be writ-
ten in uniaxial form as

-2n
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The quantities E, Dy 0y my, Z1, A, Z and r are material constants. As
noted before, the variable O, is “similar to the drag stress used in
many models (a measure of isotropic hardening or dislocation density).

It is noted that the model contains no parameter representing the back
stress and cannot account for the Bauschinger effect in kinematic harden-
ing materials. The material constants are tabulated for IN10O at 1350°F
(732°C) in Table 1 (taken from Ref. 14).
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Krieg's Theory

The inelastic strain growth law for the model developed by Krieg and
coworkers may be written in terms of state variables representing back
stress and drag stress:

c
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&, = C, & -C, a [exp(Cc a2 ) - 1] sgn (&) (8)
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n
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The model contains ten constants (Cl’ 02 o v ey C7, E, a3o; and n).

These have been evaluated by Walker (Ref. 19) for Hastelloy-X at l800°F
(982°C) and are tabulated in Table 2. It should be noted that equations
(7), (8) and (9) form a coupled set of ordinary differential equations.

Miller's Theory

The growth laws for Miller's model may be written in uniaxial form as

1.5

. lo - azl
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1 a3 2

. _ . _ ' A n
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A ' n
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Miller's theory contains nine constants which are tabulated for Hastelloy-
X at 1800°F (982°C) in Table 3 (see Ref. 19).
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Walker's Theory

Walker's nonlinear viscoplastic theory can be cast in the following
uniaxial form '

. lo - azl ° 13
a, = 3 sgn(d - a,) (13)
3
. . . a <n5R )
0.2 = (nl + nz)al - (C!z - 0.20 - nlal) lall R (n3 + D.AR)ZR T.‘T'-I1_6R- + 1
PR P Lt | (14)
7 2 2
o
L[] _ [ ] - (] - - q
ay = ng || - ng loqlag = n g (0q a3o) (15)
where R is the cumulative inelastic strain
t aal
R = f ot'| dt! (16)
A .
The general model requires sixteen constants (E, n, m, q, ], N2, . .

LI and a3(t—0) In determining the constants for Hastelloy-X at 1800 F
o

(982°C), Walker made several simplifying assumptions [including a3 = cons-

tant = a3(t=0)] which reduces the number of parameters to those shown in Table 4
(see Ref. 19). Further, the constants reported in Ref. 19 were developed from tests
using strain rates in the range 10 "3 to 10 ® sec™! and strain ranges of *0.6%.

NUMERICAL TIME INTEGRATION STUDY

The integration of the constitutive relationship given by equations
(1), (2) and (3) forms an integral and extremely important part in any nu-
merical solution of a nonlinear field problem. It has been observed by
many researchers that the coupled system of ordinary differential equations
defining the state variables may be locally "stiff" and thus are sensitive
to the time step size and numerical algorithm. The accurate integration
of these stiff equations can be accomplished by various means: use of small
time steps, higher-order or multi-point integration schemes, subincrementation
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procedures (Refs. 33-35), "smart" algorithms which attempt to select appro-
priate time steps in order to achieve accuracy and stability (Refs. 36,37),
algorittms tailored for individual comstitutive theories (Refs. 32,37), or
combinations of these approaches. In general, the computation time required
for the accurate solution of materially nonlinear problems is directly re-
lated to the numerical integration scheme used.

Regarding the constitutive models reviewed herein, Walker (Ref. 32)
uses a stable, iterative implicit scheme which takes advantage of the func-
tional form of the integrand in the development of the reccurence relation.
Miller originally used Gear's method (Ref. 36) to integrate the stiff equa-
tions in his theory but later concluded in Ref. 37 that an implicit back-
ward difference method was more economical and preferable to either Gear's
method or the explicit Euler forward integration method. The type of num-
erical integration scheme used by Bodner and Krieg is not known.

The selection of an appropriate time integration scheme to be used in
a computer code is very important but is often based on the answers to such
questions as: "What is available in the present code?", "What will work
most of the time?", "What can we use that most users will understand?",
"What is the cheapest and easiest to use?'", and the like. The usual re-
sponse given is "it depends on the problem being solved!"

In general, equation (3) may be integrated between time t and t + At
by writing

t+At t+At
f dal =/ o dt (17)
t t
or
t+At
Aal = al(t + At) - 0‘1 (t) = f o dt (18)

t

where &) is defined by the particular constitutive theory being used. The
present investigation considers four integration schemes: explicit Euler
forward integration, implicit trapezoidal method, trapezoidal predictor-
corrector (iterative) method, and Runge-Kutta 4th order method. The approx-
imations for each of these methods is given in Table 5.

Each of the integration schemes in Table 5 were used to obtain stress-
time and stress-strain responses for the four constitutive models considered
herein when subjected to the uniaxial, alternating square-wave strain-rate
history shown in Fig. 1. Figure 1 shows the 35 second response obtained

174



by Krieg's theory for Hastelloy-X at 1800°F using a time step of 0.l sec-
onds. For this time step, the Euler and trapezoidal predictor-corrector
methods provide essentially the same results and are virtually identical

to that obtained for all methods using a time step of 0.005 seconds. The
4th order Runge-Kutta method generally overestimates the peak response while
the trapezoidal method underestimates the response. Figure 2 presents re-
sults for three integration methods such that the total computation time
for a 35 second response solution is approximately the same. For equiva-
lent computation times, the Euler method provides the most accurate results
although smaller time steps are required. Similar results are observed for
Miller's model. '

Figures 3 and 4 illustrate that various constitutive models may behave
appreciably different using the same integration method (in this case the
Euler method). 1In Fig. 3, Miller's theory (for Hastelloy-X at 1800°F) gives
considerable oscillatory response for a time step of 0.005 seconds while
Walker's theory shown in Fig. 4 gives a much smoother response for the same
time step. Comparing Figs. 3 and 4, it is seen that a smaller time step
is required (with Euler integration) in Miller's theory than in Walker's
theory. '

Figure 5 presents results for IN100 at 1350°F using Bodner's model.
Time steps were chosen for each integration scheme to obtain solutions which
required approximately equal computation times. These results, when com-
pared to solutions with much smaller time steps, indicate that the Euler
method provides the most accurate results. Again, the time step used is
smaller than that for the other methods but the computation time is the
same (for integrating the constitutive equations).

SENSITIVITY STUDY FOR MATERIAL CONSTANTS

In the previous section, results were presented which showed how the
numerical integration method used to integrate the constitutive equations
could affect the accuracy and computation times of predicted results for
stress-time and stress-strain responses. In this section, we consider
another important parameter in the application of any constitutive theory.
Namely, "how does the accuracy to which material constants are determined
from experimental test data affect the predicted response?"

Figures 6 and 7 present results for Walker's model (Hastelloy-X at
1800°F subjected to an alternating square-wave strain-rate history as shown)
wherein specified input material constants have been adjusted by 5%. Fig-
ure 6 shows the effect of a =5% change (error) in the stress exponent n
(the most sensitive parameter). Figure 7 shows that a +5% error in all test
data required to compute material constants results in significant predicted
response errors, up to 30% over-prediction in the stress at a time of 35
seconds (during the relaxation period).

Figures 8 and 9 present similar results for Krieg's model (Hastelloy-X
at 1800°F) and Bodner's model (IN100 at 1350°F), respectively. Both results

indicate that the most sensitive parameter is the stress exponent "'n" and
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that a 5% error in specifying n may produce significant errors in the pre-
dicted response. Miller's model appears to be much less sensitive to er-
rors in input material parameters.

Figure 10 provides a comparison of the Miller, Krieg, and Walker models
for the Hastelloy-X test at 1800°F (using constants obtained by Walker for
all models). The Euler method was used with a time step of 0.0005 seconds
which provides a solution with no significant truncation error. The results
obtained here show approximately 10-15% differences in peak stress ampli-
tudes between the three constitutive models. Since no experimental results
are available at this time, no conclusions can be drawn as to which model
more accurately represents observed test data. However, the results do
point out that significant differences (greater than 15%) can be obtained
for stress peaks and stress relation values through the use of different
constitutive models. ’

CONCLUSIONS AND FUTURE WORK

The results of this study are not complete since only a portion of the
available constitutive models and numerical integration schemes have been
considered. However, some tentative conclusions can be reached.  First,
it appears clear from the present investigatiom, and the work of others,
that simple integration schemes (like the Euler forward defference method)
are often preferable to more complex schemes from the standpoint of accur-
acy, computation time, and ease of implementation. Although not reported
herein, our work in progress indicates that Euler's method used with a simple
subincrementation strategy provides the most accurate and economical solu-
tion for most constitutive models.

The sensitivity study on material constants indicates that most visco-
plastic constitutive models are significantly sensitive to one or more mat-
erial constants derived from laboratory tests. It has been shown that a
5% "error" in laboratory measurements may lead to errors of 25%, or greater,
in predicted stress responses. Although most model developers have fine-
tuned their models and input material constants for specific material/temp-
erature/strain-rate combinations, it is not clear that end-users will be
able to do so when called upon to develop material constants for a new sit-
uation. The problem can be negated to some extent by defining more explicit
testing procedures for obtaining material constants and by guidelines de-
fining which constants are most sensitive to experimental error.

Our current and future work concerns the application of several inte-
gration schemes to the other constitutive theories, investigation of sub-
incremental strategies, and consideration of "smart" integration methods
which detect local "stiffness" and adjust time steps but without signifi-
cant computational expense. The material parameter sensitivity study will
be continued by considering other constitutive theories, and more impor-
tantly, by comparison with laboratory tests which involve complex thermo-
mechanical loadings including transient temperature inputs.
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Table 1. Material Constants Used in Bodner's Model
for IN10O at 1350°F (732°C)

Bodners notation Beek and Allen's notation .Numerical Value

E E 21.3x10% psi
n n 0.7

Z, 2, 1.105x10° psi
m n 2.57x103 psi
D, D, 10* sec™t
A A 1.9x10 3 sec™*
r r 2.66

z¥ 27 0.6x10°% psi

€ (£=0) o (£=0) 0.0

Z, a3 (£=0) 0.915x10° psi
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Table 2,

Material Constants Used in Krieg's Model

for Hastelloy-X at 1800°F (982°C)

Walker's notation
for Krieg's constants

Beek and Allen's notation

Numerical Value

c(t=0)
Q(t=0)
K(t=0)

Ol.ao

n

1 (t=0)
a2 (t=0)
a3(t=0)

4.027x10° 7 Esi-z
100 psi secit/n

4.365 psit " sect/m2
13.2x10° psi

59,292 psi seclln
4.49

0.0

0.0

59,292 psi

Table 3.

Material Constants Used in Miller's Model

for Hastelloy-X at 1800°F (982°C)

Miller's notation

Beek and Allen's notation

Numerical Value

2.363
2.616x10 ° sec *
1x10°% psi
1.4053x10 3 psi ?
100 psi sec!/™
5,000 psi
4,355x10 2 psi 3
13.2x10° psi

.0
.0

,642 psi

0 OO
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Table 4. Material Constants Used in Walker's Model
for Hastelloy-X at 1800°F (982°C)

Walker's notation Beek and Allen's notation Numerical Value
Q2 ‘ 02 ~1,200 psi
1 ni 0 psi (not used)
nz n2 1x10° psi
Ng * 312.5 _ -m _
n; ny 2.73x107 % psil™ sec”?
n n 4.49
m m 1.16
E . E 13.2x10° psi
c(t=0) oy (t=0) 0.0
Q(t=0) a2 (t=0) 0.0
K(t=0) a3 (te=0) 59,292 psi
Ng,Ng,N10,q 0 (not used)
3 nsR
X = —— ———
R (n3 + n4R) 2n l+n6R +1
t+ALe
Table 5. Numerical Integration Approximation for Aal = tf % de
Method Approximation
Euler Forward Difference Aal= At &1(t)
Trapezoidal Rule Aoy, = é-E[&. () + & (e+At) ]
=7l 1
Trapezoidal Predictor-Corrector - Same as trapezoidal except iterate
-1 »
Runge-Kutta 4th Order Aal = g(K1 + 2K2 + ZK3 + K4)
Kl = At &l(t,al(t))
Kz = At al(t+At/2,al(t)+K1/2)
K3 = At al(t+Ac/2,a1(t)+K2/2)
K4 = At al(t+At,al(c)+K3)
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