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The Bodner-Partom flow law which models viscoplastic material
behavior has been used to represent two nickel-base superalloys,
Gatorized IN100 and Inconel 718 at elevated temperature. Proce-
dures for the determination of the material parameters are present-
ed along with a discussion of the physical significance of each
parameter. The material model is then used in finite element
computations to evaluate the response of cracked bodies to
monotonic, sustained, or cyclic loading. Geometries investigated
include the center cracked panel, the compact tension specimen, and
the single cracked ring under tension. A Hybrid Experimental
Numerical (HEN) procedure has been used to deduce crack growth
rates from experimental displacement measurements which are input
into finite element computations. The results of several studies
conducted over the last several years are summarized.

INTRODUCTION

Sustained load crack growth data are often difficult to obtain
at elevated temperatures for several reasons. Optical measurements
of surface crack length produce large amounts of scatter when the
oxidized surface reduces the visibility at high temperatures.
Localized inelastic deformationm in the vicinity of the crack tip
makes the exact determination of surface crack length ambiguous and
usually leads to variability in observations from one observer to
another. Tunneling, where the interior of the specimen grows at a
faster rate than on the surface, leads to erroneous crack length
data when surface measurements are used. Very low crack growth
rates, leading to small amounts of crack extension, can compound
the difficuities associated with- determining crack growth rates.
For long-term tests, around the clock and weekend observations are
required which are often impractical. As alternatives to optical
measurements, automated data acquisition systems provide desirable
features. Electric potential drop measurements, although requiring
sophisticated equipment and calibration, can provide continuous
data on crack length. Compliance measurements from periodic
unloading and reloading can provide discrete crack length values in
the absence of an observer. The simplest measurement, however, is
a continuous displacement measurement across two suitably chosen
points under constant load. If these displacement values can be
related to crack extension, crack length data can be obtained
easily and continuously.
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A procedure has been developed for determining crack length
from displacement measurements during sustained load crack growth
tests. This procedure, labeled the Hybrid Experimental Numerical
(HEN) method, utilizes experimental displacement data in finite
element method computations where a realistic constitutive model
describing the material behavior is incorporated. The model
describes time-dependent viscoplastic flow in an incremental strain
rate equation with a single state variable which includes the
materials history of loading. The constants for the model are
obtained from constant strain rate tests and creep data. The model
has been incorporated into a comstant strain triangle finite
element program which is used in the HEN procedure. This procedure
has been applied to several cracked specimen geometries using
different displacement measurement techniques and locations. In
addition, the finite element program has been used to evaluate the
stress and strain states in cracked bodies under cyclic loading.
This paper presents a review of these applications of the finite
element method to cracked geometries.

BODNER-PARTOM FLOW LAW

The constitutive equations used to describe the elevated
temperature viscoplastic material behavior in this investigation
are those of Bodner and Partom.(ref. 1) The equations represent
time~dependent viscoplastic flow over a wide range of strain rates
using a state variable and are of the incremental type which does
not require a yield surface. Total strain rate is decomposed into
nonzero elastic and inelastic portions. The elastic portion is
given by the time derivative of Hookes law while the inelastic
portion takes the form

P =(n+1) 2~

where D and n are material constants, J, and s represent the
second invariant and the components of tﬁe devialoric stress
tensor, respectively, and Z is a history dependent state variable
representing the materials resistance to plastic flow. The evolu-
tion equation for Z is given in rate form

Z = m(z1 - z)wp - ( ) (2)

where m, , 2., A, and r are material constants and W_ is plastic
work. otal, there are 7 constants to be determined from
experimental data. A procedure has been developed by Stouffer
(ref. 2) to determine the constants from constant strain rate
stress-strain data and creep curves. This procedure was applied to
Gatorized IN100 at 732°C., The constants used in the computations
described here were obtained from that investigation. Further
refinements to the procedure and a parametric study of the effects
of each constant on material behavior were presented by Beaman
(ref. 3) who obtained the constants for Inconel 718 at 649°C.
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Determination of Constants

The constant D_represents the limiting plastic strain rate or
the rate at which agplied stresses tgnd to infinity to sustain that
strain rate. It cap be chosen as 10 /second for most metals and
has been used as 10  in previous investigations. Unless high
strain rate behavior is being evaluated, any value above the range
of strain rates being computed is adequate. We recommend fixing
the value at 10 . The next pair of constants to be evaluated are n
and Z.. The strain rate sensitivity at conventional testing rates
is de%ermined by n. The value of Z, represents the maximum value
or saturation value of Z. For the ﬁodner-Partom model,
stress-strain curves at conventional constant strain rates
asymptote towards a constant value of stress., At this stress, the
material is fully saturated, ie Z=Z,. At conventional strain
- rates, furthermore, the second term in eq. (2) can be neglected.
The procedure for determining n and 2, is to obtain values of
saturation stress for several (at least two) constant strain rate
tests over several decades in strain rate. The uniaxial version of
the flow law is written as

2 2. 2,20 o+l
€ = 73D, i1 ex [ €] 3
. Setting Z-Z1 in eq. (3) and rearranging term leads to
. c’
1n [-1ln ﬁ_& ] = =2n lno+ [2n 1nZ, + ln(ﬂ)] (4)

2D, 1 2n

The first term, which involves ép s 18 linearly related to 1n<.
Plotting the experimental data and fitting the best straight line
will provide a value -2n for the slope. From n, a valq%,of Zl can
be determined from eq. (3) from any pair of values of &€ and o
along the straight line. Considering again the high strain rate
regime where the recovery term in eq. (2) can be neglected, eq. (2)
can be written in differential form and integrated to yield

ln(Z1 -2) = ln(Z1 - Zo) - me (5)

where Z 1is the initial hardness when no plastic work has been
expendea. From a stress-strain curve at a constant (high) rate,
values of Z can be computed for corresponding values of W_ allows
the determination of Z as the extrapolated value for W R 0 which
are obtained by integrating the area under the stress-plgstic strain
curve, Plotting ln(Zl-Z) against plastic work W_ allows the
determination of 2o as the extrapolated value foP W_ = 0 from a
best linear fit to the data, The slope of this 1in will define
the value for m which controls the shape of the stress-strain
curve.

If material behavior at very low strain rates, in the creep
regime, is to be modeled, the second term in eq. (2) has to be
used, Determination of the constants A, r, and Z, requires creep
or very low rate stress-strain data. Note that tlie saturation
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stress in a stress-strain test at very low constant strain rate is
equivalent to an applied stress in a creep test causing a steady
second stage creep rate. The constants can be determined by
matching the experimental data on a plot of ln strain rate against
stress as shown in Fig. la. For steady state values, le constant
strain rate under constant stress or vice versa, Z must achieve a
steady state value from eq. (3) and, thus, Z must be zero in eq.
(2). These two equations, when combined, provide a functional
relation between the non-dimensional quantities ép/D and/Z..
Figure la shows the overall behavior of the curve an the reg}ons
affected by the several constants. Figures lb, ¢, and d show the
effects of varying each o’ the constants, A r, and Z, individually.
These curves also show the insensitivity to these cofistants at the
higher strain rates. An interactive computer program with graph-
ical display of the equations has been found useful in determining
the constants A, r, and Z, by trial and error manipulation.
Basically, each constant Controls one aspect of the curve, ie
either slope or location of an inflection point. Following the
procedure outlined above in the correct order makes it relatively
easy to arrive at the Bodner-Partom constants from uniaxial data.

THE HEN PROCEDURE

The hybrid experimental numerical procedure (HEN) was devel-
oped by Hinnerichs (ref. 4) to determine creep crack growth rates
from expermental displacement measurements. The procedure uses a
finite element computer program called VISCO (ref. 4) and utilizes
the Bodner-Partom equations to describe the inelastic material
behavior. These equations are incorporated into the VISCO computer
code which uses constant strain triangular elements. The code
computations utilize experimental displacement data as input in the
HEN procedure. Essentially, the HEN procedure compares
experimental displacements at a fixed point on a specimen to finite
element model displacements at the same fixed experimental point.
If the finite element displacement values (including creep and
plasticity) are below the experimental ones, the crack 1s allowed
to extend by popping a node. In this manner, increments of crack
extension occur by node popping in the finite element scheme.
Figure 1 shows a schematic of a center cracked specimen which was
utilized by Hinnerichs et al (ref. 5) in the first application of
the HEN procedure to determine greep crack growth rates in IN100.
The experimental displacements were determined by Sharpe (ref. 6)
using a laser interferometric technique which has a measurement
precision of approximately 0.0l micron. The center cracked panel
specimen was 25 mm wide by 7.6 mm thick. Displacements were
obtained across two closely spaced microhardness indents on either
side of the initial crack at distances of approximately 0.1 mm
behind the crack tip as shown schematically in figure 2.

The computational scheme provides displacements at the mea-
surement location from creep strains in the cracked specimen under
sustained load. Figure 3a shows the computed displacements (NO
CRACK GROWTH) compared to the experimental values. It is seen that
the computed values are much less than those measured. The reason
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is that the crack is extending in the experiment which increases
the compliance of the specimen. To match the experimental dis-
placement measurements, the HEN procedure provides for node popping
to simulate crack growth. Nodes are popped whenever additional
displacements are required to match the experimental values. In
figure 3a, the points labeled RUN S2 show the displacements matched
to the experimental data through the appropriate node popping. The
node popping simulates the crack growth as seen in figure 3b. From
the slope of the crack extension versus time plots for each of the
experiments, a series of crack growth rates were obtained. These
values are plotted against stress intensity factor in figure 4 and
show very good correlation with creep crack growth data obtained by
Donath et al (ref. 7) at higher K values. Additionally, the total
amounts of crack extension computed for each numerically simulated
experiment agreed very closely with those measured on the fracture
surface of the specimen. In most of these cases, very small
amounts of crack growth were obtained (see fig. 3b, for example).

Computational Procedure

The finite element analysis uses the residual force method to
incorporate nonlinear viscoplastic material behavior into VISCO.
This method increments time directly, but load, strain and stress
are incremented indirectly through a time integration procedure.
To implement the residual force method, the plastic strain rate of
the material is determined from the Bodner-Partom constitutive
eqns. (1) and (2) described in the previous section. Using the
current time increment dt~ and the plastic strain rate, &" , the
incremental plastic strain vector is

{detj’}i = { &'} & (6)

where the superscript "i" represents the current time increment.
The total plastic strain is then computed from the incremental
plastic strain from eqn. (6) as

(e} - {5+ e}

Pt
where {Qj} is the total plastic strain at_the current time
increment. Next, the plastic load vector {Qf, representing the
nodal forces generated by viscoplasticity is formulated as

il T [ L
{7 = [ o1 1 {eg} aw (8)
Yol
where [B]T is the transposed strain-displacement matrix and [D] is
the stress—-strain matrix, TEe plastic load vector is then added to

the current nodal loads {P to determine the current nodal
displacements, computed by
{ot = 17 ({7 e g3 h (9)
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where [K]-l, is the inverse elastic stiffness matrix and {U} 1 is
the nodal displacement vector. The total strain vector is then

computed by .
{e - w1 fupt (10)

Finally, the stress is updated using eqns. (7) and (10),

' fou} - i « {Ce'}‘- {&j’}i) (1)

where {ug}‘is the current updated stress. This becomes the new
stress value to be entered into the comstitutive model to generate
a new viscoplastic strain rate. This procedure continues for each
time increment until the desired simulation time for the problem is
reached.,

Application to CT Geometry

The Hen procedure was subsequently applied to the compact
tension (CT) specimen geometry (ref. 8) using experimental dis-
placement data of Donath et al (ref. 7). Displacements were
obtained off E-shaped plates fixed to the top and bottom of the
specimen along the load line using LVDT's. These specimens were
S.4 mm thick and were tested using initial K values ranging from
33.0 to 49.5 MPa.m*, Figure 5a shows the finite element mesh used
in these computations. Figure 5b shows displacement data for ome
of the specimens for the early part of the test. The crack ex-
tensions computed from these data using the HEN procedure are shown
in figure 5c. The data for the entire test which involved a
considerable amount of crack extension are presented in figure 5d.
It can be seen that the computed values follow those labeled
"effective length" fairly well. The effective lengths were ob-
tained from unloading compliance measurements taken periodically
during the sustained load test. There was fairly severe tunneling
in all of the tests after the crack had extended several millime-
ters. The final crack lengths, as determined from the numerical
computations using the HEN procedure, agreed with these from the
fracture surface better than those determined from compliance
measurements!

Application to a Ring Geometry

The third type of specimen was a 6 mm thick circular ring
having an outside diameter of 76 mm and an inner diameter of 38 mm.
The ring is loaded in tension using a pin and clevise arrangement
and is cracked from the inner diameter at a location 90° from the
two loading pins as shown in figure 6 which also shows the finite
element mesh details. The stress intensity solution for this
geometry shows a region of nearly constant K over half the
thickness of the ring. Displacements were obtained across the two
loading pins using LVDT's. Since load is constant and the tests
are under isothermal conditions, the differential displacements are
not affected by deflection of the load train or pins after the
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initial load is applied. The numerical solution in the HEN
procedure 1s, however, very sensitive ‘to the manner in which the
load is applied to the finite element grid.

The displacement measurements along with experimental data on
crack length from compliance measurements were obtained by Donath
et al (ref. 7). There was considerable scatter in the experi-
mentally determined crack lengths and difficulty in correlating
total crack extension with that measured on the fracture surfaces.
The displacement data, on the other hand, appeared to be smoother
and more consistent, For this reason, the HEN procedure was
applied to obtain a somewhat independent determination of crack
‘extension in the same specimens. Results of a typical case are
presented in figure 7. Crack extension versus time from the HEN
procedure are compared to the experimental data. The final crack
lengths from the HEN procedure agreed closely with.those obtained
experimentally. In figure 8, the stress in the "y" direction is
plotted versus horizontal distance ahead of the crack tip after
various crack extensions. These stresses are determined at the
centroid of each triangular element ahead of the crack tip which
 has the same dimensionms, therefore, element size effects are
eliminated. Notice that the peak stress at a crack length of 8.26
mm (.325 in) is 955 MPa (138.5 KSI) but drops to 782 MPa (113.4
KSI) after 3.18 mm (.125 in) of crack growth. This peak stress
reduces slightly with each subsequent crack advance. As the crack
advances, the stress distribution becomes sharper indicating that
as the crack propagates to the edge of the ring, stresses ahead of
the crack are greatly reduced as the other side of the ring carries
the major load.

CRACKED BODIES UNDER CYCLIC LOADING

- The Bodner-Partom constitutive equations have been used in
finite element computations to determine the stress and strain
fields in a compact tension specimen in the vicinity of the crack
tip when the specimen is subjected to cyclic loading. The VISCO
computer code was used in these investigations. In the application
of the Bodner-Partom equations, no modifications were made to
account for kinematic versus isotropic hardening behavior of the
material. The material was assumed to undergo isotropic hardening
during cyclic loading. The first problem investigated was that of
a CT specimen under cyclic loading at various frequencies at a
stress ratio (ratio of minimum to maxi..m applied load) of 0.1.

The uniaxial response of the constitutive model to an applied
cyclic load of load ratio 0.1 was also computed for comparison.
Figure 9a shows the uniaxial response to a maximum stress of 1241
MPa at a frequency of 0.167 Hz. Figure 9b shows the effective
stress versus strain in an element directly ahead of the crack tip.
It was observed in both the uniaxial model and the CT specimen at
the crack tip that strain continued to accumulate under cyclic
loading. 1In the CT specimen, the element ahead of the crack tip
appears to cycle under more or less fixed stress limits. The
finite element computations were able to provide additional details
of the stress and strain fields around the crack tip. Figure 10
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shows the stress profile ahead of the crack tip after 2% cycles and
then after a 15 min hold at maximum load. It can be seen that
there is a slight change in the stress field during the hold time.
Experimentallg, sustained load crack growth occurs at this K value
of 38.5 MPa.m-. To simulate this crack extension, a node was re-
leased. The results, shown in figure 10, indicate that the stress
field with respect to the position of the crack tip has not
changed. This is in contrast to the results in the ring tests
where there was a change with crack extension (see fig. 8).

A similar study was carried out to evaluate the stress and
strain field under fully reversed cyclic loading in a CT geometry
(ref. 10). Figure 11 shows the displacement profile behind the
crack tip at various load levels. It can be seen that residual
displacements due to inelastic deformation have occured. At zero
load, there is crack opening a small distance behind the crack tip.
In these numerical exercises, no account was taken of any plastie
wake which formed behind the crack due to prior cycling.

CONCLUSIONS

The Bodner-Partom flow law is a realistic representation of
material behavior in nickel base superalloys at elevated tempera-
tures. The use of this model in finite element computations of
stress fields in cracked bodies provides valuable insight into
elevated temperature creep and fatigue phenomenology. These tools
are also very valuable in predicting sustained load crack growth
rates from experimental displacement data using a hybrid-
experimental-numerical procedure.
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