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The statevariableconstitutiveequationof Bodnerand Partomwas used

to calculatethe load-strainresponseof Inconel718 at 649°Cin the root of
a notch. The constitutiveequation was used with the Bodner-Partom
evolution equation and with a second evolutionequationthatwas derived
froma potentialfunctionof the stressand state variable. Data used in
determiningconstantsfor the constitutivemodelswas fromone-dimenslonal
smoothbar tests. The responsewas calculatedfor a planestresscondition
at the root of the notch with a finiteelementcode usinEconstantstrain
trianEularelements. Results from both evolution equations compared
favorably with the observed experimentalresponse. The accuracy and
efficiencyof the finiteelementcalculationsalso compared favorably to
existingmethods.

INTRODUCTION

The purpose of thiswork is to explorethedevelopment,efficiencyand
accuracyof a finite element computer code for hot section gas turbine
componentsthat is based on a state variableconstitutiveequation. The
Bodner-Partomconstitutiveequation[1,2,3]used for this study, does not
require the use of a yieldsurfaceor separaterepresentationsfor loading
and unloadinEin the elasticand inelasticdomains. The model contains a
single state variable to define the resistanceto inelasticflow or
hardness. This variableis determinedfrom the deformationhistoryin this
study usinE two different evolution equations.The results from the
evolutionequationdevelopedby Bodnerand Partomand proposedwith the flow
equation are compared to the results computedfroman evolutionequation
that is derivedfrom the inelasticflowequationitself,[4,5]. The second
formulationis establishedusinga potentialfunctionthatcan be derived
fromthe firstlaw of thermodynamics.

One of the important aspects of thisstudy is to testthe tensorialor
multidimensional characteristics of the Bodner-Partomflow equation. The
material parameters for the study are determinedfromone dimensionaltests

(tensile, creepand fatigue) on Inconel 718 at 649°C. The equations are
used to compute the response of a notched specimen usinga plane stress
finiteelementcomputer analysis. The calculatedresultsfor the strain in
the root of the notch are compared to measuredvaluesreported by Domaset
al in [6] for the same material. This provides a test of the model to
predict _he response in a general state of loading fromdataobtainedin
uniaxial experiments. A comparison that is usually difficultto achieve.
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Another important aspect of this work is the development of the finite
elementcomputercodeas a designtooland utilizesthe statevariable
constitutivemodel.The code is basedon two-dimensionalconstantstrain
triangles,an InltlalstrainIteratlveprocedure,piecewlselinearload
histories in a steadysta_ethermalenvironmentand a dynamictimestepping
algorithm.

THEBODNER-PARTOMEQUATIONS

Theseequationswere motivated by the concepts of dislocation
dynamics and formulated in the context of mechanics. For small strains, the

.e
strain rates are considered to be decomposable into elastic, ¢ij' inelastic,
•I .T
cij, and thermal, clj, components; that is

•e .I .T
_iJ " CiJ . _iJ_ . _iJ (I)

.e

where cij are given in terms of the stress rates determined from the time
T

derivative of Hooke's Law and cij is proportional to the change in

temperature from a reference state. All components of Equations (I) are
always nonzero for all nonzero values of stress and stress rate. However,
the values of the inelastic strain rate term are negligible for small values
of stress; thus, a yield criteria and separate loading and unloading
representations are not required.

The inelastic strain rate is written in a form similar to the Prandtl-

Reuss flow law; i.e.

•I n+IrZa Inl Sij (2)
¢iJ " DO exp{- 2n _3J2_ " J--_

where DO is the limiting strain rate in shear. The material constant n

controls the strain rate sensitivity and also influences the overall level

of the stress-strain curves and J2 is the second invariant of the deviatoric

stress tensor, Sij. The internal state variable, Z, governs the resistance
to inelastic flow such that an increase in Z corresponds to work hardening
and would require an increase in etress to maintain a constant inelastic
strain rate.

The hardening law proposed by Bodner and Partom for application with
several materials is

Z-Z2 R

" m(ZI - Z)WI - AZI(--_--I) (3)

where Z - Z0 initially. The first term defines the rate strain hardening

and W - Sij_j_ is the inelastic rate of working. The second term in
Equation (3) characterizes the thermal recovery and is important for
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predictingcreep.The representationIs only for primaryand secondary

creep, and the secondary creep rate is obtained when Z = O_ The constant ZI

defines the maximum value of Z and Z2 is the minlmum value of Z obtained In

thermal recovery. Frequently Z2 Is taken equal to ZO; that is, the initial

hardness and mlnlmumrecoverable value of Z are equal. Methods to determine
the constants are presented in References [7] and [8], and the constants for

Inconel 718 at 649°C are given In Table I.

The model presented above, In addition to neglecting tertrary creep, Is
limited to an isothermal environment and Isotroplc hardening. An extension
to time varying temperature histories is based on making n temperature
dependent as reported In E3]. Extension to a hardening rate similar to
kinematic hardening for uniaxial histories Is given Reference E9]; but a
full three dimensional anlsotroplc hardening law still needs to be verified
for a variety of loading conditions.

A POTENTIALFUNCTIONDERIVATION

Recently It has been shown [4,5] that a system of equations to predict
the inelastic strain rate and evolution of the state variables are derivable

from a potential function. The essential structure of the theory Is based
on the balance law of thermodynamics and the concept of work hardening. For
isothermal histories, the reduced form of the potential relationship Is

•I a¢ and_- a¢
¢iJ =.aOl"---j a-_" (4)

where .€ is a function the stress and stress state variable, Z. The quantity
Is a strain on the microscopic scale such that Zdu Is the stored energy of

cold work. The relationship between u and Z on the microscopic scale Is
taken in the form of the Prandtl-Reuss equation on the macroscopic scale;
l.e.

. g_+ hZ (5)
where g and h are generally assumed to be functions of oij and Z but are
taken as constants In this study. Combining Equations (4) and (5) and
redefining the constants as c and 8 gives

= - c(Z-_)+ aSI (6)
where _ Is a material parameter. The quantity I Is the integral

t "I
aZlj

P

I = I J
"_'-dolj (7)liIlo

I " i I • I 1/2 .I
wheee l_II = (_JSlj) and ¢iJ IS evaluated using the

Bodner Partom

Equation In this example.

The parameter a characterizes the lnltlal rate of hardening, ZO' which
arises from the integration. Thls term contributes to the strain rate

sensitivity of the model and includes the initial loading such as In a creep
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test [4]. For this exercise a is taken as 12s1401The remaining parameters

and B can be calculated directly from creep or tensile data during steady
state conditions; that is, when both the strain rate and stress are

approximately constant. In this case Z = 0 and X obtains a steady value,

Zs, that depends on the test conditions. A plot of Zs vs I for Inconel 718

at 649°C shows that thls response is nearly trillnear and can be represented
by the parameters shown in Table I.

FINITEELEMENTIMPLEMENTATION

The finite element code utilizes two dimensional constant strain

triangles and an initial strain it_ratlon technique. To facilitate the
simulation of arbitrary load histories, the load history is partitioned into
plecewise linear segments. In order to simplify input, reduce stability
problems and minimize cost a dynamic time stepplng procedure is also
incorporated.

The incremental equilibrium equation for the initial strain method with
steady state thermal conditions is

[K]l';dT}" IA?}. {_?I} (8)
where[K] is the elasticstiffnessmatrix,{AdT}'"is theincrementinthe
total displacement vector, {AF} is the increment in the applied force vector

and {AFI} is a pseudo force vector due to the increment in a vector of the

inelastic strains components. The vector {AFI} is calculated by

{-_FI} N" Z (J[B]T[E]{'A_I}dr) (9)
I v

where N is the number of elements. In Equation (9), [B] is the strain
displacement Matrix and [E] is the elastic constitutive matrix.

At the beEinning and end of a linear load case the elastic solutions
are obtained uslng

{dE}o -[K]-I{F}o
and

{dE}F . [K]-I{F}F . (10)

{dE}o,F are the initial and final elastic displacements due to
The vectors

initial and final applied thermomechanical loads. The elastic displacements

at any time ti in the load case are given by

ti-to
{dEll.{dZ}o+tF-to[{dE}F-{dZ}O3. (,I)

The total displacement vector at t_me ti is written as

{dT}i . {dE}i + {dI}i_1 + {'AdI} (12)

where the increment in the inelastic displacement vector is
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{_dI} " [K]-I{AFI} (13)

and the incrementintheinelasticpseudoforcevectoris givenby Equation
(9). Thus,it is necessaryto integratethe constitutive modelfromtime
tl_I to ti. Although any number of InteEratlonschemescouldbe used,a
secondorderAdams-Moultonmethodwas employed. Sincethe flowequationand
the state variableevolutionequationare coupledan Iteratlveprocedureis

required to compute {_I} and Z at the end of a time step. The integration
of the constitutive equation is within the overall equilibrium iteration
loop as shown in Figure ;.

A significant improvement in the iteration scheme was achieved by
making an initial estimate of the incremental inelastic pseudo force vector

{AFI} in the first iteration of a new time step. If IAFI} is set equal to

zero on the first iteration of a new time step (as is usually done) the
first estimate of the solution may be very poor. An initial estimate of the

inelastic strain increment for each element can be made using {A£I} -

-{_I}i_;At, where [cI}i_; is the inelastic strain rate at the beginning of

the time increment. If this is then used in Equation (9) to make an initial
estimate of the incremental inelastic force vector the stability and rate of
convergence of the method is improved. By including this logic, the number
of equilibrium iterations was reduced by about 60_.

In a finite element code that allows a linear variation of applied
loads, large excursions in stress and inelastic strain rate are to be

expected. To be economical and easy to use, dynamic time incrementing is a
necessity. There are two important considerations in developing such an
algorithm; first the stability of the iteration scheme and second the
accuracy of the integration procedure. The stability of the system of
equations depends on the constitutive model, geometry, loading history and
material parameters. An approximate but simple and effective approach is to
base the time step on the maximum inelastic strain increment to occur in all
of the elements. In order not to overshoot the point where inelastic strain
rates become significant it is also necessary to limit the maximum__ness
increment. A final consideration iS controlling the local integration error
when computing inelastic strain increments. For components in which fatigue
llfe is a major consideration the accurate calculation of local stresses and
strains is crucial. In order to control the error the time step should be
chosen such that the local integration error does not exceed some allowable
value.

CALCULATEDANDEXPERIMENTALRESULTS

A recent comprehensive study, [6], of the strain in the root of a notch
was conducted for a variety of local patterns in Inconel 718 notch

specimens at 649°C (1200°F). A laser Interferometric strain displacement
gage was used with reasonable certainty to evaluate the displacement of a
gage 100 microns in length at the root of the notch at temperature. The
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measurements were made for six load hlsturles including continuous cycling
and cycling with hold time periods in tension, tension and compression, and
compression. The specimen was a thin flat double notch bar, as shown in
Figure 2, with an elastic stress concentration factor of 1.9. The geometry
in the test section is approximately plane stress and is modeled by the
constant strain triangular element mesh also shown in Figure 2.

The above study included a limited number of smooth bar tests in
tension, creep and cycling for use with a Neuber analysis. These data and
other published tensile, [10], and creep, [11], data were used to evaluate
the materia! parameters in the flow and evolution equations. The constants
were evaluated using the methods reported in [4], [7] and [8]. The major
difficulty encountered was not having two complete tensile curves at
different strain rates to evaluate the parameter n in the inelastic flow
equation. Thus an estimate was used based on one curve and the other
constants, as shown in the Table I, were evaluated based on this value.
Increases in n would change the values of the other parameters, but the
combined effect would produce essentially the same predictions with less
strain rate sensitivity in the tensile response. Decreases in n would cause
the equations to overpredlct the tensile strain rate sensitivity.

The calculated response to a smooth bar tensile test at a strain rate
of one percent per minute is shown in Figure 3a for the two evolution
equations. The potential function representation overpredlcts the observed
stress in the transition from elastic to plastic response; however the
asymptotic behavior of both representations match the data very well. The
calculated smooth bar creep response is shown in Figure 3b for three values
of stress. The results of the calculations are mixed with the potential
function representation better at the high value of stress, the Bodner-
Partom representation better at the intermediate value of stress and both
models underpredictlng the creep strain at lower values of stress. In
general, representations could be improved by adjusting the material
parameters; however, with only five curves in the smooth bar data base there
is no guarantee that this would improve the predicted response of the notch
strain. The flow law is also limited to primary and secondary creep, so no
correlation with the tertiary creep is included.

The strain response at the root of the notch for three tests is shown
in Figures 4, 5 and 6. The total specimen load is held constant for two
minutes in compression, tension and compression, and tension as shown in
Figures 4, 5 and 6, respectively. The finite element and experimental
results are for the first cycle. In general, both evolution equations match
the measured data rather well. The largest error is the over prediction of
the tensile creep in Figure 6 by both equations; however, the measured
tensile creep in Figure 6 is much less than the measured tensile creep in
Figure 5 where the predictions are satisfactory. The assumption of
isotropic hardening appears reasonable for the first cycle and the
correlation with compressive creep is shown in Figures 4 and 5.

DISCUSSION

The state variableconstitutivemodelsused in thisstudyhave several
advantages and limitations. The formulation is convenient for finite
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element methods,because it admits a forward tlme marchingintegration
procedure and does not require separate loading and unloading
representations. The flow law and evolutlon equation can predlct.many
inelasticeffects;however,for Inconel718there still are some areas that
need improvement.Inconel718generalexhibits a combinationof "kinematic
and Isotroplc"hardening and softening in unlaxial cycling which is not
included in the current formulation. Further, the constitutivemodels have
not been fully developedand verified for nonlsothermalloadingconditions.
For extension to multiple cycle analysis it would also be advantageousto
use the cyclic stress-stralncurve rather than the monotonicresponse curve
to determine the material parameters.

There is a correlatlon In the errors observed In the calculated finite
element response at the root of notch and the smooth bar calculated

response. When using the Bodner-Partom evolution equation, (3), the creep
strain at 827MPa(120g.SI) was over predicted. The calculated tensile creep
response in the root of the notch is largest for the 8odner-Partom equations
as shown In Figures 5 and 6. This observation indicates that the finite
element predictions could be refined by improving the smooth bar calculated
response. Recalling that the constitutive parameters were obtained from
flve curves, one tensile and four creep published [6,;0,11] between 1971 and
1982, the calculations are reasonable and could be improved by improving the
smooth bar data base.

The computational exercises were limited to initial cycle of three load
patterns for reasons of cost and lack of cyclic data to develop the model.
The computational efficiency proved to be very good. On a Honeywell 6000
computer, the run times varied from 1.5 to 3.5 CPU hours for a model wlth
over 1000 elements. This Is very competitive with similar finite element
calculations based on classical plasticity and creep formulations. Further,
the longest time could have been reduced by incorporating all the time
saving features used In the later runs.
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Table 1. Constitutive Parameters

FlowEquation:

DO - I04SEC-I n - 1.954

Bodner Partom EvolutionEquation:

Z0 = 1805HPa (262 KSI) A - 5.6 x IO'5SEC-1

Z1 = 2253HPa (327 KSI) H = 0.160HPa-1

Z2 = 1805HPa (262 KSI) R - 1.37

Potential Function Evaluation Equation:

Z0 - 1860HPa (270 KSI) = " 1251_0l

I;II _ 3.2 x Io-IOsEc-1 _ - 0
- 4.01 x 107Mpa/sEC(5.82 x 106KSI/SEC)

I_II > 3.2 x 10-10SEC-land _ - -4033MPa(-585 KSI)

lIis7x IO-6SEC-I S - 1.60x 108HPa/SEC(2.33x I07KSI/SEC)

I;II >7 x IO-6SEC -1 ; - 1102MPa(160 KSI)

8 - 2.94 x 10 7HPa/SEC(4.27 x 106KSI/SEC)
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IBE.._INLGAD C_SE_COMPUTE INITIAL &T.AND
[_=],_-ND _'=FOR EVERY ELEMENT

1
1
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.----j BEGIN LOOP OVER INTEG.._TION POINTS I

I _o.,_oooo._o,..o._!

.°@
IUI:DATE[_.=|,Z, etc._CO,'_PUT_=NEWAt I

Figure 1. Schematic dla_ram of the iteratlon procedure for the finite
element program.
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Figure2. Description of the benchmark notch specimen and the finite
elementmesh at the root of the notch.
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0.0 
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TIME (hr) 

Figure 3. Comparison of experimental and calculated response of Inconel 718 

at 649'~ using the Bodner-Partom and potential function evolution 
equations: (A) tensile response at 1 %  per minute and (b) 
comparison of creep response at 689MPa(100KSI), 758MPa(llOKSI) 
and 827MPa(120~~1). 
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FIEure 4. Comparison of experimental and calculated load-straln response at
the root of the notch for Benchmark Notch Test 8 with a hold in
compression.
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Figure5. Compartson_ofexperimentalandcalculatedload-stralnresponseat
the root of the.notchfor BenchmarkNotchTest9 wlthholdin
tensionandcompresslon.
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Figure 6. Comparison of experimentaland calculated load-stralnresponse at
the root of the notch for Benchmark Notoh Test I0 with hold in
oompresslon.
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