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The state variable constitutive equation of Bodner and Partom was used

to calculate the load-strain response of Inconel 718 at 6ll9°C in the root of
a notch. The constitutive equation was used with the Bodner-Parton
evolution equation and with a second evolution equation that was derived
from a potential function of the stress and state variable. Data used in
determining constants for the constitutive models was from one-dimensional
smooth bar tests. The response was calculated for a plane stress condition
at the root of the notch with a finite elément code using constant strain
triangular elements. Results from both evolution equations compared
favorably with the observed experimental response. The accuracy and
efficiency of the finite element calculations also compared favorably to
existing methods.

INTRODUCTION

The purpose of this work is to explore the development, efficiency and
accuracy of a finite element computer code for hot section gas turbine
components that is based on a state variable constitutive equation. The
Bodner-Partom constitutive equation [1,2,3] used for this study, does not
require the use of a yileld surface or separate representations for loading
and unloading in the elastic and inelastic domains. The model contains a
single state variable to define the resistance to inelastic flow or
hardness. This variable is determined from the deformation history in this
study using two different evolution equations. The results from the
evolution equation developed by Bodner and Partom and proposed with the flow
equation are compared to the results computed from an evolution aquation
that is derived from the inelastic flow equation itself, [4,5]. The second
formulation is established using a potential function that can be derived
from the first law of thermodynamics.

One of the important aspects of this study is to test the tensorial or
multidimensional characteristics of the Bodner-Partom flow equation. The
material parameters for the study are determined from one dimensional tests

(tensile, creep and fatigue) on Inconel 718 at 649°C. The equations are
used to compute the response of a notched specimen using a plane stress
finite element computer analysis. The calculated results for the strain in
the root of the notch are compared to measured values reported by Domas et
al in (6] for the same material. This provides a test of the model to
predict the response in a general state of loading from data obtained in
uniaxial experiments. A comparison that is usually difficult to achieve.
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Another important aspect of this work 1is the development of the finite
element computer code as a design tool and utilizes the state variable
constitutive model. The code is based on two-dimensional constant strain
triangles, an initial strain iterative procedure, plecewise linear load
histories in a steady state thermal environment and a dynamic time stepping
algorithm.

THE BODNER-PARTOM EQUATIONS

These equations were motivated by the concepts of dislocation
dynamics and formulated in the context of mechanics. For small strains, the

strain rates are considered to be decomposable into elastic, éfj’ inelastic,

é{J, and thermal, ézj' components; that is

. Y-} oI oT
eiJ =€y + €4y + €43 (1)
where éij are given in terms of the stress rates determined from the time

derivative of Hooke's Law and eIJ is proportional to the change in

temperature from a reference state. All components of Equations (1) are
always nonzero for all nonzero values of stress and stress rate. However,
the values of the inelastic strain rate term are negligible for small values
of stress; thus, a yield criteria and separate loading and unloading
representations are not required.

The inelastic strain rate is written in a form similar to the Prandtl-
Reuss flow law; i.e. -
n+1.22 0. i

oI n
iy = Dg expl- 3 “3‘12:l } 3, (2)

where D0 is the limiting strain rate in shear. The material constant n

controls the strain rate sensitivity and also influences the overall level
of the stress-strain curves and J2 is the second invariant of the deviatoric

stress tensor, SiJ’ The internal state variable, Z, governs the resistance

to inelastic flow such that an increase in Z corresponds to work hardening
and would require an increase -in-stress to maintain a constant inelastic
strain rate.

The hardening law proposed by Bodner and Partom for application with
several materials is
YA
5 - m(z, - 2)WF - AZ, (——2)R (3)
1 1 Z1 _
where Z = Z0 initially. The first term defines the rate strain hardening

and W o= Sijéij is the inelastic rate of working. The second term in
Equation (3) characterizes the thermal recovery and is important for
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predicting creep. The representation is only for primary and secondary
creep, and the secondary creep rate is obtained when Z = 0. The constant Z,
defines the maximum value of Z and 22 is the minimum value ofVZ obtained in
thermal recovery. Frequently Z2 is taken equal to Zo; that is, the initial

hardness and minimum recoverable value of Z are equal. Methods to determine
the constants are presented in References [7] and [8], and the constants for

Inconel 718 at 649°C are given in Table 1.

The model presented above, in addition to neglecting tertrary creep, is
limited to an isothermal environment and isotropic hardening. An extension
to time varying temperature histories is based on making n temperature
dependent as reported in [3]. Extension to a hardening rate similar to
kinematic hardening for uniaxial histories is given Reference [9]; but a
full three dimensional anisotropic hardening law still needs to be verified
for a variety of loading conditions.

A POTENTIAL FUNCTION DERIVATION

Recently it has been shown [4,5] that a system of equations to predict
the inelastic strain rate and evolution of the state variables are derivable
from a potential function. The essential structure of the theory is based
on the balance law of thermodynamics and the concept of work hardening. For
isothermal histories, the reduced form of the potential relationship is

.I -BL .-ﬂ
€13 o, and u = =7 (4

where ¢ is a function the stress and stress state variable, Z. The quantity
u is a strain on the microscopic scale such that Zdu is the stored energy of
cold work. The relationship between p and Z on the microscopic scale is
taken in the form of the Prandtl-Reuss equation on the macroscopic scale;
i.e.

p=gZ+ hZ (5)
where g and. h are generally assumed to be functions of °13 and Z but are

taken as constants in this study. Combining Equations (4) and (5) and
redefining the constants as a and B8 gives

Z = - a(Z-E) + a8l (6)
where § 1s a material parameter. The quantity I is the integral

I ft it do )
where éI - (éijéij)1/2 and éij is evaluatéd using the Bodner Partom

Equation in this example.
The parameter a characterizes the initial rate of hardening, io, which

arises from the integration. This term contributes to the strain rate
sensitivity of the model and includes the initial loading such as in a creep
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test [4]. For this exercise a 1is taken as 125|§°|: The remaihing parameters

£ and 8 can be calculated directly from creep or tensile data during steady
state conditions; that is, when both the strain rate and stress are

approximately constant. 1In this case Z = 0 and Z obtains a steady value,
Zs, that depends on the test conditions. A plot of Zs vs I for Inconel 718

at 6"9°C shows that this response is nearly trilinear and can be represented
by the parameters shown in Table 1.

FINITE ELEMENT IMPLEMENTATION

The finite element code utilizes two dimensional constant strain
triangles and an initial strain iteration technique. To facilitate the
simulation of arbitrary load histories, the load history is partitioned into
plecewise linear segments. 1In order to simplify input, reduce stability
problems and minimize cost a dynamic time stepping procedure is also
incorporated.

The incremental equilibrium equation for the initial strain method with
steady satate thepyal coqgit;ons is

tk1{ad’} = {aF} + {aF} 3 (8)
where [K] is the elastic stiffness matrix, {AdT} is the increment in the
total_@isplacement vector, {AF} is the increment in the applied force vector
and {AFI} is a pseudo force vector due to the increment in a vector of the
inelastic strains components. The vector {AFI} is calculated by

1, N Toon, I

{aF°} = (I[B] [E}{Ae" }dv) (9)

1 v

where N is the number of elements. In Equation (9), [B] is the strain
displacement matrix and [E] is the elastic constitutive matrix.

At the beginning and end of a linear load case the elastic solutions
are obtained using

E PR
{d*}, = (k17 {rl,
and
{dE}F - EK]°1{F}F . (10)

The vectors {dE}o F are the initial and final elastic displacements due to
?

initial and final applied thermomechanical loads. The elastic displacements
at any time t1 in the load case are given by

t.-t
E E i 0 E E -
{d }i - {d }o +?F'_—t; [{d }F = {d }o]' (11)
The total displacement vector at time ti is written as

{aT}, = {aB}, + {a"},_, + {ad] (12)
where the increment in the inelastic displacement vector is
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{ad’} = (k] {aF%} | (13)

'and'the increment in the inelastic pseudo force vector is given by Equation
(9). Thus, it 1is necessary to integrate the constitutive model from time

t1_1 to ti. Although any number of integration schemes could be used, a

second order Adams-Moulton method was employed. Since the flow equation and
the state variable evolution equation are coupled an iterative procedure is

required to compute {éI} and Z at the end of a time step. The integration
of the constitutive equation is within the overall equilibrium iteration
loop as shown in Figure 1.

A significant improvement in the iteration scheme was achieved by
making an initial estimate of the incremental inelastic pseudo force vector

{aF'} in the first iteration of a new time step. If |AFT} s set equal to

zero on the first iteration of a new time step (as is usually done) the
first estimate of the solution may be very poor. An initial estimate of the

inelastic strain increment for each element can be made using {AeI} =
{EI}i_1At, where {EI}i_1 1s the inelastic strain rate at the beginning of

the time increment. If this is then used in Equation (9) to make an initial
estimate of the incremental inelastic force vector the stability and rate of
convergence of the method is improved. By including this logic, the number
of equilibrium iterations was reduced by about 60%.

In a finite element code that allows a linear variation of applied
loads, large excursions in stress and inelastic strain rate are to be
expected. To be economical and easy to use, dynamic time incrementing is a
necessity. There are two important considerations in developing such an
algorithm; first the stability of the iteration scheme and second the
accuracy of the integration procedure. The stability of the system of
equations depends on the constitutive model, geometry, loading history and
material parameters. An approximate but simple and effective approach is to
base the time step on the maximum inelastic strain increment to occur in all
of the elements. In order not to overshoot the point where inelastic strain
rates become significant it is also necessary to limit the maximum stress
increment. A final consideration is controlling the local integration error
when computing inelastic strain increments. For components in which fatigue
life is a major consideration the accurate calculation of local stresses and
strains is crucial. In order to control the error the time step should be
chosen such that the local integration error does not exceed some allowable
value.

CALCULATED AND EXPERIMENTAL RESULTS

A recent comprehensive study, [6], of the strain in the root of a notch
was conducted for a variety of local patterns in Inconel 718 notch

specimens at 6h9°c (1200°F). A laser interferometric strain displacement
gage was used with reasonable certainty to evaluate the displacement of a
gage 100 microns in length at the root of the notch at temperature. The
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measurements were made for six load histories including continuous cycling
and cycling with hold time periods in tension, tension and compression, and
compression. The specimen was a thin flat double notch bar, as shown in
Figure 2, with an elastic stress concentration factor of 1.9. The geometry
in the test section is approximately plane stress and is modeled by the
constant strain triangular element mesh also shown in Figure 2.

The above study included a limited number of smooth bar tests in
tension, creep and cyecling for use with a Neuber analysis. These data and
other published tensile, [10], and creep, [11], data were used to evaluate
the material parameters in the flow and evolution equations. The constants
were evaluated using the methods reported in (4], (7] and [8]. The major
difficulty encountered was not having two complete tensaile curves at
different strain rates to evaluate the parameter n in the inelastic flow
equation. Thus an estimate was used based on dne curve and the other
constants, as shown in the Table 1, were evaluated based on this value.
Increases in n would change the values of the other parameters, but the
combined effect would produce essentially the same predictions with less
strain rate sensitivity in the tensile response. Decreases in n would cause
the equations to overpredict the tensile strain rate sensitivity.

The calculated response to a smooth bar tensile test at a strain rate
of one percent per minute is shown in Figure 3a for the two evolution
equations. The potential function representation overpredicts the observed
stress in the transition from elastic to plastic response; however the
asymptotic behavior of both representations match the data very well. The
calculated smooth bar creep response is shown in Figure 3b for three values
of stress. The results of the calculations are mixed with the potential
function representation better at the high value of stress, the Bodner-
Partom representation better at the intermediate value of stress and both
models underpredicting the creep strain at lower values of stress. In
general, representations could be improved by adjusting the material
parameters; however, with only five curves in the smooth bar data base there
is no guarantee that this would improve the predicted response of the notch
strain. The flow law is also limited to primary and secondary creep, so ne
correlation with the tertiary creep is included.

The strain response at the root of the notch for three tests 1s shown
in Figures 4, 5 and 6. The total specimen load is held constant for two
minutes in compression, tension and compression, and tension as shown in
Figures 4, 5 and 6, respectively. The finite element and experimental
results are for the first cycle. In general, both evolution equations match
the measured data rather well. The largest error 1s the over prediction of
the tensile creep in Figure 6 by both equations; however, the measured
tensile creep in Figure 6 is much less than the measured tensile creep in
Figure 5 where the predictions are satisfactory. The assumption of
isotropic hardening appears reasonable for the first cycle and the
correlation with compressive creep is shown in Figures 4 and 5.

DISCUSSION

The state variable constitutive models used in this study have several
advantages and limitations. The formulation is convenient for finite
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element methods, because it admits a forward time marching integration
procedure and does not require separate loading and unloading
representations. The flow law and evolution equation can predict many
inelastic effects; however, for Inconel 718 there still are some areas that
need improvement. Inconel 718 general exhibits a combination of "kinematic
and isotropic” hardening and softening in uniaxial eyecling which is not
included in the current formulation. Further, the constitutive models have
not been fully developed and verified for nonisothermal loading conditions.
For extension to multiple cycle analysis it would also be advantageous to
use the cyclic stress-strain curve rather than the monotonic response curve
to determine the material parameters.

There 13 a correlation in the errors observed in the calculated finite
element response at the root of notch and the smooth bar calculated
response. When using the Bodner-Partom evolution equation, (3), the creep
strain at 827MPa(120KSI) was over predicted. The calculated tensile creep
response in the root of the notch is largest for the Bodner-Partom equations
as shown in Figures 5 and 6. This observation indicates that the finite
element predictions could be refined by improving the smooth bar calculated
response. Recalling that the constitutive parameters were obtained from
five curves, one tensile and four creep published [6,10,11] between 1971 and
1982, the calculations are reasonable and could be improved by improving the
smooth bar data base.

The computational exercises were limited to initial cycle of three load
patterns for reasons of cost and lack of cyclic data to develop the model.
The computational efficiency proved to be very good. On a Honeywell 6000
computer, the run times varied from 1.5 to 3.5 CPU hours for a model with
over 1000 elements. This is very competitive with similar finite element -
calculations based on classical plasticity and creep formulations. Further,
the longest time could have been reduced by incorporating all the time
saving features used in the later runs.
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Table 1. Constitutive Parameters

Flow Equation:

D, = 10%sgc”™! n = 1.954
Bodner Partom Evolution Equation:
Z, = 1805MPa (262 KSI) = A = 5.6 X 10 °SEC |
z, = 22534Pa (327 KSI) M = 0.160MPa" '
2, = 1805MPa (262 KSI) R = 1.37

Potential Function Evaluation Equation:

Z, = 1860MPa (270 KSI) G = 125|e |
1&f] s3.2x107%ec™ a0
B = 4.01 x 107MPa/SEC(5.82 x 10°KSI/SEC)
€% > 3.2 x 107'%Ec™and ¢ = -4033MPa(~585 KsI)
|e] s 7 x 1078sec™ 8 = 1.60 x 10%MPa/sEC(2.33 x 107KSI/SEC)
1&%] > 7 x 1078sEc™ T = 1102MPa(160 KSI)
7 6

B = 2.94 x 10 "MPa/SEC(4.27 x 10 KSI/SEC)
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Figure 1. Schematic diagram of the iteration procedure for the finite
element program.

305



™N
/ININLZINLZ N ~ e
/NN~
1 \l/ N\ "
Z /N AN 1IN
= \l/ "
< NLANLAN N N
—r—>% /NI /I\|.”~ ~ S
N IS NN NS N\ N ~
ZNIZINI S NN T <
N\ / \|l/I\ I\~ N
/ < /N/INIINL I\
NGNZNZ <
/I\l/ ANAN / I\

Figure 2. Description of the benchmark notch specimen and the finite
element mesh at the root of the notch.
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Figure 3. Comparison of experimental and calculated response of Inconel 718

at 649°¢ using the Bodner-Partom and potential function evolution
equations: (A) tensile response at 1% per minute and (b)
comparison of creep response at 689MPa(100KSI), 758MPa(110KSI)
and 827MPa(120KSI).

307



7 LOAD (KN) "
27000 - /
/
.//
/
18000 - - // ° DATA
[ )
. / ——— POTENTIAL FUNCTION
/
/ BODNER PARTOM
9000 - y
b/
/
STRAIN (%)
T ' !
0.4 0.8 1.2
LOAD , 29873N(6716LB)
TIME (sec)
100 200

-17925N(-4030LB)

Figure 4, Comparison of experimental and calculated load-strain response at
the root of the notch for Benchmark Notch Test 8 with a hold in
compression.
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Comparison of experimental and calculated load-strain response at
the root of the notch for Benchmark Notch Test 9 with hold in

tension and compression.

Figure 5.
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Figure 6. Comparison of experimental and calculated load-strain response at
the root of the notch for Benchmark Notch Test 10 with hold in
compression.
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