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Creep crack growth tests h->ve bean carried out in compact type
specimens of INCO 718 at 1200°F (649°C). Theoretical creep crack growth
predictions have been carried out by incorporating a unified viscoplastic
constitutive model and a continuum damage model into the ABAQUS nonlinear
finite element program. ‘

Material constants for both the viscoplastic model and the creep
continuum damage model were determined from tests carried out on uni-
axial bar specimens of INCO 718 at 1200°F (649°C).

A comparison of the theoretical creep crack growth rates obtained
from the finite element predictions with the experimentally observed
creep crack growth rates indicates that the viscoplastic/continuum damage
model can be used to successfully predict creep crack growth in compact
type specimens using material constants obtained from wuniaxial bar

specimens of INCO 718 at 1200°F (649°C).
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INTRODUCTION

The Air Force and Pratt and Whitney Aircraft are developing
technology to allow for an eventual damage tolerant design approach
to turbine engine components and to retira existing componenis based
on the detection of service initiated flaws. This approach is based
heavily on the capability to predict the growth of flaws in critical
structural components during the service life of the component. The
majority of critical structural components operate at elevated temp-
eratures where plasticity and time-dependent creep occur, particu-
larly in regions of stress concentraticn and near the tips of fatigue
cracks. Considerable research is currently being conducted on model-
ing crack growth behavior in engine materials. These research ef-
forts require an understanding of crack tip behaviour in order to su-
ccessfully evolve realistic crack growth criteria. Because of the
complex inelastic behaviour, closed-form solutions to crack problems
are not practical. An-alternative approach is to use finite element
methods for modeling test geometries. Such an approach, however,
depends heavily on realistic constitutive models of the material
behaviour as well as localized failure criteria for crack growth
problems.

This paper presents some results on creep crack growth obtained
under a contract [1] with the Air Force Materials Laboratory at
Wright Patterson Air Force Base under the cognizance of Dr. Ted
Nicholas. The Program involved the development of a constitutive
model for INCO 718, a nickel-base alloy, at 1200°F (649°C) under
monotonic, cyclic, and sustained loading. This model has the capa-
bility of accounting for load history effects as well as material
failure or damage accumulation. The model has been incorporated into
a nonlinear finite element program to simulate the crack growth be-
haviour in laboratory test specimenc, and data have been generated
to evaulate the applicability of the model. Development of the model
was based on prior constitutive modeling efforts, and as such, pri-
marily involved modifications and refinements to established ap-
proaches.

PROBLEM DESCRIPTION AND SOLUTION

At elevated temperatures the material in the vicinity of a crack
tip can fail or rupture under creep (constant load) conditions due
to the high stress concentration. To predict creep crack growth
analytically it is first necessary to determine the stress-strain
behaviour of the material in the vicinity of the crack tip. Once
the stress and strain histories are known at a particular point, the
time required to fail or rupture the material at that point can then
be determined by a suitable failure criterion.

The theoretical effort makes use of a unified viscoplastic

constitutive formulation to dete~mine the time-dependent material
behaviour in the crack tip vicinity, while a continuum damage model
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is used to predict the time required to fail a particular point in
the crack tip neighborhood. Both the viscoplastic constitutive model
and the continuum damage model have been incorporated as a FORTRAN
subroutine into the ABAQUS [2] general purpose nonlinear finite ele- .
ment program. When the continuum damage criterion dictates that the
material at the Gaussian integration point in the finite element
closest to the crack tip has failed, the node at the crack tip is
r?Ieased; and the crack advances to the adjacent node in the crack
plane.

Under creep conditions the small amount of crack growth is dif-
ficult to determine by conventional experimental crack measuring
techniques. Instead of measuring crack length as a function of time,
the displacement of two points located on either side of the crack
tip is monitored as a function of time by an optical interferometric
displacement measurement technique. The nodes along the crack plane
in the finite element model are released in such a manner that the
computed displacements of the two points, due to both the visco-
plastic material behaviour and the crack growth, matches the experi-
mental displacements as time progresses. Crack length, as a function
of time, then becomes a product of the finite element analysis rather
than an input. Since the failure criterion under creep conditions
is determined by a continuum damage model, the material constants in
this model can be chosen to give a least square fit to the creep
crack growth experiments in the INCO 718 compact type specimens at
1200°F (649°C) carried out under different applied loads. The mat-
erial constants in the continuum damage model can also be determined
to give a least square fit to the creep rupture data obtained from
uncracked uniaxial specimens of INCO 718 at 1200°F (649°C). If creep
crack growth is governed by creep rupture of the material directly
ahead of the crack tip, then the material constants determined from
the creep rupture experiments on the uncracked uniaxial specimens
should coincide with those obtained from the creep crack growth
experiments on the compact type specimens.

The use of combined experimental and theoretical procedures
to determine crack growth criteria !.as been labeled the Hybrid Exper-
imental-Numerical procedure by Kobayashi [3]. Hinnerichs and his
colleagues [4] used this procedure to determine a creep crack growth
criterion for IN 100 at 1350°F (732°C) from experiments carried out
on a centre-cracked plate test specimen by Sharpe [5]. They found
that a critical damage accumulation criterion for creep crack growth
similar to that employed in the present work gave good correlation
with the experiments conducted by Sharpe.

CONSTITUTIVE FORMULATION

Cyclic hysteresis loops "and creep curves were generated for
INCO 718 at 1200°F (649°C). Figure 1 shows a logarithmic plot of
stress 'vs. inelastic strain rate from creep tests and cyclic hyster-
esis loops generated in the present: work and from tests conducted
by Domas, Sharpe, Ward, and Yau [6]. The plot shows the variation
of secondary creep rate (or extension rate in a uniaxial hysteresis
test) with applied stress. Discrepancies between the present data

351



11.98 — Pomnt Extrapolsted from Tensile Test
1188 j— . cmED o EED v am A
nm g"' TTensie Tent =C
A o High Stran Rate
11.68 b . &—-———--—-—+
11.58 p— .":V
148 - Roy 4
Log (v) p@ -, 7 v
el o, / je Domas. Sharpe. Ward and Yau
na = / O Creso and Tensle Tests Generated
118 j V4 4 this Contract
108 f—
wose L] 1 1O T O O T |
-2 -20 =18 -10 -5
log )
O 2501704

Figure 1. - Plot of Log (Stress) vs Log (Plastic
Strain Rate) from Creep and Tensile Tests on
INCO 718 at 649 °C.
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Figure 2. - Experimental Créep Rupture Data and
Least Square Theoretical Fit
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and that generated by Domas, et al [6], occur at both low and high
stress levels. At high stress levels corresponding to the uniaxial
hysteresis tests, the data points are estimates obtained by extra-
polating the test data to obtain the ultimate stress values.

At high strain rates (in this context 10°% to 1073 per second)
the material behaviour becomes insensitive to strain rate. This may
be observed in the flattening of the logarithmic stress vs. inelastic
strain rate curves shown in Figure 1, and is exhibited by the present
data and by the data generated by Sharpe and his colleagues.

A power law expression [7] for the inelastic strain rate in
terms of the applied stress and equilibrium stress was first fitted
to the creep and hysteresis data. When fitting unified viscoplastic
models to test data, the usual procedure is to assume that the func-
tional form of the inelastic strain rate expression is correct, and
that any deviation of the test data from the assumed functional form
is due to thermal recovery of the state variables. In this manner
the material constants for both rate effects and thermal recovery
can be determined from the test data. A reasonable correlation of
stress vs. strain rate was achieved with the power law at low to
intermediate strain rates provided thermal recovery was taken into
account. However, the power law may be expected to hold only over
a relatively small strain rate range, and the stresses at high strain
rates tend to be overestimated with a power law expression. This
was clearly evident in the predicted stress results for strain rates

of 5.3x10™4 per second and 5.3x103 per second used in the hyster-
esis loop testing. To obtain a better overall correlation of stress
vs. strain rate, it was decided to use an exponential law for the
inelastic strain rate in place of the power law. This provided a
much better fit to the experimental data at all strain rates without
including thermal recovery effects. Thermal recovery is present at
1200°F (649°C), but derive the current set of material constants,
thermal recovery has been neglected. Table 1 shows the correlation
between experiment and theory using the exponential constitutive
formulation given in Appendix 1.

Table 1 Stress vs Strain Rate With Exponential

Law
¢ (Per
Second) ¢ (psi, Test) o (psi, Theory)
53 E-3 172000 (Extrapolated) 177538
33 E4 - 164492
6.88 E-8 140000 140000
822 E-7 130000 127971
152 E.7 120000 118406
3.68 B.8 110000 110435
5.67 E-9 100000 100000
3.85 E-10 80000 86377
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Table 2 Creep Rupture Details of INCO 718 at 1200°F
(649°C) Obtained in Present Contract

Strain on lLoading ' Final Reduction
Stress Elastic Inelastic  Rupture Time Elongation in Area
(hsi) (%) (%) (hr) (%) (%)
140 0.508 0.639 14 8.2 12.6
138 0.610 0.607 20 9.0 14.2
130 0.251 0.151 6.9 74 122
120 0.279 0.056 285 105 16.2
110 0.292 0.008 56.7 80 13.2
100 0.286 0.0 281.1 134 419
80 0.27T7 0.0 Discontinued

after 358 hr

Table 3 ' Creep Rupture Details of INCO 718 at
1200°F (649°C) Obtained by Domas,
Sharpe, Ward, and Yau [5]

Average Standard®
Stress (ksi) Rupture Time (hr) Rupture Time (hr)

120 - ] 18
110 92 50
100 131 160

80° 1583 1600
*CS0TF6 Specification

Table 4 Creep Rupture Details of INCO 718 at 1200°F (649°C)
Obtained by Thakker and Cowles [8]

Strain on Loading Final Reduction in
Stress Elastic Inelastic Rupture Time Elongation Ares
(Rsi) (%) (%) (hr) (%) (%)
120 0.597 0.060 20.1 121 15.9
110 0.581 0.012 48.3 14.8 52.3
105 0.478 0.009 116.0 23.7 56.8
90 0.450 0.005 494.8 2£.0 61.3

Table 5 Comparison of Theoretical  and
Experimental Creep Rupture Times

Rupture Time

Rupture Time (sec)
Stress Exzperiment from
{psi) ' (sec) ta=[A & { k(e)+1 } !
140000 5040 5041
130000 24840 21000
120000 91800 85015
110000 204120 ' 315123
100000 1011960 1011687

A w2394 X 1079 ¢ = 7.22, X(s) = 1 + 1.011E-4e?¢#ES ¢
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INCO 718 displays cyclic softening at 1200°F (649°C). The soft-
ening is observed in the decrease in the stress amplitude of the
hysteresis loops as cycling proceeds under constant strain amplitude.
‘It can also be observed in the increase in the width of the hyster-
esis loops under constant stress amplitude in fatigue testing. This
cyclic softening can be modeled with the viscoplastic formulation
at small cyclic strain amplitudes by allowiny the drag stress state

~ variable to decrease with cumulative inelastic strain. 1In the finite

element creep crack growth calculations the drag stress was assumed
to be constant and cyclic softening was not permitted. Material
constants for the cyclic softening case and for the noncyclic soften-
ingdcas$ used in the finite element calculations are listed in Ap-
pendix 1. :

Tertiary creep and creep damage accumulation have been included
in the constitutive formulation by using Chaboche's continuum creep
damage model [8]. Details of this model are given in Appendix 2.
Experimental results of creep rupture time and crezp rupture strain
as a function of stress level are given in Tables 2, 3 and 4. A
comparison of theoretical and experimental creep rupture times is
given in Table 5.

Material constants for the creep damage model were determined
from creep rupture tests on uniaxial bar specimens of INCO 718 at
1200°F (649°C). The specimens were given a standard heat treatment
per specification AMS 5596C as follows:

Solution anneal at 1750°F (854°C) for one hour. Air cool to below
932°F (500°C). Age at 1325°F (718°C) for eigat hours. Furnace cool
to 1150°F (621°C). Age at 1150°F (621°C) for a total time of eigh-
teen hours aging, cooling, and aging. Air cool to room temperature.
The test material was furnished in the form of 0.5 in. (12.7mm.)
thick flat plates having nominal dimensions 12x4 in. (305x102mm).

Figure 2 shows a logarithmic plot of stress vs. rupture time
for the creep rupture tests performed in the current work and for
creep rupture data generated by Domas et al [6] and by Thakker and
Cowles [9]. The rupture time corresponding to an initial tensile
stress level can be determined from the uniaxial form of the damage -
growth relation presented in Appendix 2. This relationship may be
written in the uniaxial form

> Ad (1)

dt (1_D )l o °

Integration between the limit D=0 to D=1 gives the creep rupture time
in the form

= [Ad" {k(e) + 1}]7". (2)

A least squares fit to the three data sets is achieved with the
values

A=1.17x10738 r26.31,k(0)=1+(1.011x10"}) exp(9. 446x10™50) .
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This fit is shown as the solid line in Figure 2. For the data gen-
erated in the current work a least square fit is achieved with the
values

A=2.398x10°%3, r=7.22,k(6)=1+(1.011x10™4) exp(9.446x10"°0).

FINITE ELEMENT MODELING

The unified viscoplastic constitutive formulation including
Chaboche's continuum creep damage model outlined in the appendices
was incorporated into a FORTRAN subroutine of the ABAQUS general
purpose nonlinear finite element program. The ABAQUS program solves
the nonlinear finite element equilibrium equations by a Newton-Raph-
son iterative method. For quasistatic loading conditions the finite
element equilibrium equations are solved in the form:

SUBTIBAV) & = P(t+ At) — Z[BT(e(t) + As(AuM)aAV, (3)
Aut ! = Aut + (4)

In these equations the matrix B transforms incremental nodal
displacements to incremental strains according to the relationship

A¢ = B Au. (5)

The stress increment for the unified viscoplastic constitutive formu-
lation is a function of the strain increment, and is therefore a
function of the nodal displacement increments via equation (5). Equ-
ation (3) provides the correction to the kth iteration for the dis-
placement increment.

In order to implement the Newton-Raphson iterative method for
solving the finite element equilibrium equations, it is necessary
to provide the Jacobian matrix J in equation (3). This matrix is
determined from the relationship

J - aa)‘¢n. (6)

9¢

Since the differential form of the unified viscoplastic formulation
results in a mathematically stiff system of differential equations,
the stress increment resulting from a given strain increment must be
determined by a subincrement method. The simplest method, and the
one used in the present work, is to split the finite element incre-
ment into a number of equally sized subincrements and to integrate
the viscoplastic equations over each subincrement with an Euler for-
ware difference method. This can result in an unstable integration
operator if the subincrement size is too large. In the FORTRAN sub-
routine the inelastic strain rate is determined by the forward dif-
ference representation of equation (1) of Appendix 3. If the magni-
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tude of the argument of the exponential factor in equation (1) exce-
eds the value of thirty (30) in any subincrement, the integration
procedure is stopped. The number of subincrements is then tripled
and the subincrement integration procedure is restarted from the
beginning. This procedure is repeated until no subincrement produces
an exponential argument greater in magnitude than thirty.

Since the Jacobian matrix J cannot be obtained in algebraic
form when a subincremental procedure is used, it is necessary to
obtain this matrix numerically. A numerical Jacobian matrix is

computed in the following manner. First the viscoplastic constitu-
tive subroutine is entered to determine the stress increments Ay ?

Ay A%y corresponding to the strain increments Ag,,. Atyy
DExy- Let Apii, Ap?i, Api; be the stress increments corresponding
to the perturbed strain increments Agxx+0.01Agxx, AEyy' Asxy; let
AO}):,{’ on’ AU%; correspond to the perturbed strain increments Ag,,.
Agyy+0.01A£yy, Ay and let Adf&' . Ao;{,, on correspond to the per-
turbed strain increments Ag,,, Aeyy Aexy*'o'mAexy' The numerical

plane stress Jacobian is then determined from the matrix relation:

- Ad: - Adn AG’: - Adu Ad’g - Adn-
X 1) V. VR 0.014¢,, 200.013,,)
;- Ad}} — Ao, Aoy, — Aoy,
ST 30015, | (7)
. AU:; - Adgy
! Symmetric 2(0.014¢,,)

Thus, the plane stress Jacobian matrix requires four calls to the
viscoplastic constitutive subroutine at each Gaussian integration
point in the structural model. One call is required to obtain the
unperturbed stress increment, whilst three additional calls are
required for each perturbed strain increment.

It is necessary to use the same number of subincrements- in each
of the four calls to the viscoplastic constitutive subroutine.
Otherwise, the Jacobian matrix will contain comporents of "noise"
resulting from the operation ¢/ a(change in number of subincre-
ments). For this reason it was not considered worthwhile to change
the size of the subincrements by means of some self-adaptive error
detecting method during the finite element integration step, since
the size of each subincrement would have to be stored in order to use
the same subincrement breakup in each of the perturbed strain incre-
ment calls to the constitutive subroutine. The simple procedure of
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using enough subincrements to prevent the magnitude of the expon-
ential argument from exceeding the value of thirty was therefore
adopted.

In order to determine the number of subincrements to be used
in the finite. element integration step, the following empirical
procedure was adopted. Let e denote the largest absolute value of
either the xx, yy or xy components of the finite element strain
increment for the case of plane stress. Numerical studies have
shown that the forward difference integration procedure is generally
stable provided the strain increment does not exceed the value of

10'4. The number of subincrements for a given Gaussian integration

point in some finite element in the structure is then determined as

e/10'4. In crack. propagation experiments in a superalloy compact
type specimen, the stress and strain increments are large only in
the immediate vicinity of the crack tip. All other elements away
from the crack tip vicinity generally experience small strain incre-
ments. Thus, in the element ahead of the crack tip, the Gaussian
integration points may require 50 subincrements, while those elements
further from the crack tip generally require only 2 or 3 subincre-
ments.

If the finite element load increment is large, then all of the
finite elements will require a large number of subincrements to
integrate the constitutive relations. This will be the case for
structures which are free of large stress or strain gradients. How-
ever, for cracked structures, the large stress and strain gradients
in the vicinity of the cracks and stress risers prevent large finite
element load increments from being taken. This arises from the fact
that the large stress or strain gradients give a very small radius
of convergence to the Newton-Raphson iteration method for solving
the finite element equilibrium equations. This small radius of con-
vergence of the iteration method for cracked structures is not pecu-
liar to the Newton-Raphson method. During the present work a Picard,
or successive substitution method (as used in the MARC program),
was also used to solve the finite element equilibrium equations. For
cracked structures the radius of convergence of this iteration method
was also found to be very small. In addition, the rate of conver-
gence for small increments with the Picard method is linear, whereas
the rate of convergence of the Newton-Raphson method is quadratic.
For this reason the Newton-Raphson iteration method for solving the
finite element equilibrium equations for cracked structures appears
preferable to the Picard successive substitution procedure.

The fact that small finite element increments must be used to
solve the equilibrium equations for cracked structures implies that
most of the structure is subjected to very small finite element
strain increments. One or two subincrements are then required for
most of the Gaussian points in the structure, and it is doubtful if
more refined integration methods (implicit) are required for these
structures.
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CREEP CRACK GROWTH MODELING

Experimental creep crack growth data have been generated by
loading compact type specimens of INCO 718 with applied load levels
of 4000 1b. and 4725 1b. at 1200°F (649°C). It is difficult to
measure crack length as a function of time on the surface of the
compact type specimen with any accuracy due to the fact that the
amount of crack growth is usually very small, and the crack may grow
internally in the specimen without associated surface crack growth.
Instead of measuring creep crack growth directly, - displacements
across the crack were measured as a function of time at the two
points shown in Figure 3 by means of speckle interferometry. Finite
element calculations were then used to determine the theoretical
creep crack growth rate with computed displacements at the two
speckle interferometry points which agree with the experimental
measurements. Crack growth versus time is then obtained indirectly
from t[he] analytical results in the manner employed by Hinnerichs
et al [4].

4000 or 4728 e
W =20

o O |
e o 2

Two Points Memsured OJh.[ _'(

'

4000 or 4725 ibs
O 200888

Figure 3. - Location of Two Points on Either Side
of the Crack Where Displacement 1s Measured by
Speckle Interferometry

The computations were made using plane stress assumptions.
Plane stress calculations were chosen based on the analysis reported
by Atluri and Nakagaki [10] where theoretical plane stress J-inte-
gral values gave the best agreement with 1.0 inch thick compact type
specimen test data. The thickness of the compact type specimens
used in the present work is 0.5 inches. Plane stress computations
were also chosen by Hinnerichs et al [4] to analyze creep crack
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growth in a centre-cracked plate which had a thickness of 0.3 inches
with crack lengths as small as 0.12 inches.

Figure 4 shows the finite element mesh used to analyze one half
of the compact type specimen. The mesh for the creep crack growth
computations consists of 115 isoparametric 8 noded quadrilateral
elements with 420 node points. Reduced integration was employed
in the analysis so that the surface integrations over each element,
required in the formulation of the matrices in equation (3), employed
only four Gaussian integration points per element. Thirty six square
elements, each of dimension 0.01 inches by 0.01 inches, are located
in the area immediately surrounding the crack tip. Details of the
crack tip mesh are displayed in Figure 5.

The adequacy of the mesh was checked by computing the elastic
stress intensity factor generated by the finite element model under
plane strain conditions. Agreement with the handbook formula [11]
for the elastic stress intensity factor was achieved to within 3%
accuracy.

Initially, the continuum damage model was incorporated into the
unified viscoplastic constitutive formulation, and the complete
constitutive/continuum damage midel was coded into a FORTRAN sub-
routine of the ABAQUS finite element program. When the compact type
specimen is initially loaded to 4000 1bs., a rapid stress redistri-
bution occurs at the Gaussian integration points closest to the crack
tip. The stress at the point closest to the crack tip relaxes (de-
creases) while the stresses at the points further removed from the
crack tip increase slightly to preserve global equilibrium. After
about 10 seconds the stress redistribution stabilizes and no further
change in the state of the compact type specimen occurs until about
94 minutes have elapsed. The equivalent Von Mises stress at the
Gaussian integration point closest to the crack tip, viz., point 2

in element number 83 of Figure 6, has a value of 139200 lb/inz. The
equivalent stress at integration point 1 of element 83 which is
further removed from the crack tip has a much lower value of 100600

lb/inz. After 94 minutes at the constant stabilized stress value

of 139200 1b/in2, integration point 2 in element 83 begins to rapidly
accumulate creep damage and failure (creep rupture) occurs after 94.2
minutes. At this point the incegration procedure becomes unstable
as the damage parameter approaches values close to unity.

The constitutive equations, when written in differential form,
will always tend to exhibit unstable behaviour whether or not
explicit forward difference or implicit backward difference methods
are used in the integration procedure. The tendency to unstable
behaviour in the differential equations arises from the fact that the
right hand sides of the differential equations become very large as
the damage parameter approaches unity. An integral formulation of
the viscoplastic model is given in Appendix 1, where it may be seen
that the factor (1-D) appears on the right hand side of the equation
for the stress. As D approaches unity the stress decreases to zero

360



We20in

: a= 0295 n
|—=¥l-0.“5h.
O 20008
Figure 4. - Finite Element Mesh for Creep Crack
Growth in Compact Type Specimen
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Figure 5. - Detail of Crack Tip Region in Compact
Type Specimen
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Figure 6. - Detail of Crack Tip Showing Reaction
Forces and Gaussian Integration Points
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and no instability should be encountered if an integral recursion
procedure is used to step from the beginning to the end of the incre-
ment. This procedure. was not used in the present calculations
because a suitable algebraic Jacobian matrix was only developed after
the present calculations were completed. Recent applications of the
numerical procedure using the integral recursion relations have
proved successful, and this method ought to be pursued further in
an attempt to obtain a stable integration method for the coupled
viscoplastic/damage equations.

Since the equivalent stress at the integration point closest
to the crack tip remains constant for 94 minutes after the initial
10 to 15 second transient, and failure occurs at 94.2 minutes, it
was decided to remove the damage computation from the viscoplastic
FORTRAN subroutine to avoid the instability due to creep continuum
damage accumulation.

The computations for creep crack growth now proceed as follows.
First, the compact type specimen is loaded to either 4000 lbs. or
to 4725 lbs. After a brief transient stress redistribution in the
vicinity of the crack tip, the equivalent stress remains constant
at the Gaussian integration point clcsest to the crack tip, viz.
integration point 2 in element 83 of Figure 6. The time to failure
for this integration point can then be determined from equation (2).
From equation (5) of Appendix 3, the last two terms are responsible
for decreasing the stress at the material point due to the growth
of the creep damage parameter D. That is to.say, as the point fails
and its load carrying capacity diminishes with increasing damage,
the stress at that point decreases and the load which it carries is
shed onto other surrounding material points in the structure. To
simulate this decrease in the load carrying capacity of the Gaussian
integration point, four load increments are carried out in which the
stress components are reduced by one half of their value at the
beginning of each increment. Each increment lasts for 0.25 seconds,
so that once failure is deemed to have occurred, the stress is
reduced to about 6% of its initial stabilized value at the integra-
tion point in 1 second. 1In each succeeding increment the stress is
further reduced by one half of its value as the analysis proceeds.
Integration point 2 of element 83 in Figure 6 has now failed. The
displacement boundary conditions at crack tip node C in Figure 6
are replaced by force boundary conditions. The reaction force re-
quired to hold the crack tip node C-in its current location is then
released in four (4) increments over a period of 1 second and the
crack advances to the adjacent node B halfway through the isopara-
metric element.

A brief transient stress redistribution lasting for about 15
seconds again occurs, followed by a stabilized condition. The equiv-
alent stress after stabilization is then computed at integration
point 1 of element 83, and the time to rupture determined once again
from equation (2). Once failure has occurred the stress is shed
from integration point 1 to about 6% of its initial value in 1 sec-
ond, -and the crack tip node B is released in four increments over a
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1 second period and the crack advances completely through the iso-
parametric element to the adJacent node A. This procedure is re-
peated for all nodes lying in the crack plane ahead of the advancing
‘crack.

The justification for the decoupling of - the viscoplastic and
continuum damage constitutive models is based on the following obser-
vations:

(1). The stress falls off very rapidly in the crack plane of a
compact type specimen. Consequently the stress at the integration
point closest to the crack tip is large and the rupture or failure
time is fairly small. The second integration point in the crack tip
element and the integration points further away are subjected to such
small stresses that the amount of creep damage accumulated by these
points, at the time the integration point closest to the crack tip
fails, is practically zero. The creep rupture time in equation (2)
can then be used for each integration point in turn. Even if the
damage accrued by each point is not small, the rupture time can still
be determined from equatiun (1) by integration.

(2). The transient stress distribution after initial load up or after
a node release, redistributes in a time which is much smaller than
the time required to fail or rupture the integration points closest
to the crack tip. Each integration point is therefore subjected to a
constant stabilized stress for.most of its life.

These observations are pertinent to high strength superalloy
materials and are not expected to hold true for ductile materials
of lower strength.

EXPERIMENTAL MEASUREMENTS

The standard compact type specimen shown in Figure 7 was used
to obtain the creep ¢rack growth rate data. Testing was conducted
on a hydraulic constant load test frame. All precracking and testing
was performed in accordance with the procedures outlined in ASTM
647-83. Specimen heating was provided by resistance, clamshell
furnaces having windows to allow observation of the crack growth at
test temperatures. The crack extension under creep loading con-
ditions was determined by a laser heterodyne optical strain measur-
ment system using speckle interfero:etry.

The concept of the heterodyne optical strain measurement system
is illustrated in Figure 8. A laser beam is split into two parallel -
beams illuminating two closely spaced points on the object. The com-
paratively rough surface of the object scat:ers the laser light in a
random manner resulting in two speckle fields reflected from the sur-
face of the object. These two speckle fields are imaged by a lens
system onto the film plane. If a photographic plate is placed at the
film plane, a photographic recording of the resulting speckle inter-
ference pattern is made.
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Figure 8. - Optical Strain Measurement Concept
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The recording of the speckle interference pattern is then relo-
cated in the same position it occupied during exposure. When the
object is loaded in the X direction (Figure 8) causing points A and
B on the object to separate in-plane, the spatial fregquency of the
fine interference fringes will change relative to the pattern previ-
ously recorded on the photographic plate with no load on the object.
The effect of this change in frequency is to generate a change of
phase angle between the interference pattern reflected from the
object and the one recorded on the plate. The result to the observer
will be the creation of a Moiré fringe pattern, each fringe of which
represents a 180 degree shift in phase. The spatial frequency of
these Moiré fringes is proportional to the strain on the object
between points A and B.

In previous methods, the Moiré fringes were simply counted and
the number of fringes directly related to strain. However, these
methods have significant limitations in accurately measuring strain.
For example, strain values corresponding to less than one fringe
across the field of view cannot be measured; location of the fringe
centres is not accurate; and no distinction is made between positive
and negative strain. All of these undesirable limitations can be
eliminated by the incorporation of heterodyned interferometry.

To implement heterodyned interferometry into the system shown
in Figure 8, a device for constantly changing the phase of the laser
beam prior to the beam splitter is added. This causes the Moiré
fringes observed on the film plame to scan across the field of view
in a constant direction. If the observer is replaced by a photo-
diode, the output of which is supplied to a phase meter, small
changes in phase can easily be measured. Phase meters czn accurately
measure phase changes to within 0.5 degree, which is eguivalent to
dividing each Moiré fringe into 1000 parts. Therefore, heterodyned
readout of the Moiré fringe pattern greatly increases thz resolution
and accuracy over typical optical techniques.

The heterodyne optical strain measurement system developed in
the Materials Engineering and Technology Laboratory of Pratt &
Whitney Aircraft is shown in Figure 9. A 2 watt argzn ion laser
is used and the heterodyne signal is provided by a A/2 retarder plate
mounted in the hollow shaft of an electric motor and by & stationary
A/4 retarder. The laser beam is split by a calcite bezm displacer
into two parallel beams 0.1 inches apart, which are ther directed by
mirrors to the specimen. Light scattered from the specimen is
gathered by the strain sensor head and focused ontc the photo-
graphic plate located in the plate holder. Two phczodiodes are
placed directly behind the plate.

The signals from the photodiodes, after being a-;lified and
filtered, are fed into a counter that measures the rphase of the
signal from one of the diodes relative to the other. To conduct
elevated temperature tests, an enclosure tc stagnate the air between
the specimen and the photodiodes is required as shown in Figure 9.
An access port in the side of the furnace allows the lizat to reach
the specimen and reflect back to the sensor head throuz- a tunnel.
The box around the sensor head helps stagnate the a&ir and also
shields the photodiodes from room lights.
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RESULTS

The displacement of two points, located on either side of the
crack tip, as shown in Figure 3, was measured as a function of time
by the speckle interferometry technique described in the preceding
section. Figures 10 and 11 show the ‘experimental displacement of
one of the points in the y direction (see Figure 3) as a function
of time elapsed after application of load to the compact type speci-
men. The displacement is measured with respect to the centreline
of the specimen and represents an average value for the two loca-
tions. .

Theoretical and experimental results corresponding to the init-
ial portions of these curves are displayed in Figures 12 and 13.
The portions of the curves labelled A,B,C,D,E in these figures cor-
respond to the stabilized behaviour of the compact type specimen
after the 15 second transient and prior to the release of the ist,
2nd, 3rd, 4th and 5th nodes ahead of the crack tip. The material
constants A and r in the creep rupture equation (2) are chosen
to give a least square fit to the uniaxial creep rupture data gener-
ated in the present work, as opposed to the values quoted in Fig-
ure 2, which correspond to a least square fit to three sets of inde-
pendent data.

It is clear from Figures 12 and 13 that the computed displace-
ment, and hence the computed initial creep crack growth rate, is too
small by about a factor of two at the 4000 1b. loading level, and
too large by a factor of two at the 4725 lb. loading level. Hence,
the material constants generated from the uniaxial creep rupture
data also give an approximate least square fit to the creep crack
growth data.

Agreement between the predicted and experimental creep crack
growth rates can easily be achieved simply by doubling and halving
the computed creep rupture times (required to fail the Gauss points
ahead of the crack tip) for the 4725 1b. and 4000 1b. load cases.
A logarithmic plot of equivalent Von Mises stress at the Gauss points
versus rupture time, which gives agreement between the experimental
and finite element displacements at the speckle interferometry
points, is given in Figure 2. As expected, the points lie on either
side of the least square dat: line obtained from the three sets of
uniaxial creep rupture data.

CONCLUDING REMARKS

Creep crack growth has been measured in compact type specimens
of INCO 718 at 1200°F (649°C). Theoretical predictions of crack
growth were made by employing the ABAQUS nonlinear general purpose
finite element program in conjunction with a unified viscoplastic
constitutive model and a continuum damage failure criterion.

The results of the current work may be summarized as follows:

(1). Initial creep crack growth rates at 1200°F (649°C) in the INCO
718 compact type specimens can be predicted by the theoretical model.
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Crack growth is assumed to take place due to creep rupture of the
material in the immediate vicinity of the crack tip and material
constants for the continuum damage creep failure model were deter-
mined from creep rupture tests on uniaxial bar, specimens of INCO 718
at 1200°F (649°C). Calculations were performed under plane stress
conditions.

(2). The differential form of the unified viscoplastic constitutive
model becomes very unstable when continuum damage is included in the-
formulation. It appears that the integral formulation of the uni-
fied viscoplastic model given in Apoendix 1 should be used to obtain
a stable integration algorithm.

(3). Speckle interferometry appears Well suited for high tempera-
ture creep crack growth measurement. -
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Appendix 1
COUPLED CONTINUUM DAMAGE/INTEGRAL VISCOPLASTIC FORMULATION
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Appendix 2
CHABOCHE’S CREEP DAMAGE MODEL

:
b-a (MEFR) a-pi,

(1)

k =1+ (1011 X 107 exp (9.446 X 107°\/ 3/2 §; §; ) 2
The constants are chosen to have the values:

A =2394 X104, r = 7.22.

Appendix 3
UNIFIED VIscOPLASTlc EXPONENTIAL LAW FOR UNIFIED FORMULATION

exo( \/2/3(3e,/2 = 0,)(3a,/2 - Q) ) -1

. KIT=-D) (38,/2 = 0,)
& - B V2/3(38,/2 — 2,)(3,/2 = 0, ' (1
. —nR -
G,=tng+ n e ") R, (3)
R = Kl + }(2 e ’ (4)

& = M1 =D)éy + 2u(1=D) (4=¢;) + & X(T=D &, + Tu(1=D) (¢ — c;) (5)

R = /27388,

(6)
1
sij - oy = '3‘ 65’“'

The constants are chosen to have the values:

A = 1517 E7, u = 1.012 E7, K, = 4219, K, = -1438, § = 6.203 E9, n, = 22.4 E6,

ny=269.6,n,=0,ng = 0,n,; = 14. 3
For no cyclic softening K1 = 5657 and K2 = #U.S. GOVERNMENT PRINTING OFFICE:1 985 -537 - 08& 20003 REGIONNO. 4
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