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i. Introduction

A system contains design flaws, each of which eventually manifests

itself at some point in time, whereupon the system is redesigned in order

to remove the design flaw. Design flaws are often called "bugs," and the

time points mentioned above will be called "failure times." If the

failure times are indexed chronologically they can be represented as:

0 _<sI _<s2 _<s3 _<.... (1.1)

It is convenient to consider (i.i) as the realization of a random process:

0 < SI < S2 < S3 < ... , (1.2)

where the S.'s are random variables and the s.'s are real scalars.
i I

If system redesigns successfully remove design flaws, system reliability



will improve and (i.i) and (1.2) should show a general pattern of increasing

interfailure times, i.e., reliability growth. This paper presents and

investigates a family of probability models for the failure-time process

in (1.2). They are reliability growth models called Exponential Order

Statistic models.

Exponential Order Statistic (EOS) models are based on the following

assumptions: Each design flaw has a rate of occurrence; a flaw causes

failures to occur according to a Poisson process if it is not removed;

and design flaws cause failures independently of one another. If each flaw

is removed the first time it causes a failure, the overall failure-time

process corresponds to order statistics from independent but not necessarily

identically distributed Exponential random variables. Campbell and Ott [4]

use such a model. The model is implicit in Nagel's [21,22] replicated

software debugging experiments. Adams [i] studies the rates at which

design flaws cause failures.

Three different subfamilies of EOS models are considered. These

are based on three classes of models for the failure rates of the design

flaws initially present in the system: (i) a collection of deterministic

rates, (ii) a finite set of random independent identically distributed

rates, (iii) a set of random rates whose joint distribution is that of a

nonhomogeneous Poisson Process (NHPP). Models of type (i) are deterministic

EOS models (denoted DET/EOS), models of types (ii) and (iii) are doubly

stochastic EOS models (denoted DS/EOS). Various properties of and inter-

relationships between these three families are given.

The ultimate goal when developing reliability growth models is the

development of good reliability inference and prediction methods which

are applied to software development and maintenance. Nevertheless,

this paper will not deal with inference or prediction per se. The focus

is on the probability models and their properties. However, some of these

properties do provide bases for new approaches to estimation and prediction

of reliability growth.

The general content of the paper is as follows: Section 2 contains

definitions, basic properties and some examples of EOS models with
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deterministic failure rates. Section 3 introduces doubly-stochastic EOS

models and tries to portray them as natural extensions of the DET/EOS

models• Section 4 presents some general mathematical results as well as

some guidelines dealing with problems in distinguishing different models

from each other. Section 5 presents an important parametric family of

DS/EOS models: the Gamma/EOS models; the closure of this family includes•

as special cases, the Jelinsky-Horanda [12] model, the Goel-Okumoto [i0]

model• the Littlewood [16] model• the Musa-Okumoto [20] Logarithmic

Poisson model, and the Power Law Model [6,7]. In Section 6 the mean

function and intensity of the failure-time process (1.2) are characterized

using the property of complete monotonicity; this will be useful for

nonparametric analyses. Section 7 includes more parametric families of

EOS models and additional properties. Section 8 contains some brief

comments on possible approaches to inference and prediction using the

results of this paper. Conclusions are in Section 9. An Appendix

contains proofs and other details omitted from the body of the paper.

2. Exponential Order Statistic Models

Let X. , i=1,2, .,n, be independent Exponential randomi " •

variables with rates %. i=1,2, .,n respectively. (Throughout this1 ' "" '

paper we assume 0 _< l.l < _ ") If l[o,t](- ) is the indicator function

of the set {x: 0 < x < t} • thenm

n

N(t) = Z l[o,t](Xi) • t _>0 , (2.1)i=l

equals the number of events occurring by time t . Let S. = min{t: N(t) > i},
1

i=l,2,...,n , be the occurrence time of the ith event, i.e., the ith order

statistic of X1 , X2 , ....X . The stochastic processes {N(t) t > O}n ' -

and {S. i=1,2. } are the counting process and the occurrence-time

process, respectively• of an Exponential Order Statistic (EOS) model with

parameter set _%= {%1 ' _2 '''''%n } . Anticipating the introduction of
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doubly stochastic models in the next section, we shall denote the above

model as a deterministic EOS model, abbreviated as DET/EOS.

It is mathematically possible and convenient to permit an infinite

number of events, i.e., n = _ In this case the parameter set 1 is

oo

infinite. If _ %. < _ , then P(N(t) < _) = 1 for 0 < t < _ ,
i

i=l

so it is a proper model. If _ I. = _ , then P(N(t) = _ ) = 1 for
i=1 i

0 < t < _, a degenerate situation. (Proofs are given in the Appendix.)

The infinite event model can be thought of either as a model of physical

reality or as a mathematically tractible approximate model when there is

a large but finite number of events. By setting I. = 0 , i > n + 1 ,
l

the finite event model is obtained as a special case of the infinite event

model. Thus, without loss of generality, infinite event'models can be

considered. (See, also, Theorem 4.9.)

An Exponential order statistic model is characterized by its

parameter set I = {I. , 12 , ...} The only restrictions on 1 are

I. > 0 , i=1,2,..., and E I. < _ So the allowable parameter sets
i - i=l i

for DET/EOS models include many, many possibilities. Some interesting

special cases are:

i. Ii = 10 , 1 _< i _< n (constant rates);

2. I. = _log(v/i) , I < i < [_] (logarithmic rates);
1

3. I. = e81 , 1 < i < _ , 0 < 8 < I (geometric rates);
1

4. I. = _i-n , 1 < i < _ , i < _ < _ (power rates).
1

Case 1 is the famous Jelinsky-Moranda [12] model. Case 2 is another

finite event model. Case 3 was observed by Nagel [21,22] for rates
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estimated during replicated-run software debugging experiments. Case 4

follows a pattern observed by R. W. Phillips of IBM which is reported by

Adams [i]: "the relative numbers of design errors having each possible

rate was proportional to a particular inverse power of rates." (This

relationship will be revealed more clearly in Section 7.)

A parameter set % can be characterized by a cumulative function:

Let L(%) equal the number of elements in {%. s %: %. < %} , 0 < % <
1 _ 1

If % is an infiniteset with _ %. < _ , then L(1) = _ and it will
i=l 1

be better to work with the complementaryset: Let L(%) equal the number

of elementsin {l. _ I : I. > %} , 0 < % < _ . For the above four
1 I -- --

examples, the (complementary)cumulativefunctionsare:

In,OJ%<% 0
i. (constant) L(%) = 0 , %0 < % < _

2. (logarithmic) [.(%) = [_ exp(-%/_)] , 0 < _ <

[(log _ - log e)/log B] , 0 < I <3. (geometric) _(%) = - -
0 , o_ < t <oo

4. (power) _(%) = [(_/%)i/_] , 0 < % <

where [x] = max {i : integer, i < x} is the greatest integer function.m

Note that E %. = _(%)d% ; thus the set of permissible cumulative
i=I l 0

functions is precisely the set of all integrable nonnegative decreasing

step-functions with integer steps. Deterministic EOS models exist in

one-to-one correspondence with these functions. This characterization

will be extended in Section 3 to obtain a broader class of EOS models.

The mean function, M(') , of the counting process {N(t) , 0 < t}

is defined as M(t) = EN(t) , 0 < t , and using the infinite analogue of

(2.1) ,
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oo

M(t) = E( _ 1 (Xi))i-i [0,t]

oo

= l E (Xi))
i=1 (i[0, t]

oo

= E P(X i < t) (2.2)
i=l

co

= E (l-e-Xi t)
i=l

oo

= f (l-e-It) (-dL(X))
0

The intensity function, m(.) , of the counting process is the derivative

of the mean function:

m(t) = M'(t)

oo

-l.t (2.3)
= E l.e 1

i
i=l

oo

= f Xe-Xt(-dL(X))
0

Note that m(.) is the Laplace transform of a measure with masses I.i

at points %. , i=1,2,...; the total mass is E %. , which is finite.
i i=1 1

From uniqueness of the Laplace transform for probability distributions

(see Feller [9, p. 430]), it follows that a DET/EOS model is completely

determined by its intensity function m(') , or equivalently by its

mean function M(.) Of the four previous examples of DET/EOS models,

only the first (constant rate) has a mean function with a nice closed

form: M(t) = n(l-exp(-10t)) . In effect, this gives an alternative defini-

tion of the Jelinsky-Moranda model: It is a DET/EQS model with mean function
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M(t) = n(1-exp(-k0t)). Or, equivalently the J-M model is defined as a

DET/EOS model with intensity function m(t) --nk0 exp(-kot). The reason

for focusing on the mean and intensity functions will become obvious in

Sections 3 and 4.

The EOS model is based on two basic assumptions: independence of

times until occurrence of different events and Exponential distribution of

these times. In the general context of software reliability growth these

assumptions will not be exactly met; it can only be hoped that they are

reasonable approximations. Independence can fail because of interaction

between bugs; for example in experiments performed at the NASA AIRLAB

facility, G. E. Migneault has observed instances of interaction, e.g., a

program containing two bugs can have a higher failure rate than the sum of

the failure rates of the two corrected versions each of which contains only

one bug. Exponentiality can fail when the program input changes nonrandomly

over time or exhibits a "memory."

There exist several possible justifications for assuming Exponential

distributions. In a carefully designed system occurrences of design flaws

should be low probability events, i.e., "rare events." Poisson processes

with their exponential waiting times are often good models for this type of

phenomenon; see Breiman [3] and Ross [23]. Campbell and Ott [4] use EOS

models for manifestation times of design flaws in nuclear reactors. A more

rigorous justification for exponentiality can be given for programs that

perform calculations based on individual discrete inputs; if a design flaw

manifests itself for proportion p of the possible inputs and the successive

inputs are chosen independently and randomly, the number of inputs until

manifestation will have a Geometric distribution with parameter p. If

execution times for each input are independent of success or failure of the

computation and p is small, the Exponential is a good approximation (see

Appendix). The Exponential will also be a good approximation for this type

of program when successive inputs are not independent but are a regenerative

process, e.g., successive inputs may correspond to a random walk through the

space of all possible program inputs (see Appendix).
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Exponential Order Statistic models based on specific parameter

sets are quite useful for specific applications: The Jelinsky-Moranda

model is widely used; Migneault (experiments performed at NASA Langley

Research Center's AIRLAB facility) has used the EOS model with geometric

rates to predict successfully the occurrence of new, as yet unobserved,

bugs. It is obviously a rich and useful class of models. However, it

seems clear that parameter sets whose elements satisfy exact functional

relationships as in the four examples (constant, logarithmic, geometric,

or power relationships) can only be approximate. Thus, arbitrary

parameter sets should be considered; this leads to nonparametric

approaches: Campbell and Ott [4], for example. Also, stochastic

parameter sets should be considered; this leads to alternative

derivations of some existing software reliability growth models and

additional insights.

3. Doubly Stochastic Exponential Order Statistic Models

Exponential Order Statistic models are based on the assumption

that a given bug in a given program has a particular rate of occurrence,

_. If the program is executed in a time-homogeneous environment the

observed rate at which the bug causes errors will converge to _ as

execution time increases to infinity. By performing replicated-run

software debugging experiments [21,22] the error rate for a particular

bug can be estimated to any desired degree of accuracy. In this sense,

for a given program in a time-homogeneous usage environment the parameter

set ._._= {_I' _2' ...} is a set of deterministic values.

Now let use consider possible models for the parameter set _. In

the previous section, various deterministic functional relationships were

presented. If design errors are accidentally included in program, it is

difficult to imagine that their rate would obey exact functional

relationships. It is more plausible that the rates would be described by

these relationships plus some random noise. This suggests that _ be

modeled as a realization of a stochastic point process; for example

{_I' _2' "''} could be a realization of a nonhomogeneous Poisson process

(NHPP). This gives a doubly-stochastic model: one process for the

rates, and a DET/EOS process for occurrence times conditional on the
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rates. It is a doubly-stochastic exponential order statistic (DS/EOS)

model.

Define A = (A1 , A2 , A3 , ...) as a point process on (0,_) ,

i.e., a collection of random points greater than 0 . We shall consider

A as a random perturbation from a deterministic model: Let _(t) , 0 < t ,
%

be any nonincreasing function which decreases to 0 as 1 increases.

Define I. = L-l(i) , i=1,2,3,...; for example, L(1) = _ exp(-I/_) , 0 < I ,
i

gives the logarithmic deterministic set of rates from the previous section.

From Figure 3.1 we see that a random perturbation from this deterministic

model can be achieved by perturbing {l,2,...n} into the new values

{uI } and then defining I. = L-l(u i) i=1,2, .n The setu 2
_i, oU n I ' "" "

{ui , u2 ,...,un} can be the realization of any point process

U = (U1 , U2 , ...) on (0,v) , but we shall only consider two possibilities:

(a) U is the process of n independent Uniform [0,_] order statistics,

and (b) U is a homogeneous Poisson process (HPP) with unit rate. For

these cases we have the following genera_ theorems (see Appendix for

proofs):

Theorem 3.1: Let L(1) be a nonincreasing function on [0,_)

such that L(O) = n and liraL(1) = 0 . Let U = (U1 , U2 , ...,U n)
l_>oo

be n independent Uniform [0,n] order statistics. Define Ai = L-I(u i) ,

i=l,2,...,n . Then A = (A1 , A2 , ...,A n) are n independent order

statistics from a distribution with complementary cdf L(')/n and

complementary cumulative mean function L(') .

Theorem 3.2: Let T.(1) be a nonincreasing function on [0,_)

such that lim L(1) = 0 . Let U = (U1 , U2 , ...) be a homogeneous

Poisson process with rate i. Define A. = L-I(u i)
for i such that

l

U. < L(0) • Then A = (AI , A2 ...) is a nonhomogeneous Poisson processi %

with complementary cumulative mean function L(') •

-- 9 --



V

(a) Deterministic Model
n

k. = _ (log v - log i) , i=1,2,I ...,n

(b) Random perturbation
u
n

Figure 3.1 Deterministic model and random

perturbation model of rates
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Thus for a given function L(') with L(0) < _ , we consider three

models for the rates {1%1 ' %2 ' ""}: (a) i.i.d, order statistics

from 1 - L(.)/L(0) ; (b) NHPP with mean function L(0) - L(-) ; and

(c) deterministic model. If L(0) = _ , only cases (b) and (c) are

possible and the NHPP must be described using the complementary mean

function L(.) • It is hoped that looking upon these random models as

perturbations of the deterministic models will provide some motivation

for their consideration. Another approach would be simply to postulate

the random models without mentioning the associated deterministic model.

Regardless, they will be useful and interesting.

The Jelinsky-Moranda model (constant rates) has L(%) =

n i[% 0 ,_)(%) , 0 _ % . If L is approximated by a smooth curve such

as the complementary cdf, G(.) , of a Gamma distribution (with mean %0

and large shape parameter) multiplied by n , we get a "noisy" J-M model;

see Figure 3.2 Following the above there are two options: A may be"

(a) n i.i.d, order statistics from G(.) , or (b) an NHPP with cumulative

mean function n(l-G(')) • Another simpler possibility for introducing

noise into the J-M model is an NHPP with complementary cumulative mean

function L(_) = n i[_ 0 ,_)(_) , 0 < % , i.e., N rates all equal to

%0 ' where N has a Poisson distribution with mean n .

We are considering i.i.d, order statistic (lIDOS) models and NHPP

models for A . Another possible dichotomy among models concerns finite

and infinite component A . This is only relevant for NHPP's. It turns

out to be unnecessary to make this distinction because NHPP's can be

defined generally regardless of whether _(0) is finite or infinite.

The transformation of an HPP into an NHPP is illustrated in Figure 3.3

for both cases. Thus we consider lIDOS models and N_PP models, each of

the former having a finite deterministic number of bugs and each of the

latter having either a finite (Poisson-distributed) number or infinite

number of bugs. In all cases L(%) denotes the complementary cumulative

mean function, i.e., the expected number of bugs which have rates greater
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n !
i

l L(%)_ 0 % < _0J
I n _ > _0

i

%0

n "

nG(%)

L

_0

Figure 3.2 The complementary cumulative mean

function for the rates of J-M model,

L(-) , and an approximation based on

the gamma distribution
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NHPP with N events

- -I- - /(_) N _, Poisson (mean = L(0))I
!

- -i I -_
i

i

AN X 3 X 2 hI

"!l_ NHPP with infinite events

i _' ,\ LO_)
I "_I', _ m /

_3 A2 _i

Figure 3.3 Nonhomogeneous Poisson processes:
finite and infinite number of
events
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than or equal to

The DS/EOS processes {N(t) , 0 < t} have especially nice forms

for lIDOS A's and for NttPP A's :

Theorem 3.3: Let A be an lIDOS process with cumulative mean

function L(_.) , 0 < )t Then, the DS/EOS process with rates A is
-- %

an IIDOS process with mean_ function M(t) = ;o(l-e-)'t)dL(X) , 0 _< t ,

and intensity re(t) ; foXe-)ttdL(X) , 0 _< t .

Theorem 3.4: Let A be an NHPP process with complementary

cumulative mean function _(X) , 0 < X Then, the DS/EOS process with

rates A is an NHPP with mean function M(t) = f0(l-e-Xt)(-d_(X)) ,

0 _< t , and intensity m(t) = -fO _e-_tdL(_) ' 0 _< t .

Note that the above DS/EOS processes are completely specified

by whether A is lIDOS or NHPP and by the complementary cumulative%

mean function _(.) They can be denoted as IIDOS/EOS(_) and

N_PP/EOS(L) , respectively. With this notation the above theorems can

be summarized as

IIDOS/EOS(_) = lIDOS(M)

NHPP/EOS(T,) = NHPP(M) ,

where M(t) is defined above. Thus by a rather circuitous, but

physically meaningful, route we have arrived at some familiar models.

Now consider doubly stochastic versions of the four examples

from Section 2:

<%<% 0
i. L(_) = - - ; M(t) = n(l-e-_O t)

0,_0<_<_

2. L(%) = _ exp(-%/_) ; M(t) = _ _t'_ 1
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( )+ °3. F.(_)= io$ _ - log _ i (-_t)i
log 8 ; M(t) = E -i'

log 8 i=l i

4. [,(X)= (_/_)i/n ; M(t)= r(l-i/n)(_t)zln

In case i, IIDOS(M) is still the J-M model, but NHPP(M) is the Goel-

Okumoto [i0] model. In case 2, for integer _ IIDOS(M) is a case of

the Littlewood [16] model. Cases 3 and 4 are infinite event models and

therefore are N_PP's: Case 3 is apparently new. Case 4 is a familiar

NHPP, sometimes referred to as the Weibull NHPP because its intensity

function is identical to the Weibull hazard rate function; Crow [6]

and Duane [7] have used it as a model of reliability growth. Thus

DS/EOS models provide alternative derivations for some existing proyen

reliability growth models.

4. Replication, Nondistinguishability and Approximation

We are studying three families of processes: exponential order

statistic (EOS) models based on a deterministic parameter set

X = {11 ' _2 ' "''} ddubly stochastic exponential order statistic

(DS/EOS) models whose parameter sets are order statistics of independent

identically distributed (IIDOS) random variables, and DS/EOS models

whose parameter sets are nonhomogeneous Poisson processes (NHPP). We

are interested in relationships between these families of models. In

particular, we seek answers to the questions: What role does replication

play? In what senses can these families be distinguished from one

another? In what senses can they be used as approximations to one

another? Within individual families, do some models approximate others?

The role of replication is important and needs clarification.

There are two replication concepts: (a) separate programmers or groups

of programmers can independently create different versions of the same

program, and (b) a single program may be subjected to several separate

debugging runs [8,21,22]. Figure 4.1 illustrates the program creation
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Box A Box B
J

Program I Create Program: Run & Correct Program:

Specification I_-_ Realization of h _ Realization of
= {%1' %2' ....} --_ (N(t) , 0 f t} given

given program spec. {%1 ' %2 ' "''}

Loop B: Replication of run

Loop A: Replication of creation and run

Figure 4.1 Different replication concepts
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and running and the two replication possibilities: From a single program

specification, the program is created (Box A) and then subjected to a

debugging/correction run (Box B). Replicated debugging/correction runs

for a single program are represented by Loop B. Replicated program

creation corresponds to independent passes through Box A. Replicated

creation and a debugging/correction run is represented by Loop A. A

nested design would involve several replicated runs for each replicated

program, for example in Nagel's [22] original pioneering experiment each

program specification had two replicated programs and 50 replicated

debugging runs, i.e., two passes through Loop A, each containing 50

passes through Loop B.

In this paper we are assuming certain stochastic models for what

happens in Box A and Box B of Figure 4.1. In Box A a program is created

containing bugs. In Box B, the program is run for a certain length of

time; when a bug manifests itself it is corrected. It is assumed that

the usage environment is time homogeneous throughout the experiment; so

we assume that each bug has a fixed (unknown) deterministic manifestation

rate associated with it. We assume three possible models in Box A:

these rates {%1 ' %2 ' "''} are the realization of a deterministic

process, an IIDOS process, or an N_PP. Given the rates produced in Box A,

the manifestation times {sI , s2 , ...} generated in Box B will be the

realization of a DET/EOS process with those rates. Thus, from Section 3,

we see that a single pass through Box A and then Box B leads to one

observation of a DET/EOS process, an IIDOS process, or an NHPP; this

depends upon whether Box A is deterministic, an IIDOS model, or an NHPP

model, respectively. This means that independent replications around

Loop A of Figure 4.1 each involving a single run (one pass through Box B

for each pass through Box A) will yield independent realizations of

either a DET/EOS, IIDOS, or NHPP model. If a large number of replicates

is taken, then by standard statistical consistency arguments it is

theoretically possible to distinguish between the three models and to

estimate the model parameters to any desired degree of accuracy. This is

rather unrealistic in practice, however. Existence of a single replicate

is probably more common and meaningful when EOS models are used.
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Multiple replications can involve either replicated programs or

replicated debugging/correction runs. For replicated versions of the

same program it is unreasonable to model the error rates {%1 ' %2 ' "''}

for different programmers as independent, identically distributed

realizations of a single simple stochastic process; replicated-run

experiments performed to date [8,21,22] suggest a possible noisy

geometric pattern (Example 3 of Section 2) for different programmers but

with distinctly different parameters. As Nagel [22] points out, there is

a definite programmer effect. Thus for replicated programs (Box A of

Figure 4.1) more complicated models are needed for A . The IIDOS and

NHPP models we use for A should be considered as a way of introducing

noise into the pattern of error rates, not as a model for different

programmers. (It might also be interpreted in terms of Bayesian subjective

probability for the individual programmer.) If multiple debugging/correction

runs are performed for a single version of a program, then we observe

replicated sample paths of a DET/EOS process with a given % = {%1 ' %2 ''''}"

However, with such an experimental design it is more natural and efficient

(for estimation of %) to identify the bug which corresponds to each failure

observed. Thus the data will be collected as samples of manifestation times

for each bug observed rather than sample paths of a DET/EOS process. This

leads to different questions and analyses than those with which this paper

is dealing. Thus for the scheme of Figure 4.1, we will avoid replication.

Furthermore, and very importantly, most software reliability growth data

will consist of a single replicate. Thus we shall have a single replicate

of either a DET/EOS model, an IIDOS model, or a NHPP model.

Let us consider the problem of distinguishing between an IIDOS model

and a NHPP model by observing one realization of the process. Let F(-)

be a cdf on [0,=) and let {Nl(t) , 0 _ t} be the counting process for an

IIDOS model with m observations, i.e., cumulative mean function

Ml(t) = mF(t) , 0 _ t , and occurrence times {SI,1 , SI, 2 , ...,SI, m}

Let {N2(t) , 0 J t} be the counting process for an N_PP with cumulative

mean function M2(t) , 0 J t , and occurrence times {$2, 1 , $2, 2 , $2, 3 , ...}

- 18 -



There are several well-known relevant theorems:

Theorem 4.1: Suppose M2(t) = y F(t) , 0 _< t , where 0 < y < _ .

Conditional on N2(_) = n , ($2,I , $2, 2 , ...,S2,n) are distributed as

i.i.d, order statistics with cdf F(-) , i.e., ($2,1, S2, 2 , ...,S2,n)

is an lIDOS process with mean function nF(.) .

Theorem 4.2: Let T be a deterministic time or a random time

independent of {N2(t) , 0 _ t} Conditional on {T = s , N2(s) = n} ,

($2,1, $2, 2 , ...,$2, n) are distributed as i.i.d, order statistics with

cdf G(t) = M2(t)/M2(s) , 0 _< t _<s .

Theorem 4.3: Conditional on {S2,n+ 1 = s} , ($2,I , $2, 2 , ...,S2,n)

are distributed as i.i.d, order statistics with cdf G(t) = M2(t)/M2(s )

0 < t < s

Theorem 4.4: Let T be a deterministic time or a random time

independent of {Nl(t) , 0 _ t} . Conditional on {T = s , Nl(S) = n} ,

(SI,I , SI, 2 , ...,SI, n) are distributed as i.i.d, order statistics with

cdf G(t) = F(t)/F(s), 0 < t < s .

Theorem 4.5: Conditional on {Sl,n+ I = s} , (SI,1 , SI, 2 , ...,Sl, n)

are distributed as i.i.d, order statistics with cdf G(t) = F(t)/F(s) ,

0< t <s
m

Theorem 4.6: Let TI be a stopping time for {Nl(t) , 0 _ t}

and let T2 be the identically defined stopping time for {N2(t) , 0 _ t} .

If M2(t) = y F(t) , 0 ....< t < s , 0 < y < _ , then {Nl(t) , 0 < t < s IT1 = s ,

Nl(s) = n] and {N2(t) , 0 _ t f s I r2 = s , N2(s) = n} are identically

distributed.
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The implication of the above theorems is this: If a single

replicate of a reliability growth process is observed over [0,s] in

such a way that the assumptions of the above theorems are met it will be

impossible to distinguish between certain families of IIDOS models and

related families of N_PP models. As an example, consider two sets of

cumulative mean functions,

M1 = {MI(-) : Ml(t) = m(l-exp(-_t)) , m=0,1,2 .... , 0 < _ < _} and

M 2 = {M2(') : M2(t) = y(l-exp(-_t)) , 0 < y < _ , 0 < _ < _} ; and the

two hypotheses Hl: IIDOS(M I E MI) and H2: NHPP (M2 E M2) ,

which correspond to hypothesizing the J-M models or G-O models

respectively, mentioned in Section 3. Because the scale factors (m for

M 1 and y for M2) are completely general it is impossible to

distinguish between H1 and H2 based on the number of events in (0,s) ,

i.e., a single observation comes from HI: Binomial or H2: Poisson;

the only possibility is to look at the joint distribution of times of

occurrence (which includes whether the stopping rule is satisfied).

But, by Theorems 4.2 through 4.5, for both H1 and H2 the occurrence times

are i.i.d, order statistics from G(t) = (l-exp(-%t))/(l-exp(-%s)) , with

unknown % , 0 < % < _ ; thus we cannot distinguish between H1 and H2 in

the classical hypothesis testing sense if only one replicate is available.

If a more general stopping rule is used Theorem 4.6 gives an analogous

result. This example generalizes to include any family of cdf's,

F = {F : _ E A} : let M1 = {MI(') : Ml(t ) = mE_t) , m=0,1,2, ....a _ A}

and M 2 = {M2(- ) : M2(t ) = yF (t) , 0 < y < _ , _ g A} , then

HI: IIDOS(M 1 g M1 ) and H2: NHPP(M 2 _ M2) cannot be distinguished by

observing one replicate.
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This nondistinguishability between families of lIDOS models and

NHPP models is really equivalent to an important fact first noted by

Langberg and Singpurwalla [14] within the context of reliability growth

modeling: Theorem 4.1 has the interpretation that any NHPP with

M(_) < _ is a mixture of IIDOS processes with a Poisson [mean M(_)]

number of observations from cdf F(t) = M(t)/M(_) The above non-

distinguishability is thus equivalent to the problem of distinguishing

between a constant population and a Poisson population with totally

unknown mean when only one observation is available. Of course

additional information may destroy the nondistinguishability: for

example, bounds on the number of order statistics or the mean of the

Poisson distribution may enable conclusions to be drawn from one

observation. However, the situation arises frequently where parametric

models are postulated with no constraints or information assumed for

parameter values. (Theorem 4.1 also plays an additional unifying role

if the distribution of N(_) is considered subjectively for a Bayesian

analysis; see Langberg and Singpurwalla [14].)

In a weaker sense it is impossible to distinguish between

deterministic and doubly stochastic EOS processes using a single

replicate. For a given program it is possible to estimate the parameter

set % = {%1 ' %2 ' "''} to any desired accuracy by replicated debugging

(Loop B of Figure 4.1). However, even if the parameter set is completely

known it still is a single replicate of the A-process and we are again

faced with the problem of choosing between a deterministic model and a

stochastic model when only one observation is available. If all possible

deterministic models and all possible IIDOS and NHPP models for A are

allowed then there is no statistical basis for choosing from one class

rather than the other. If the choice is restricted to certain families

of models, e.g., parametric families of deterministic or stochastic

models of A , then it may be possible to distinguish between

deterministic and stochastic.

Now consider the very restrictive case where the cumulative mean

function L(.) of the A-process is known, but the A-process may be
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either deterministic or an IIDOS process; i.e., let L0(.) be a known

function such that L0(_) = n+l , A either is {Ii = Lol(i) , i=l,2,...,n}

or is an lIDOS of n observations from F0(.) = L0(.)/(n+l) Note

that the deterministic model is equivalent to sampling without replace-

ment from a population with cdf FI(.) = [(n+l)F0(')]/n . Note that,

if n is moderately large, F0 and F1 are very close to each other.

From a single observation of the failure process {N(t) , 0 < t} ,

it will be virtually impossible to determine whether l's are drawn

with replication from F0 or F1 However, there will be some

measure of distinguishability based on sampling with replacement (from F0)

or without replacement (from FI): both processes will fluctuate about the

mean M0(t) = fO (l-exp(-_t))dL0(1) ' but there will be less variability

in the process without replacement (the deterministic EOS process). Thus

in principle, a statistical test could be based on variation about M0(.):

for small variation the deterministic model is preferred and for large,

the IIDOS model. It is hard to imagine that such a test would have much

power. Finally, a more realistic scenario would include a large para-

metric family (not just one function), and furthermore the single

replicate of the failure process wou_id be observed only for a finite

time interval, not in its entirety. This makes matters even worse and

leads one to the conclusion that, in a practical sense, deterministic

EOS processes and IIDOS/EOS processes that have a moderately large

number of events and are based on the same parametric family of L(')'s

cannot be distinguished by observing a single replicate of the failure

process.

There are some theorems relevant to this discussion. Let _(.)

be a function that decreases to 0 on (0,_) such that

M(t) = - f(l-exp(-lt))dL(1) exists for 0 _ t
<

Let {N0,k(t) , 0 J t} , k=l,2,..., be a sequence of independent

deterministic EOS processes; the parameter set of the kth process is
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{1.i= L-l(i/k)' i=1,2,...} If L(0) < _ , let {Nl,k(t) , 0 _< t}

be a sequence of independent IIDOS/EOS processes; the parameter set of

the kth process consists of [kL(0)] i.i.d, order statistics from cdf

F(1) = (L(0) - L(1)/L(0) . Let {N2,k(t) , 0 f t} be a sequence of

independent NHPP/EOS processes; the parameter set of the kth process

is an NHPP with complementary mean function kL(-)

Theorem 4.7: For j = 0, l, and 2,

|lim k-I N (t) = M(t) , 0 < t < _ = i

P Ik-_ j ,k

Theorem 4.8: For j = 0, i, and 2, {Nj,k(t) - M(t))/ _--, 0 < t}

converge in distribution to Gaussian processes as k->_

(The covariance structures of the limiting processes are different for

j = 0, i, and 2; see Appendix.)

These theorems show the central role played by the mean function M(-)

for processes with a large number of events, regardless of the particular

type of process. This plus the previously mentioned problems in distin-

guishing between the three types of models suggests focusing on the mean

function. Thus it might be useful to think of the mean function as the

primary characteristic of the model and the particular type of model

(DET/EOS, lIDOS, or NHPP) as a secondary characteristic. This is not

a new idea; Musa and Okumoto [20] "include" the Littlewood-Verrall model

in their study by means of an NHPP with the appropriate mean function.

We shall consider two models to be "close" to each other if their

respective mean functions are close. The following limit theorems make

this more precise.
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Theorem 4.9: Let I = {ll ' _2 ' _3 ' '"'} be an infinite setou ,

oo

of rates such that i=iX %'i < _ . Let {N0,k(t ) , 0 _< t} be a DET/EOS
k

process with mean function l_(t) = E (l-exp(-%.t)) , 0 < t < _ ,
i=l I --

k=l,2, .... Then, as k. _ , {N0,k(t) , 0 < t} converges in distribution
co

to a DET/EOS process with mean function _(t) = Z (l-exp(-lit)) , 0 _< t <
i=l

Theorem 4.10: Let {Nl,k(t ) , 0 _ t} , k=l,2,... , be a

sequence of IIDOS processes with mean function I%(.) , k=l,2,... ,

respectively. Suppose lim Mk(t ) = _(t) < _ , 0 J t < _ If
k-_o

lim l,_(t) < _ , then the processes converge in distribution to an IIDOS
t-_

process with mean function M (.) . If lim _(t) = _ , then the processes
t->oo

converge in distribution to an NHPP with mean function M (')

Theorem 4.11: Let {N2,k(t ) , 0 _< t} , k=l,2,... , be a

sequence of NHPP's with mean functions _(.) , k=l,2,..., respectively.

If lim Mk(t) = M (t) < _ , 0 _< t < _ , then the processes converge in
k-_o

distribution to an NHPP with mean function _(-) .

It follows from Theorem 4.9 that the failure times of a DET/EOS

process with a finite but large parameter set I = {_i ' _2 ' "'"_ }n

can be approximated by those of a DET/EOS process with an infinite

parameter set; this provides some justification for the infinite event

models introduced earlier. Theorem 4.10 explains why both IIDOS models

and NHPP models exist for bounded mean functions but only the NHPP exists

when the mean function is unbounded. All three theorems show that

closeness of mean functions implies close distributions of failure

times.
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For a given program the deterministic EOS model has certain

physical motivation: the individual failure rates are physical

quantities in the sense that they can be estimated to any desired degree

of accuracy. The lIDOS and _PP models are attractive because of math-

ematical tractibility and successful application experience; however,

they are somewhat more difficult to motivate and verify in a physical

sense. The goal in this section has been to provide justification for

these models on the basis of our inability to distinguish among them when

a moderately large number of bugs are present and only one debugging

replicate can be observed. (The argument is not as airtight as one might

wish but does provide some evidence for the conclusion.) Thus we shall

focus our attention on different reliability growth models as characterized

by different mean functions, M(-) . (Equivalently, we can consider

m(.) = M'(-) , the intensity of the failure process, or L(.) , the

complementary mean function of the A-process, or _(') = - L'(') ,

the intensity (if it exists) of the A-process. Any of the four

quantities uniquely determines the other three.)

5. Gamma Exponential Order Statistic Models

The Gamma Exponential Order Statistic models (F/EOS) are a

parametric family of Doubly Stochastic Exponential Order Statistic

models; the intensity function of the parameter set A is

= %e-I -Bk%(%) y e , 0 < % , (5.1)

where _ > -i , _ > 0 , and y > 0 . Recalling that _(%) =Jk_(B)d_

equals the expected number of bugs with rate greater than % , we see a

dichotomy: if _ > 0 , then L(0) < _ ; if -i < _ J 0 , then L(0) = _.

Thus, for e > 0 , a finite number of events occur and A may be modeled

as an NHPP with intensity _(') . If e > 0 and L(0) is an integer,

then A may instead be an lIDOS process (L(0) observations from density

f(k) = _(%)/L(0)) . When -i < _ < 0 an infinite number of events occur
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and A will be an NHPP with intensity £(-) (Throughout this paper

the only stochastic models we consider for % are NHPP's and IIDOS.)

Now consider the failure process {N(t) , 0 > t} , its cumulative

mean function M(.) , and its intensity m('): from Theorems 3.3 and 3.4,

oo

m(t) = f0%e'%t£(%)d%

S %e_% t %_-le-B%d%= y (5.2)
0

= y F(e+I) (t+B)-e-I

t

M(t) = fO m(u)du

t

= ,fr(a+l)I (U+B)--_Dldu (5.3)0

€

y 8-ar(_)(l-(t/8+l) -e) , e > 0

= y log (t/6 + i) , a = 0

yB-aF(_+l)(-_)-l((t/B+l)-a-l) , -i < _ < 0

For _ > 0 , If(') is proportional to a Pareto cdf; thus if A is an

IIDOS process, then by Theorem 3.3 {N(t) , 0 < t} is an IIDOS process

based on the Pareto distribution, i.e., the Littlewood [16] model.

For -i < _ < _ , if A is an NHPP, then by Theorem 3.4 {N(t) , 0 < t}

is an NHPP with mean function M(') : for _ > 0 we might call it a

Pareto NHPP; for e = 0 , we get the Musa-Okumoto [20] Logarithmic NHPP;
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for -i < _ < 0 , we get something that could be called a Generalized

Power Law NHPP.

The closure of the F/EOS family consists of the limits obtained

as _ . -i , _ . +_ , B . 0 , B . +_o, y . 0 , or y . +_ By Theorems

4.10 and 4.11 it suffices to consider limiting behavior of sequences of

mean functions. Two possible degenerate limits are M0(t) _ 0 , 0 _< t < _ ,

and M (t) = _ , 0 < t < _ , the former corresponding to no failures

in [0,_) and the latter corresponding to all failures occurring at t = 0

Nondegenerate limits will have a finite expected number of failures in a

finite time interval, for example, M(t0) = no for some 0 < to <

and 0 < nO < _ Thus, to find nondegenerate limits, we can consider

sequences of r/EOS mean functions {I_(-) , k=l,2,...} such that

>_(t 0) = no , k=l, 2,.... The mean functions in Equation (5.3) become

nO 1 - (t/B + i)-a , e > 0

l- (_/B +I)-_

M(t) = no log (t/8 + i)
log (t0/B + i) , e = 0 (5.4)

nO (tie+ l)-_ -1 , -i <c_<O

(t0/_ + l)-_-i

Without loss of generality let tO = I and consider the following limits:

for 0 < t < oo ,

lim (t/8 + l)-_-i t-_= , -1 < _ < 0 (5.5)

B+O (I/B + l)-C_-i

lim (rib + i)-_-i = t , -i < _ < O (5.6)

B-_° (i/_ + l)-e-i

lim log (t/B + i) = 1 (5.7)

_+0 log (i/8 + i)
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lim log (t/B + i) = t (5.8)

B-_o log (I/B + i)

lim 1 - (t/B + i)-e = 1 , 0 < e < oo (5.9)

B.0 i - (I/B + 1)-_

lira i - (t/B + I)-_ = t , 0 < _ < oo (5.10)

i - (lib+ i)-_

lim (t/B + i)-_-i = t , 0 < B < = (5.11)

_N-I (I/B+ l)-e-i

lim (t/B + l)-e-i = log(t/B + i) , 0 < B < _ (5.12)

_P0 (i/8 + i)-_-i log(i/8 + i)

(5.13)
lim 1 - (t/B + i)-_ = log(t/8 + i) , 0 < 8 < =

_0 1 - (i/8 + i)-_ log(i/B + i)

lim i - (t/8 + i)-e = i , 0 < 8 < oo . (5.14)

_+_ i - (1/8+ i)-_

(The above limits are verified by using £'Hopital's Rule in various forms.)

The NHPP with mean function M(t) = not , -i < _ < 0 , is the Power

Law NHPP studied by Crow [6] and Duane [7]. The NHPP with mean function

M(t) = not is the homogeneous Poisson process (HPP). The NHPP or IIDOS

process with mean function M(t) = n0"l is a degenerate case with all

(finite number) failures occurring at t = 0 . In terms of models, the

above limits have the following interpretations:

Generalized Power Law NHPP (_,_) (5.5a)

---->Power Law NHPP (_) , as 8 . 0

Generalized Power Law NHPP (_,8)

---->HPP, as _ . _ (5o6a)

Musa-Okumoto Logarithmic NHPP (8)

---->Degenerate (0) , as 8 . 0 (5.7a)
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Musa-Okumoto Logarithmic NHPP (_B)
(5.8a)

---->HPP , as B . _

Littlewood's Pareto lIDOS model (e,B) (5.9a)

---->Degenerate IIDOS (0) model, as B + 0

Pareto NHPP (e,B) (5.9b)
---->Degenerate NHPP (0), as B . 0

Littlewood's Pareto IIDOS model (e,B)
(5.10a)

---->HPP, as B . _

Pareto NHPP (e,B) (5.10b)
---->HPP, as B . _

Generalized Power Law NHPP (e,B)
(5.lla)

---->HPP, as e _ -I

Generalized Power Law NHPP (e,B) (5.12a)

---->M - 0 Logarithmic NHPP (B) , as e _ 0

Littlewood's Pareto lIDOS model (e,B) (5.13a)

---->M - 0 Logarithmic NHPP (6) , as e % 0

Pareto NHPP (e,B) (5.13b)

---->M - 0 Logarithmic NHPP (B) , as e _ 0

Littlewood's Pareto IIDOS model (e,B) (5.14a)

---->Degenerate IIDOS model (0) , as e .

Pareto NHPP (_,B) (5.14b)
---->Degenerate NHPP (0) , as e . _ •

The above results follow from Theorems 4.10 and 4.11 and the appropriate

limits(Equations (5.5) through (5.14)). The relationship of the above

models is summarized in Figure 5.1. Note that the Power Law NHPP is an

NHPP/EOS process whose A-process has intensity

le'l (5.15)_(_)= ¥ , 0 <
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Figure 5.1 Gamma EOS models and limits: a parametric
family that includes several well-known

models. The parameters _ and _ take

values in [-i,_] x [0,_] If (_,B).

(_,_) but _/B . _ , the parameterization
is n instead of (_,B) The third

parameter is always y , 0 < y .
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for -i < _ < 0 . Note, however, that an HPP cannot be represented as a

DS/EOS process because it shows no growth. The Degenerate (0) NHPP and

IIDOS processes can be considered as EOS models if and only if % = _

is allowed in the definition of EOS models.

Figure 5.1 shows that we have a nearly complete picture of r/EOS

models and their limits, which are normalized so that M(t0) = nO for

some tO and nO . The only remaining case consists of limits when

. _ and B . = simultaneously. Suppose that B = e/n , 0 < n < _ ;

then we have

lim i - (nt/e + i)-_ = 1 - e-nt (5.16)
e->oo __ -_] ,

1 - (n/e + i) 1 - e

which, analogous to the above limits, is interpreted as

Littlewood's Pareto IIDOS (e, s/n) model (5.16a)

---->Jelinsky-Moranda (n) model, as _ . _

Pareto NHPP (e,e/n) (5.16h)

----->Goel-Okumuto (_) model , as e . _ •

Thus the parametric family of P/EOS models and their limits is very rich,

including some very well-known models as subcases. It might be fruitful

to think of these models as special cases of the general three-parameter

family, where e is a "shape" parameter, -i < _ < _ , _ is a "scale"

parameter, 0 < _ < =, and y is a "magnitude" parameter, 0 < y .

Figures 5.2 through 5.11 show the mean functions for various

(_,B,Y) in the parametric family of Figure 5.1. All mean functions are

normalized so that M(IO0) = i00 . The purpose is to convey the extent

and the richness of this family as well as to provide a visual comparison

between the shapes of the mean functions for different subfamilies of the

entire family.
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The above limit properties, i.e., the continuity in e and B

of the models in the above parametric family, have certain ramifications.

In particular, if (_i' B1 ' Y1 ) and (e2 ' B2 ' Y2 ) are close to each

other the respective models with these parameters will produce failure

data that appear to be similar. For example, if the true model is

Littlewood's Pareto IIDOS model with very large _ and B and _/_ = n ,

because of statistical variation in the data, the Jelinsky-Moranda (_)

model might often provide a better fit to the data; the converse is

also possible. Another possible case of mistaken identity could involve

Littlewood's IIDOS model with shape parameter _ close to zero and the

Musa-Okumoto logarithmic NHPP with the same value of B ; this case is of

added interest because it involves a finite event model and an infinite

event model. Typical failure data are over a finite interval; if

is close enough to zero it is quite possible that the infinite event

M - 0 model would fit data from the finite event Littlewood model better

than the Littlewood model itself. The continuity of the models around

= 0 means that there is no sharp demarcation between infinite and

finite event models for failure data on a finite interval. This

continuity and the common (_,B,y)-parameterization of the models in

Figure 5.1 suggests that it is appropriate to consider them as one model:

Perhaps we should call it the J-M-G-O-L-M-O-D-C Model (Jelinsky-Moranda

Goel-Okumoto-Littlewood-Musa-Okumoto-Duane-Crow Model).

6. Complete Monotonicity Property

The DET/EOS, the IIDOS/EOS, and the NHPP/EOS processes are all

characterized by their cumulative mean functions or, equivalently, by

their intensity functions; i.e., the mean function M(.) , or intensity

m(.) , and the family (deterministic, IIDOS, or NHPP) to which A

belongs completely determine the distribution of the failure process

{N(t) , 0 J t} . For NHPP/EOS models, the class of possible intensities

will be proven to be exactly the class of positive completely monotone

functions such that lim m(t) = 0 and M(t) = r_ m(u)du < _ , 0 < t < _ .
t-_o

- 42 -



Intensities for DET/EOS models and IIDOS/EOS models are "almost dense"

subsets of this class.

First, the family of admissible L(')'s must be characterized.

Recall that L(%) equals the expected number of bugs with rates greater

than or equal to I ; L(.) must be a nonincreasing function on [0,_]

The following three theorems will characterize admissible L(-)'s:

Theorem 6.1: Let {II , 12 , ...} be a deterministic process with
oo

complementary mean function L(.) ; then Z I. < _ if and only if
i=l I

liraT,(%) = 0 and f L(1) d % < _ , 0 < p < o

I-_ J 0 -

Theorem 6.2: Let {A1 , A2 , ...,An} be an lIDOS process with
n

complementary mean function L(.) ; then p( T.. A. < _) = 1 if and only
i=l i

if lim L(1) = 0 .

Theorem 6.3: Let {A1 , A 2 , ....} be an NHPP with complementary

L(-) ; then P( _ Ai < _) = 1 if and only if liraL(%) = 0
functionmean

i=l I.oo

and _ _,(I) dl < _ , 0 _< _ < I

J 0

A proper EOS process must have ZI. < = ; if the l's are a realization
I

of a stochastic process _i ' A2 ' "''} then ZAi must be finite with

probability one. So Theorem 6 .i through 6.3 lead to the following

definition:

Definition 6.1: A complementary cumulative mean function L(.) of

_

a A-process is admissible if lim L(1) = 0 , and _ L(1)dl < = , 0 < p <
I+0 "0
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If the process is deterministic L(') must be integer-valued. For an

lIDOS process _(0) must be integer-valued. (We use the convention

that "admissible" refers to NHPP; restriction to deterministic and lIDOS

models is discussed later.)

Theorem 6.4: If L(') is admissible then

m(t) = -_ %e-_t dL(%) < _ , 0 < t < _ • (6.1)
J0

Furthermore, _(') is admissible if and only if

M(t)=-_ (1-e-At ) dL(%) < = , 0 _<t < _ , (6.2)
0

and lim M(t) = 0 .
t.O

Thus when L(') is admissible the intensity and mean function are

well defined and uniquely determine the distribution of the DET/EOS,

lIDOS, or NHPP model. We wish to characterize the family of admissible

intensities or the family of admissible mean functions.

The definition of complete monitonicity and an important theorem

relating completely monotone functions to Laplace transforms are given

by Feller [9, p. 439]:

Definition 6.2: A function 4(') on [0,=] is completely

monotone if it possesses derivatives i(n)(.) of all orders and

(-i)n i(n)(t) _ 0 , 0 < t < _ • (6.3)

Theorem 6.5: The function 4(') on [0,_] is completely monotone

iff it is of the form

_(t) =_ e-At dF(%) , 0 < t < _ , (6.4)
J0
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where F is a measure on [0,_] which may be finite or infinite.

Comparison of Equations (6.1) and (6.4) suggest that we define

F(_) = -I XHL(%) , 0 < _ < (6.5)
J

I

0

which is the cmulative function for a measure on [0,_) ; integrability

of (6.5) follows from admissibility of 4(') and the argument for

integration by parts in the proof of Theorem 6.4 . Thus any admissible

intensity function m(-) has the form of Equation (6.4) and must be

completely monotone. Conversely consider any completely monotone

function of the form (6.4) which is integrable in intervals around 0 :

let

t

> i(t) = | i(u)du , 0 < t <
J0

=_i I_e-XudF(X0 )du

(6.6)
t t

co

= tF(0)+I0 + _-i(I - e-_t)dF(X)

Letting X-IdF(X) = - dL(X) , we recognize Equation (6.2) when there is

no atom at 0 , i.e., F(0) = 0 . Under this restriction, Theorem 6.4

guaranties admissibility of L(-) and consequently _(.) is an

admissible mean function. It is seen from Equation (6.4) and the monotone

convergence theorem that F(O) = 0 is equivalent to lim i(t) = 0 .
t-+oo

Summarizing gives the following theorem:

Theorem 6.6: A positive function m(.) is an admissible intensity

(for an NHPP/EOS process) if and only if
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(i) m(.) is completely monotone on [0,_]

(ii) lim m(t) = 0 , and
t-_o

tP

(iii) [ m(u)du < _ , 0 < t <
J0

Note that condition (iii) in the above theorem is automatically satisfied

if m(0) < _ and the counterexample m(t) = i/t shows it to be necessary.

Theorem 6.6 can be restated for the mean function.

Theorem 6.7: A positive function M(.) is an admissible mean

function (for an NHPP/EOS process) if and only if

(i) M(O) = 0

(ii) lim M'(t) = 0 , and
t-_oo

(iii) (-i)rLM (n)(t) < 0 , 0 < t < oo , n > 1

Now consider the families of admissible mean functions and

intensities for the failure-time processes of DET/EOS and IIDOS/EOS

models. These are subsets of the admissible functions of Theorems 6.6

and 6.7 in a way very similar to that in which the integers are a subset

of the real numbers. Properties of these subsets are given in the

following theorems:

Theorem 6.8: If M(.) is an admissible mean function for an

NHPP/EOS process with M(_) < _ , then Ml(t) = ([M(_) + I/2]/M(_)) M(t) ,

0 < t < _ is an admissible mean function for an IIDOS/EOS process.

Thus for every bounded NHPP/EOS - admissible mean function M(.) there

exists an IIDOS/EOS - admissible mean function M!(.) such that

sup[M(t) - Ml(t) [ j 1/2 . Furthermore, m(t) = M'(t) and ml(t) = M_(t)
t

satisfy [m(t) - ml(t) [ J (2et) -I 0 < t <
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Theorem 6.9: If M(.) is an admissible mean function for an

NHPP/EOS process whose A-process has complementary cumulative mean

function L(-) , then the DET/EOS process with

= {_. = L-l(i - 1/2) , i=1,2,...} has cumulative mean function

MO(.) which satisfies suplM(t) - M0(t) I < 1 Furthermore,
t

m(t) = M'(t) and m0(t) = M_(t) satisfy Im(t) - m0(t) I _ 2/(et) ,

O<t<_

These two theorems provide a sense in which the admissible functions for

DET/EOS and IIDOS/EOS models are "almost dense" within the set of

admissible functions for NHPP/EOS processes characterized in Theorems

6.6 and 6.7 When the expectednumber of bugs is moderately large

(50 or more, say), the above ± 1/2 and ± 1 terms seem negligible,

obviating the need to make the restriction to the above subsets,

especially when considering mean functions; thus we could use the

characterizations in Theorems 6.6 or 6.7 for all three types of models

(DET/EOS, IIDOS/EOS, or NHPP/EOS).

If the failure rates of an EOS model are all less than or equal

to 1 , i.e., 0 < % < 1 , then complete monotonicity appears again in a

different context. The result follows from material found in Feller

[9, pp. 224-226]:

Definition 6.3: A sequence {ck , k=0,1,2,...} is completely

monotone if its differences alternate in sign, i.e.,

(-i)r Arck >_0 , r _>0 , k _>0 (6.7)

Theorem 6.10: The moments ck of a probability distribution on

[0,i] form a completely monotone sequence with co = 1 . Conversely,

an arbitrary completely monotone sequence with co = 1 coincides
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with the moment sequence of a unique probability distribution.

-%t
From the Taylor series expansion for e we get

m(t) = Z - XdL(X) (-t)i/i '. , (6.8)
i=O 0

M(t) = Z - %d_ (X) (-i)iti+l i+l) .' (6.9)
i=O 0

Letting

1%i XdL(X)/c i > 0
Pi =

0
(6.10)

it"

c = - _ XdL(%)
J 0

we get

oo

m(t) = c Z (-I)i
i

_it (6.11)
i=0

i!

oo

M(t) = c Z (-i)i U.t i+l
l (6.12)

i=O
(i+l)'

Admissibility of L(-) implies that c < = ; Pi is the ith moment of

a distribution on [0,i] with dF(X) = -Xd_(X)/c By Theorem 6.10

{p. , i=0,1,...} is a completely monotone sequence. Thus, the Taylor
1

series expansions in Equations (6.8) and (6.9) must have completely

monotone coefficients whenever L(I +) = 0 Conversely, by Theorem

6.10, if {_.} is a completely monotone sequence it must be a moment
1

sequence of a distribution F(-) on [0,i] If F(0) = 0 , then, as

before, there exists an admissible _(.) such that
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oo
• °

i Z (-i)1_itl/i 'dF(%) = - aldL(1) , 0 _< I _<i , and _(t) = a "
i=O

oo

and T(t) = 1 E (-l)i _. ti+i/(i + l)_ will be the intensity anda 1
i=O

mean function, respectively, of an EOS process. As before, lim _(t) = 0
t-_o

will be necessary and sufficient to guarantee F(0) = 0 and consequently

the existence of an admissible L(.) . In summary we have the following

characterization:

Theorem 6.11: The intensity function and mean function of any

EOS process with L(I +) = 0 have the form

oo

m(t) = l (-1)i _.ti/i ' (6.13)
1

i=O

M(t) = l (-i)i v.ti+i/(i+l)'. , (6.14)
1i=0

respectively, where {v.} is a completely monotone sequence such that
I

co

i
lim Z --(-i)i v.t /i ' = 0 . (6.15)

1
t-_o i=O

Conversely, for any completely monotone sequence {_.} satisfying (6.15),I

the functions in (6.13) and (6.14) will be the intensity and mean function,

respectively, of an EOS model whose rates are all less than 1

By rescaling the time-axes (e.g., measuring time in nanoseconds instead

of seconds), it is possible to satisfy the condition _(i +) = 0 with a

high degree of confidence. (However, if time is discrete and indicates

the indices of repeated trials, then we may not be able to rescale and

should perhaps consider a Geometric Order Statistic model; see Appendix.)
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7. Additional EOS Models and Properties

The general framework and description of EOS models presented

above seems quite fruitful. It leads to new models, new perspectives

on familiar models, and other insights. A miscellanea of such results

is presented in this section.

NHPP and IIDOS models. From Theorems 3.3 and 3.4 we know that

IIDOS/EOS models and NHPP/EOS models are in fact IIDOS models and

NHPP models, respectively. The converse is not true; not all IIDOS

models can arise as IIDOS/EOS models, nor can all NHPP models arise

as NHPP/EOS models. They must have differentiable cdf's or mean

functions, respectively, which satisfy the conditions of Theorem 6.7,

or equivalently, densities or intensities which satisfy the conditions

of Theorem 6.6 . This allows us to consider IIDOS models and NHPP

models directly without considering the EOS structure. For example,

let {N(t) , 0 < t} be an NHPP with intensity

ml(t) = a(b + log(t+c+l)) -d with 0 < a, b, c, d ; ml(.) satisfies

Theorem 6.6, and therefore {N(t) , 0 < t} may arise from an EOS

model. On the other hand, suppose m2(t) = i/(x 2 + 2x + 2) ; this

appears to be a plausible intensity, however the fourth derivative is

negative for small t , violating complete monotonicity. Thus if we

believe the EOS modeling paradigm we would not consider an NHPP with

intensity m2(. ) as a possible model for the failure time process.

Feller [9, p. 441] presents some properties which are useful for

identification of completely monotone functions.

Weibull IIDOS models. The Weibull distribution has cdf

F(x) = 1 -exp(-(x/_) _) , x > 0 , (7.1)

and density

f(x) = _B-_x _-I exp(-(x/B) e) , x > 0 , (7.2)
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where _ > 0 and B > 0 The density f(.) satisfies Theorem 6.6

(or, equivalently, the cdf F(.) satisfies Theorem 6.7) if and only

if 0 < _ _ 1 , independently of the value of B Thus, there exist

IIDOS/EOS models whose failure time processes are Weibull IIDOS with

shape parameter 0 < e < 1 The mean function for the underlying

A-process satisfies

n_B-_t_-lexp(-(t/B) _) = _ _e-_tdL(_) (7.3)
J0

Solving (7.3) for L(-) is equivalent to inverting a Laplace transform;

the case e = 1/2 can be found in tables of Laplace transforms:

-i/2 ;_
s exp(-ksl/2) = e-_S(_) -I/2 exp(-k2/4_)d_ (7.4)

0

which gives

_dL(_) = ni/2_-i/2(_) -I/2 exp(-_/4_) (7.5)

Thus the A-process is an IIDOS process from a distribution with density

g(_) = (4_B) -I/2 X-3/2 exp(-B/4_) (7.6)

If _ # 1/2 , there appears to be no closed-form solution for dL(-)

in Equation (7.3); however, this does not prevent use of the Weibull

IIDOS model for {N(t) , 0 _< t} . Thus we can identify possible models

for the failure time process of EOS models without detailed knowledge

of a model of the underlying A-process. Musa and Okumoto [20]

introduce an NHPP with intensity proportional to f(-) of Equation

(7.2). By the above analysis this is an acceptable model for the

failure times of an EOS process, whenever 0 < _ < 1 . This provides

some additional motivation and justification for Musa and Okumoto to

consider such a model.

Gamma IIDOS and NHPP models. The Gamma distribution has density

f(x) yx_-i -x/8= e , 0 < x , (7.7)
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with O < _ and 0 < 8 • If 0 < _ < 1 , f(-) is completely

monotone and therefore by Theorem 6.6, 6f(.) can be the intensity

of a failure-time process from some EOS model.

Another General Family of Models. The above Weibull and Gamma

models are special cases of failure-time models with intensity

m(t) = yx_-I exp(-(x/B) 8) , 0 < t , (7.8)

where 0 < _ < 1 , 0 < B , 0 < 6 < 1 . This function satisfies Theorem

6.6; thus the IIDOS process or NHPP with intensity m(') can arise

from an EOS model.

Geometric failure rates. The deterministic model

= {_. = _81 , i=1,2,...} (7.9)

with 0 < B < 1 has been suggested by Nagel [21,22]. We now consider

NHPP models for A which will show an approximate geometric pattern.

The analysis in Section 2 suggests an NHPP with

I (log % - log _)/log B 0 < % <
= (7.1o)

0 c_ < _. < oo

because L-l(i) = _B z , i=1,2,... This NHPP A-process has intensity

-(_ log 8)-I 0 < _ <
£(_) = (7.11)0 ct < ;k < oo .

The intensity and mean of the failure-time process are

m(t) = (l-e-et)/(t log (l/B)) , 0 < t

(7.12)
oo

M(t) 1 E (__t) i= , 0 < t ,
log(l/B) i=l i.i'.
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and by Theorem 3.4 the failure-time process {N(t) , 0 < t} is an

NHPP.

Other methods of adding noise to the model of Equation (7.9) are

suggested by considering

-log % = {-log %. = -log e - i log B , i=1,2,...} ,

which is a renewal process starting at -log _ and having constant

interarrival times equal to -log B • Using random i.i.d, interarrival

times with mean -log 8 transforms this into a stochastic model. If

i.i.d, exponential interarrival times are used, -log A is an HPP and

A is the same NHPP as above, with the intensity of Equation (7.11).

If a general renewal process is used for log A , the distribution of the

failure-time process {N(t) , 0 < t} appears intractible.

The F/EOS model with _ = 0 , i.e., the Musa-Okumoto Logarithmic

NHPP, may also serve as a model when the underlying failure rates are

approximately geometric. Note that the intensity of Equation (7.11)

and the intensity of the M-0 process, Equation (5.2), are both
-i

proportional to t for large t . This implies roughly the same

pattern of failure rates among the later-occurring bugs, i.e., the bugs

with small rates. More precisely, for the M-O model

_ (_ e-_B_dv
L(%) =_ £(_)d_x = _ Y_-Ie-B_dHX = Y _i _-i

(_B%)i (7.13)
- y(.5772157 + log 8% + Z i-i'. )

i=l

As _ . 0 , L(%) behaves like - y log 3% ; thus _. = L-l(i) shows a
1

geometric pattern for large i . This behavior in connection with the

frequent occurrence of geometric rates in replicated run experiments

[8,21,22] suggests that the Musa-Okumoto Logarithmic NHPP will often be

a good model; this is verified in their study using real data [20].
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Logarithmic failure rates. Example 2 of Section 2,

= {%. = $ log (v/i) , 1 < i < [_]} , showed a logarithmic pattern.
1

This can be generalized to

1 = {I. = _ log (_/i) I/_ , 1 < i < [_]} , (7.14)
1 -- --

where 0 < _ . These rates satisfy I. = L-l(i) , where
I

L(%) = v exp(-(I/_) _) , which is proportional to a Weibull survival

function. The stochastic version will have rates {A1 , ...,An}

which are Weibull IIDOS, or NHPP with mean function

M(t) = _(i- exp(-%/_)_)) .

There are three different EOS models related to the Weibull

distribution: In the above process the failure rates are Weibull

distributed with shape parameter 0 < _ < _ . In a previous example

the failure times were Weibull distributed with shape parameter

0 < _ < 1 Finally the Power Law NHPP is sometimes referred to as
-6

a Weibull NHPP because its intensity, m(t) = yt , equals the hazard

function of a Weibull distribution with shape parameter _ = 1-6 ,

0<6<1

Phillips law. Phillips (see [i]) observed that "the relative

numbers of design errors having each possible rate was proportional

to a particular inverse power of the rates." This is equivalent to

£(I) = yl_-I , -I < _ < 0 , in our terminology, and gives the Power

Law NHPP. In this case _(%) = (y/_)%_ and a deterministic model has

hi (_iI¥) 11_= , i=1,2,... (Example 4 of Section 2). Note that the

plot of {(log i, -log Ii) , i=1,2,...} is linear with slope

i/a , -i < i/_ < 0 If 1 is used as a measure of the "size" of

the design error, then we have a generalization of Zipf's Law

[26, pp. 195-202]. Zipf's Law applies when the slope equals -i ,

which corresponds to _ = -i ; however, when e = - 1 , %. = y/ei and1
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Z _. = = and a proper EOS model does not exist. Note, however, from
i=l l

Section 5 that a suitably normalized Power Law NHPP converges to an HPP

as e . -i ; so in this sense Zipf's Law for failure rates gives an

HPP for failure times, i.e., no growth.

Effect of previous debugging. A design flaw with failure rate X
-_l

will remain undetected during [0,6] with probability e Thus, if

LO(. ) is the complementary mean function of the A-process for a

with no previous debugging_ and if L_(') is for the A-processprogram

of bugs remaining after debugging for 6 time units, then

HL6(X) = e-_XHL0(I) , 0 < _ (7.15)

Let m0(. ) and m6(') be the intensities of the respective failure

time processes, then

m_(t) - I_ _e-XtdL6(_)

= - 10 Xe-_(t+_)dL0(X) (7.16)

= m0(t+6 ) , 0 _< t ,

(as one would expect). Since the choice of a time origin may be somewhat

arbitrary, it is reassuring that models for different choices of origin

are simply related as in Equations (7.15) and (7.16). In the F/EOS

models, the parameter B could be interpreted as an indicator of

something equivalent to previous debugging. The Generalized Power Law

NHPP can be interpreted as a Power Law NHPP that has undergone previous

debugging. A family of parametric models can be constructed using

Equation (7.15) or (7.16) from a single EOS model. The family of

F/EOS models is closed under such construction; this should be considered

a desirable property for a parametric family. Note that the NHPP of

Equations (7.10) through (7.12) does not have this property. An enlarged
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family with

-I -_I

-(l log B) e _ 0 _< I _<
%(I) = (7.17)

0 a < t < oo

will have the property. But for large _ , the truncation at a becomes

negligible and we have the Musa-Okumoto Logarithmic NHPP again, of course.

Truncated models for A Another modification that can be made

to any model is truncation of the A-process at I :
max

{L(1) - L(Ima x) 0 < I < I

- ' - - max

Ltrunc(1) = 0 I < I (7.18)
max -

Also, inadmissible models can be made admissible by truncating; for

example,

y1_-I

I 0<I<I
_(I) = - - max

(7.19)
t 0 l < I

max -

is an admissible intensity for the A-process for -i < a < _ , but the

nontruncated version is admissible only for -i < a < 0 .

Superposition of models. The superposition of two or more EOS

models is again an EOS model. A program might have two main subparts and

an interface between them, all written or designed by different people.

Bugs can be identified as belonging to one of the three parts; this

gives three failure-time processes: {Nl(t) , 0 _< t} , {N2(t) , 0 _< t}

and {N3(t) , 0 _ t} If each of the three is an EOS process then

N1 + N2 + N3 is a failure-time process of an EOS model. In general, for

I = {I1 , 12 , ...1 } let N.(t) = l[0,t](Xi) i=l,2,...,n ; thenn ' z '

- 56-



n n

N(t) = E Ni(t) = E l[0,t](Xi) , 0 < t , is the general deterministic
i=l i=l

EOS model of Section 2. Applying Theorem 4.9 gives that superposition

of DET/EOS models, each consisting of one bug, are dense among all

DET/EOS models. Thus any reasonably rich family of EOS models that is

closed under superposition of its members and limits of its members will

contain all EOS models. The F/EOS family is not closed under super-

position, but it may still be a family that is rich enough for many

applications.

Interfailure time models. Interfailure time models assume that

successive interfailure times are independent (but not identically

distributed). The Littlewood-Verrall [18] model is an example. It can

be shown that the Jelinsky-Moranda model has independent interfailure

times. It can also be shown that any EOS model with three or more bugs

and nonconstant failure rates cannot have independent interfailure times.

Thus, except for the overlapping J-M model, the EOS models and interfailure

time models are distinct classes of models. Nevertheless, certain EOS

models do suggest possible interfailure time models. For example, the

Musa-Okumoto Logarithmic NHPP has M(t) = y log (t/8 + i) , so the ith

failure will occur somewhere around s. = M-l(i) = B(exp(i/y)-l)
i

They show that the interfailure time Si+ 1 - S.l has a Pareto distribution

conditional on S. = s :
1

P(Si+ 1 - S.l > tlSi = s) = (t/s+B) + i)-Y , 0 _< t (7.20)

Since S. is approximately equal to s. , then
i 1

P(Si+ I - S.I > t) _ (t/si+B) + i)-_ , 0 _< t , (7.21)

and we postulate an approximate interfailure time model with Pareto

interfailure times; the parameters of the ith interfailure time are

¥ and
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_i = si + B : B(exp(i/T)-1) + 8 = Bei/Y, i=1,2,... (7.22)

The Littlewood-Verrall is exactly such a model, having independent Pareto

interfailure times:

P(Si+ I -S i > t) = (t/_i + I)-a (7.23)

2
with _i increasing. They used @i = 8i + B2i and @i --81 + 82i "

The above admittedly rough analysis suggests that _i = 81 B2i be tried.

8. Inference and Prediction

Software reliability growth models are useful in assessing software

reliability; but creating models is only one step of the process. A

typical scenario involves observing failures and correcting design flaws

at times sI, s2, ..., Sn(t) during [O,t] and then trying to predict

behavior during _t,_); quantities that are of interest include the

current failure rate, the distribution of time until the next failure, the

number of failures over a finite horizon, etc. Littlewood (et al,

Evaluation of Competing Software Reliability Predictions, Centre for

Software Reliability Research Report, The City University, London,

March 1985) describes a "prediction system," which involves three

components:

(i) Probability models that completely specify the

distribution of failure times ($I, $2, ...);

(ii) An inference procedure for picking a specific

single model for particular observed data

(sI, s2, ..., Sn(t));

(iii) A prediction procedure that combines (i) and (ii)

to give probability statements about future failure

times (SN(t)+I, SN(t)+2 , ...).
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Our focus now is on part (i) of Littlewood's Triad; this paper's

main concern is a particular class of probability models: EOS models.

Nevertheless there are some observations pertaining to inference and

prediction for EOS models that are worth making at this time. We shall

make these briefly; more extensive study will appear in future research

papers.

The family of EOS models is very rich. The possible patterns

of underlying failure rates are unlimited. The above inference and

prediction steps will be easier if the class of possible models can be

restricted a priori, i.e., before testing or, ideally, before theprogram

is written. After many controlled software experiments are conducted and

a large amount of field data are collected it may be possible to conclude

that particular types of software tend to exhibit characteristic patterns

for the failure rates. A geometric pattern _ = {eBi , 0 < i} is

emerging in the programs studied in certain replicated run experiments

[8,21,22]. Phillips observed a different pattern in some IBM software

[i]. Perhaps various software metrics [ii] can be used to discriminate

between classes of software that show different patterns in their

underlying failure rates. A Bayesian analysis based on an a priori

distribution over the entire class of EOS models would be very desirable;

it is not clear at this time how to describe such a distribution. The

point is that the richness and generality of all possible EOS models

seem to suggest the need for a capability to base reliability predictions

on more than just observation of past failures of the specific program

in question.

On the other hand, the F/EOS family of models may be rich enough

to represent adequately the entire family of EOS models. Further study

is required to confirm this, but it does look promising. The F/EOS family

includes both the geometric pattern and the pattern described by Phillips.

It also includes as special cases several well-known models. Possible

advantages to considering the single family parameterized by (a, B, Y)

instead of considering the separate models should be explored. A

Bayesian approach with this three-dimensional parametric family should

be pursued.
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The richness of the EOS family of models suggests that a non-

parametric approach to inference and prediction be tried. The complete

monotonicity properties of Section 6 and Theorem 4.7 reveal an approach:

Estimate M(t) , 0 < t , with the curve satisfying Theorem 6.7, which

is "closest" to the observed realization of {N(t) , 0 < t} Or one

can estimate the intensity of {N(t) , 0 < t} from the observed sample

path using any of several nonparametric estimates and then find the

"closest" function that satisfies Theorem 6.6 for an improved estimate.

The first step in this direction has been taken by Campbell and Ott [4];

they used isotonic regression methods to estimate the intensity function

of EOS failure processes. Miller and Sofer [19] explore the more general

problem of regression with completely monotone functions.

The nondistinguishability between NHPP and IIDOS models discussed

in Section 4 has some ramifications for inference and prediction. If

two alternatives HI and H2 are statistically indistinguishable given

the data, the question of "goodness-of-fit" is moot. However, in the

case of NHPP versus IIDOS inference will differ: the likelihood functions

in the two cases are different and so are admissible parameter values,

e.g., M(_) must be integer-valued for IIDOS models but not for NHPP

models. Thus we may get different predictions using the two alternatives

to which we are indifferent as far as any goodness-of-fit criteria are

concerned. Since "quality of prediction" is of primary importance, the

indifference between NHPP and IIDOS models in the first stage (i) of

the prediction system may not carry over to the third stage (iii).

9. Conclusions

This paper has presented EOS models and some of their properties.

The idea of nonidentically distributed independent Exponential random

variables is, of course, not new. However, when doubly stochastic EOS

models are considered and when only a single sample path is observed,

some interesting properties follow that are relevant to the study

of software reliability growth.

Exponential Order Statistic models are useful for several reasons.

The structure of the models reflects to some extent the actual physical
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failure process: the parameter % has a physical intepretation, and

the doubly stochastic models distinguish between randomness of the

failure rates and randomness in the usage environment. This may

eventually allow deeper penetration into the mysteries of real failure

processes; EOS models seem to be natural models for replicated-run

software debugging experiments. The fact that several well-known software

reliability growth models can be derived as special cases of EOS models

is useful because the alternative derivation provides additional support

for the validity of those models. Finally, the EOS paradigm is a

framework within which new parametric families of reliability growth

models can be identified (e.g., Section 7).

A general adoption of EOS models leads to several new possibilities

and points of view concerning inference and prediction. The mean M(')

and intensity m(.) of the failure process play a central role, as does

the process of failure rates, _ ; the relationship between these

quantities is that of a Laplace transform, a connection which might be

exploitable. The F/EOS model unifies several previously unrelated

models; a unified approach to inference and prediction for these models

based on the F/EOS model should be useful. The richness of the family

of EOS models and the possibility of superposition of failure processes

tend to challenge the ability of a parametric family to model all

possibilities adequately. Nonparametric approaches can be based on

complete monotonicity properties. Development of a Bayesian analysis

encompassing the entire EOS family is worth pursuing. Lastly, the EOS

family gives a diverse set of models from which data can be simulated

in a systematic way and used as test data for evaluating various

proposed inference and prediction methods.

It is hoped that this paper will stimulate interest that will lead

to further use and investigation of these models.
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APPENDIX

This appendix contains background information, proofs and

additional discussion. Ross [23,24] provides a good introduction to the

necessary stochastic processes, especially the Poisson process. Karlin

and Taylor [13, Chapter 13] provide an excellent discussion of uniform

order statistic processes, homogeneous Poisson processes and their

relationship to one another. Cinlar [5] gives an excellent discussion

of Poisson processes, especially the nonhomogeneous (nonstationary)

Poisson process, which he shows to be a transform in time of a homogeneous

Poisson process [5; Chapter 4, Section 7]; this leads to generalization

of the results in Karlin and Taylor to nonuniform order statistics and

nonhomogeneous Poisson processes.

In Section 2 a proper DET/EOS model is defined as one for which

E _'l < _ " Recall that X.l _ Exponential (hi) , i=1,2,... , are
i=l

independent random variables. The event {N(t) < _} belongs to the

o-field generated by {X1 , X2 , ...} , i.e., occurrence or nonoccurrence

is completely determined by the values taken by XI , X2 , .... Further-

more, the event {N(t) < _} is independent of {XI , X2 , ...,X n} for

each n , n < = Thus by the Zero-One Law for Tail Events [9, p. 124],

either P{N(t) < _} = 0 or P{N(t) < _} = i When E%. < _ ,
1

minX.l _ Exponential (E%i) ," thus P{N(t) = O} = exp(-E%i) > 0 and the

latter possibility holds: P{N(t) < _} = 1 . Conversely, if P{N(t) < _} = i

then for some n < = , P{N(t) = n} > 0 , which implies that there is at

least one subset of the integers {iI , i2 .. i } = I (t) such that'" 'n n

P({X._ _< t , i _ In(t)} N {X.I > t , i _ In(t)}) > 0 , which in turn

implies P(X i > t , i _ I (t)) > 0 which equals exp(-E %i) Thus

n i_in(t )

- 62-



co

if % < = for i _ I (t) , we get E % < = This proves (underi ' n i
i=l

the assumption that %. < _ , i > i) that {N(t) , t < _} is non-
1

oo

degenerate iff Y _. < _ If _. = _ for i=l,...,k and _. <
1 1 I

i=l

for i > k , then N(O) = k and N(t) < _ with probability one iff

oo

E _. <_
i

i=k+l

The Exponential approximation to the Geometric mentioned in Section

2 is well known. The formal statement in terms of a limit theorem is:

Let X , n=l,2,..., be a sequence of Geometric random variables withn

parameters Pn ' n=l,2, , respectively, i.e., P(X n > i) = (1 - pn )i

i=0,i,2, .... If lim Pn = 0 , then lim P(PnXn > y) = e-y Thus
n->_ n->_

for small p the Exponential distribution can be used as an approximation

to the Geometric distribution.

Another situation wherein the time until failure is approximately

Exponential involves regenerative processes. (See Cinlar [5] or Ross [24]

for background.) Successive inputs to a program may not be independent

but may instead exhibit dependence; for example, the sequence of inputs

could be a random walk on the space of all possible inputs. More

generally, the sequence of inputs could be a regenerative process. Such

processes have a structure which Consists of a sequence of independent

identically distributed sojourns from a single state, which is called a

regeneration point. If on any given sojourn the probability of

experiencing the failure is p and the failure first occurs on sojourn N ,

then P{N = n} = p(l-p) n-I , n=l,2, .... The duration of sojourns 1

through N-I will be i.i.d, random variables T1 , T2 ,...,TN_ I If

ET < _ , it can be shown using Laplace transform arguments that, as

n-i

p + 0 , the distribution of p E T. converges to an Exponentiali
i=l
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distribution with mean ET. Thus if the duration in the Nth sojourn

n-i

until failure is negligible compared to E T. and p is small, thei
i=l

distribution of time until failure will be approximately Exponential.

Theorems 3.1 and 3.2 are well known. Theorem 3.1 deals with

transforming i.i.d, uniform order statistics into i.i.d, order statistics

of an arbitrary probability distribution using the "inverse probability

transform;" see Law and Kelton [15, pp. 242-247] or Schmeiser [25].

Theorem 3.2 deals with transforming an HPP into an NHPP; see Cinlar

[5, pp. 94-i01] for a proof.

Proof of Theorem 3.3: Consider the unordered failure rates

(A1 , A2 ,...,A n) where n = L(_) : P(A I < 11 A2 < 12 .. A < I ) =- ' - '" 'n- n
n

H L(li)/n . Let Ti(Ai) be an exponential random variable with rate A. ;
i=1 i

thus P(Ti(Ai) < t) = P(Ti(Ai) < tIA i = I) dL(1)/n = f (l-e-lt)dL(1)/n .
20

The (TI(AI),...,Tn(An)) are independent because the (AI ,...,An ) are

independent; thus we have a random sample of size n from cdf

l_e_lt)dL(%)/n (Ai)'
F(t) = ( and the ordered Ti s are an lIDOS process.

0
n

The mean function is M(t) = EN(t) = E( E l[o,t][Ti(Ai))_\/i=l

n co

= i=17'P(T(Ai) < t) = 10(l-e-lt)dL(%)

Proof of Theorem 3.4: Consider the Poisson process of (ordered)

failure rates: A1 ! A2 _ A3 _ .... This process has complementary

cumulative mean function L(.) . Now consider 0 = to < tI < t2 <... < tk

and split the above process into k processes: N1 , N2 ,...,N k .
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If A. = %. then this failure rate is put into the jth process with
i i

-% .t -% .t.
lj-i ij

probability e -e , j=l,2,...,k By well-known splitting

theorem for NHPP's, N1 , N2 ,...,N k are independent Poisson processes

with EN. (_) (e J)= - e (-dL(%)) . But note that the
i

splitting is equivalent to observing Ti(Ai) i=1,2,... : if A. = %' i i

.t.

then P(tj_ 1 < Ti(Ai) < tjlA i hi) e-%itj-I -%1 j

oo

So Ni(_) = i=iE l(tj_l,tj ) (Ti(Ai)) , j=l,2,...k . But from above,

N.(_) , j=l,2,...k , are independent Poisson random variables with
3

£ co e-% tj)
E( E_I Nj(oo)) = I (i - (-dL(%)) Thus {Ti(Ai) , i=1,2,...}j- 0

satisfy the postulates for an NHPP with mean function

oo

M(t) =I0 (i - e-At )(-d_(%))

Theorems 4.1 through 4.5 are generalizations of relationships

between uniform order statistics and homogeneous Poisson processes

(see Karlin and Taylor [13]). These relatiOnships extend to order

statistics from general distribution and NHPP's using the time-

transformation which changes an HPP into an NHPP (see Cinlar [5]).

Theorem 4.6 is somewhat more general: from Theorems 4.2 and 4.3

{Nt(t) 0 _ t j slNI(S) = n} and {N2(t) , 0 J t j sIN2(s) = n}

are identically distributed. Since T1 and T2 are identical and

the occurrence of the events {T1 = s} and {T2 = s} just depends on

the behavior of their respective processes during [0,s] , the

conditional processes in the statement of Theorem 4.6 will be identically

distributed.
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Theorem 4.7 follows from various forms of the strong law of

large numbers. Theorem 4.8 follows from various forms of multivariate

central limit theorems. For an HPP the limit is a Brownian motion;

for the NHPP with mean function M(t) the limiting Gaussian process

has covariance function Cov(s,t) = M(min(s,t)) For a process of

uniform order statistics the limit is a Brownian bridge; for an IIDOS

process with mean function M(t) the limiting Gaussian process has

covariance function Cov(s,t) = M(s) (M(_)-M(t))/M(_) , s < t ; cf.

Billingsley [2, Theorem 16.4]. For the DET/EOS process we note that

Var(Nk(t)/ _-) = k-i E"Vat(l[O't](Ti(li))z )

-I t -l.t -l.t -I t
i m 2 1 i 2_= k-I E ((l-e )(l-(l-e )) + e (0-(l-e ) J

i

-I .t -l.t
1 1

= k-I E e (l-e )
i

= k-I 7.exp(-L-l(i/k)t) (l-exp(-L-l(i/k)t))
i

= k-I _ exp(-L-l(i/k))t(l-exp(-L-l(i/k)) t)
i

This is a Riemann sum, which converges to

= _ exp(-L-l(x))t(l-exp(-_-l(x))t)dxV(t)
J 0

as k . _ , Similarly the limiting covariance is

Cov(s,t) = _ exp(-_-l(x))S(l-exp(__-l(x))tdx ,
J 0
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s < t . As an example (which is tractible) consider case 2 of Section 2:

L(1) = _ exp (-_/_) ; L-I(x) = - _ log (x/_) , so the limiting covariance

is

Cov0(s,t ) = (x/v) _s (l-(x/_)_t)dx

1

= _I0 u_s (l-u_t) du

_ t

(_s+l) (_s+_t+l)

The covariance of the IIDOS process with the same L(.) is

co oo

C°Vl(S't) = I (l-e-lS)dL(1) I e-ltdL(1)/L(_)0 0

_s St

= _ (i _--_)s_ _t+l

= _ ._ t
($s+l)(_t+l) , s < t

Note that COVl(S,t) > COVo(S,t) , as expected.

Proof of Theorem 4.9: Let X. , i=1,2,... , be independentI

Exponential random variables with rates I. , i=1,2,... , respectively.
k l

Define Nk(t) =i=l_ l[0,t](Xi) , 0 _< t , k=l,2,...; these processes are

all defined on the same probability space and satisfy Nk(t ) _<Nk+l(t ) ,

0 < t , k=l,2,..., with probability one. By monotone convergence,

lim Nk(t ) exists (possibly co ) with probability one. The limit

l[0,t ](Xi) must be a nondegenerate process because El. < _ Thusi=l 1

we have convergence with probability one to a DET/EOS process with an
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infinite number of events.

Proof of Theorem 4.10: The finite dimensional joint distributions

of an IIDOS process with mean function Mk(.) are of the form

P{Nk(tl ) = nI , Nk(t2) = n2 ,...,Nk(tm) = nm }

1 Mk(=) 1 m i. Mk(_)-n m
i i2"''im J_l(Fk(tj)-Fk(tj-l)) J (l-Fk(tm))

where 0 = to < tI < t2 < ... < tm < _ ' Fk(') = _(')/_(_) '

i. = n. - n j=l,2, .m , and
j j j-i ' ""

I Mk(_ ) ml Mk(_)!

m

iI i2"''i • , • , • ,
lI. 12_ ...i . - Eim).

m (Mk(_) 1

If lim Mk(t) = wM (t) such that wM (_) < _ , then, as k . = , the
k-_o

above joint distribution converges to

I M (=) 1 m i. M (=)-n

H (F ) -F=(tj i)) 3 (I_F (tm)) _ m
iI i2...i m j=l (tj _

the joint distribution of an IIDOS process with mean function M (-)oo

If lim _(t) = M_(t) such that M_(_) = _ then, as k . _ , the above
k._,

joint distribution may be rewritten as
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n(Mkl i(Mk(_)) m (Mk(tj) _ Mk(tj_l) j(l_Mk(tm)/Mk(_))
iI i2 ...i j=m

m i. Mk(OO_..-nm

(M (tj)- M (tj_l)) J lim Mk(_ )' ( Mk(tm) 1
j=l i.'3_ k-_o _(_) nm(y_c(_)-nm) '. i_ _k(T ) /

but

lim Mk(_) '.
k-_ =i

and

Mk( )-n

k->_lim(I Mk(=)Mk(tm)) = exp(-M=(tm)) '

so the joint distribution converges to

m i.

J exp(-M ))H (M (tj) - M (tj_l) (tmj=l i._
J

)
m lj

= _ xp (M (tj)-M (tj (M (tj) - M (tj_l))
j=l i._ '

3

the joint distribution of an NHPP with mean function M (') , cf.

Miller [18].

Proof of Theorem 4.11: It can be shown as above that the finite

dimensional joint distributions of a sequence of NHPP's with mean functions

Mk(') converge to those of an NHPP with mean function M (') as k *
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Proof of Theorem 6.1: Since L(1) is integer-valued,
oo

_0n(_)dl < oo if and only if lim h(_)= 0 and I_ h(1) el < °° •

But 10 _(X)dl = i=l_ li , where li = L-l(i)

Proof of Theorem 6.2: Since A1 is the largest rate,

n

P ( E A. < _) = 1 if and only if P(Ai< _) = 1 ; P(A. < l) =i I
i=l

((L(O) - L(1))/L(0)) n , so P(A. < _) = 1 if and only if lim L(1) = 0 .
I __>oo

Proof of Theorem 6.3: The largest rate A1 is finite if and only

if lim L(1) = 0 (if Y1% Exponential (I), then A1 = L-I(Y I) < =)
l->co

By Theorem 6.1 the conditions lim L(1) = 0 and
•_ l-_o

L(1)dl < _, 0 < _ < _ , are equivalent to E Ii < _ , where0 i=l

• <co) = 1 ,
i i = L-l(i) , i=1,2, .... Thus it suffices to show that P(E Al

._ oo

where _ is over all Ai < _i ' if and only if 7. I. < _
- i=l 1

_o

Let Ni = j=IE l(li=l, li] (Aj) , i=1,2,... , these are i.i.d. Poisson

, co

• < 7. Nil i and
random variables with mean i; then 7 Al - i=l

9% co co

E(E Ai) < E( _ Nil i) = E ENi% i = E I. Therefore El. < co implies
_ i=l i=I i=I i l

*Ai ) • ° < _) = 1 Conversely,E(_ < co , which in turn implies P(Y*A I

co

• = co We shall randomly select a subset S of I :
suppose that E Ii

i=l

If Ni >_ 1 , li+l :belongs to S , if Ni = 0 , l i+1 does not

Thus each li+ 1 , i=1,2,..., is randomly and independently selected with
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probability l-e-I > 1/2 ; thus E %i+i = _ also. Note, however,
S

that for each %i+l e S there exists a Aj (i) such that %i+I < Aj (i) < %"-- i

Therefore E %i+i < E A.j(i) and we have a subset of _A whose sum
S

diverges with probability one.

Proof of Theorem 6.4: There exists _ , 0 < _ < _ , such that

m(t) = - _ %e-%tdL(%) < - %dL(%) dL(%) = - %dL(%) + L(_)
J 0

Integration by parts gives - Xd_(X) = L(X)dX - _L(_) + lim XL(X) .
_.0

But _L(_) < L(X)dX , which in turn is finite by the admissibility
0

H

Thus -_] %d_(%) < _ , giving re(t) < _ Similarly,assumption.
2U

M(t) < - XdL(X) - dL(_) = - _dL(X) + L(1) , which is finite
0 i 0

by admissibility of L(-) . Conversely, suppose M(t) =

- _ (l-e-%t) dL(_) < _ and lim M(t) = 0 . But l-e-%t _ 1/2
J0 t.O

for log2/t f I < _ , which implies M(t) > - r 1/2 dL(l) =

oo

J,(log2)/t
1/2 L(log2/t) .

Thus lim M(t) = 0 implies lim _(1) = 0 and we have admissibility.
t.O _-_

Proof of Theorem 6.8: MI(') is clearly an admissible mean function

for an IIDOS/EOS model. If L(.) is the complementary mean function of

the NHPP A then the complementary mean function for the lIDOS A is

LI (') = ([M(_ + I/2]/M(_)) L(.) = ([L(O) + I/2]/L(O)) L(.)
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and LI(X) = L(X) + cE(X)IE(0), ]c]< 1/2 ,

oo

=If,°
co

= [e[ IO %e-%t dL(kl/L(O)

1 1 1
-- --1
< 2 sup _e-_t = 2 t e

Proof of Theorem 6.9: LO(%) = [L(%) + i/2] so L(%) - _0(_)I _ i/2 .

Two extreme cases are L (%) = [_(%) + I] and L%(%) = [L(%)]U

which satisfy

Eu(_)> E(x)> E_(_)

and

Eu(_) > Eo(_) > E_(_) .

Since these are step functions and 1-e -At is increasing in % ,

Mu(t) =- _(l-e-Xt)dLu (_) > M(t) > - _(l-e-Xt)dL_(_) = M_(t)

and

Mu(t) > Mo(t ) > M£(t)

But

M (t) -M%(t) = (l-e-%'=) - O)u (l-e-k" =i;

therefore IM(t) - Mo(t) [ < i , 0 < t < _ . Similarly, using the

fact that %e-%t is unimodal in _ with mode i/t , one can bound it

by the sum of two monotone functions:

fl(%) = e-At l[o,i/t](% ) + t-le-ll[i/t,_)(% )
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and

f2(%) = t-le -I l[0,1/t](%) + %e-%t l[i/t,oo)(4)

and use a combination of the above analyses to get

-i
Im(t) - m0(t) I < sup fl(_) + sup f2(_) = 2(te)

At the end of Section 6 the Geometric Order Statistic model is

mentioned. This model might be preferred to an EOS model when the time

parameter is integer-valued and corresponds to successive independent

uses of the program. In this case the times until failure have a

geometric distribution,

P(X = t) = (i p)t-i- p ,

P(X > t) = (i - p)t ,

t = 1,2,3,... ; 0 < p < i , where p is the failure probability on aD

given execution of the program. Denote the set of failure probabilities

by P = {Pl ' P2 ' P3 "''} and let this be a realization of a stochastic

point process with complementary mean function L(') , i.e., L(p)

equals the number of bugs in the program with failure probabilities equal

to or greater than p . Let XI , X2, .o. be independent Geometric

random variables with parameters Pl ' P2 ''''' respectively. The

failure process is

N(t) = Z l[o,t ] (Xi) , t=1,2,3,....
i=l

For deterministic p , the mean function is

M(t) = EN(t) = Z P(X i <_ t)
i=l

oo

= Z (l-(l-Pi)t) , t=l,2,... ,
i=l

and its intensity is
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re(t) = M(t) - M(t-1)

co
t-i

= E (l-Pi) Pi ' t=l,2 .....
i=l

In general

i t) ,
M(t) = - (l-(l-p) dL(p)

0

i I

m(t) = I (l-p)t-i
- p dE(p) = - (1-p)t pdL(p)

0 0 l-p

Let us examine m(t): First note that {(l-p) t , t=1,2,3,...}

is a completely monotone sequence. Integration with respect to a

positve measure preserves this property; therefore {m(t) , t=1,2,3,...}

is a completely monotone sequence. Second, consider

1

m(t)- l (I-P)t pdL(p_____))
J 0 l-p

1I"

- l exp(t log (l-p)) pd_(p)
J0 l-p

1

o • 1-p

i o= E (-l)it a (-log (l-p)) i(-pd_(p) .

i=l i ' l-p

Let

_i )i __ pd_(p) ) i=O,l, 2,

c. = (-log (l-p) .... ;

i 0 \-- l-p

{ci/c 0 , i=0,i,2,...} is the moment sequence of the random variable

-log (I-Q) where P(p < Q < p + dp) = -Co i pdL(p)/(l-p) .

If 0 < -log (I-Q) < 1 then Theorem 6.10 applies and the moment

sequence is completely monotone.
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But 0 < -log (l-Q) < i is equivalent to 0 < Q < l-e-I ; thus a

necessary and sufficient condition for a c.m. moment sequence is that

the support of -pdL(p)/l-p is contained in [O,l-e -I] , i.e.,

L(p) = 0 for p > l-e -I Thus we get qualitative properties for

Geometric Order Statistic intensity sequences that are similar to EOS

intensity functions except that Completely monotone sequences take the

place of completely monotone functions and in Theorem 6.11 the condition

0 < p < l-e -I replaces 0 < % < 1 .
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