NASA Technical Memorandum 86357

PREZ INTHARY SIZING AND PERFORMANCE OF AIRCRAFT

DAVID E. FETTERMAN, JR.

FERFORMANCE OF AIBCRAFT (NAS3)

JULY 1985

States and the states of the

-

N85-32111

14

4

CSCL 01C

115 p

Unclas G7/05 21971

HC A06/ME A01

Space Administration

Langley Research Center Hampton, Virginia 23665

SUMMARY

A procedure that allows preliminary assessment of the effects of component size changes on the characteristics and performance capability of aircraft has been developed into a computer program. Applications can be made to subsonic, supersonic, and hypersonic aircraft using JP, liquid-hydrogen, or liquid-methane fuel. Jet engines as well as propeller systems can be treated. Basically, the program requires an input baseline aircraft on which component sizing changes are made; new aerodynamic, propulsion, and weight characteristics are then determined and a mission profile, including a reserve fuel segment, is computed to find the new aircraft's range capability. One of the output options provided by the program is the basis for preparing aircraft sizing "thumbprints" which pinpoint the wing and engine size for best performance.

INTRODUCTION

A computer program for aircraft sizing is a useful tool for preliminary aircraft system studies. The method must account for the interactions between aircraft geometry, aerodynamics, propulsion, and weights while providing rapid, low-cost evaluations of design options. Important advantages offered by this capability include the realistic assessment of technological advances and the identification of promising areas that justify further studies in greater depth.

A program that satisfies these requirements has been developed for use in the Aeronautical Systems Office at the NASA Langley Research Center. An earlier version was reported in reference 1. Briefly, the method performs sizing operations on a baseline aircraft and then a mission analysis to determine the effects of sizing on range. In the few instances where comparisons are possible, results of the method are in close agreement with similar ones in industry (refs. 2 and 3).

This paper contains a description of the processes used in the program, some applications of the program to subsonic, supersonic, and hypersonic aircraft, and definitions of input and output. For identification purposes, the program is called ASP, (A)ircraft (S)izing (P)erformance program.

Г. .

SYMBOLS

BF Breguet factor, $V(L/D)/SFC/(1 - V^2/gR_a)$

C centigrade

C_D drag coefficient

C_{D.BL} engine bleed drag coefficient

C_{Dn} zero-lift drag coefficient

C₁ lift coefficient

0	4
U	arag
UMAX,F	maximum diameter of fuselage
F _{N,F}	fuselage fineness ratio
g	gravitational acceleration
Н	altitude
L	lift
L/D	lift-drag ratio
(L/D) _{MAX}	maximum lift-drag ratio
L _F	length of fuselage
м	Mach number
P/W	shaft horsepower-to-gross weight ratio
R	range
Re	radius of earth
SFC	specific fuel consumption
t	time
T	thrust
T/W	thrust-to-gross weight ratio
V	velocity
V _{AP}	approach velocity
V _{LO}	lift-off velocity
V _{rotate}	velocity at start of rotation during takeoff
W	weight
WF	fuel weight
W _G	gross weight
W/S	wing loading, gross weight/reference area
a	angle of attack
θ	flight path angle
۶ _F	flap deflection
2	

£_+ · (4

l∔ų

D

1 T THE TOTAL H ST 361

لأحديثت بمستك

ļ

Subscripts

AP approach
BL baseline aircraft or bleed drag
F fuel
L0 lift off
MAX maximum

SL sea level

A dot over a symbol denotes its time derivative.

PRELIMINARY CONSIDERATIONS

The computer program described herein cannot be used to design an aircraft concept. Instead, the program performs operations on a baseline aircraft which has already been designed in sufficient detail to provide the required inputs. Within the program, this baseline aircraft is sized according to optional input values such as wing loading, engine thrust, number of passengers, and gross weight. After sizing, the aerodynamic, propulsion, and weight characteristics of the aircraft are determined; then a mission profile with reserve fuel segments is computed to find the range of the aircraft.

Some of the output provided by the program include:

- 1. Range for given gross weight and number of passengers
- 2. Gross weight for given range and number of passengers
- 3. Number of passengers for given range and gross weight
- 4. Payload range curve
- 5. Passenger and fuel offloading
- 6. Effects of technology advances in aerodynamics, propulsion, and weights
- 7. Effects of in-flight refueling
- 8. Mission radius to payload drop
- 9. Information for preparing an aircraft sizing "thumbprint." (A "thumbprint" is a map of constant value contours, like range or gross weight, plotted as a function of engine and wing size.)

The program can be applied to subsonic, supersonic, or hypersonic aircraft using JP, liquid-methane, or liquid-hydrogen fuel. Jet or propeller propulsion systems can be considered.

Five baseline aircraft have been chosen to illustrate the capabilities of the program. Computer drawings of these aircraft are shown in figure 1. All aircraft are preliminary concepts designed during in-house activities.

Alter of the mark

METHODS

Component Sizing

<u>Fuselage</u>.- To simplify drag calculations and packaging, the fuselage is approximated by an equivalent body consisting of a constant area midsection with end caps having a Sears-Haack profile (ref. 4). The constant area midsection contains the passengers, door-galley-lavatory sections, cargo, and, if required, cryogenic fuel tanks. Variables that affect the passenger compartment are the number of seats abreast, seat pitch and width, aisle width, and the length and number of doorgalley-lavatory sections. Although these quantities may be input, their values may not all be preserved because final values are determined from the baseline aircraft using input values for passenger compartment length and abreast seating arrangement.

The arrangements available for fusting packaging are shown in figure 2. The first arrangement (fig. 2a) applies to aircraft with one-passenger level and conventional fuel. In addition to the passengers, the airangement contains the cargo normally stored beneath the floor; however, if not enough space is available, the excess cargo is stored in a section behind the passenger compartment. The cargo is assumed to be stored in cargo containers which occupy 60 percent of the available volume.

If the aircraft uses cryogenic fuel, the second arrangement (fig. 2b) places all the cargo behind the passenger compartment and fuel tanks are located beneath the floor. If more fuel volume is required, it is located in full-depth sections of the same length at both ends of the midsection.

The third arrangement (fig. 2c) has two identical passenger levels with aft cargo storage. If cryogenic fuel is required, it is stored in duplicate tanks fore and aft of the passenger compartment.

In application, the midsection length and diameter are calculated first for the requirements of the baseline aircraft. Then, from the length of the baseline aircraft, the length of the fuselage end caps are found. During sizing, a new midsection of different length and diameter is determined to satisfy the requirements for passengers, cargo, abreast seating, and fuel volume (if the fuel is cryogenic). The new fuselage length is then obtained by adding the end caps to this midsection.

<u>Wing and Tail Surfaces.</u> From the inputs for the baseline wing and tail surfaces, definitive geometric properties are determined and then normalized by a representative dimension (such as wing root chord or geometric chord). Baseline tail volume coefficients are also found for each surface. During sizing, the nondimensional properties are used to shape the components in a geometrically similar manner. Wing size is specified by wing loading or reference area, while the tail surfaces are sized to keep their volume coefficients equal to baseline values. The locations of the components are established by keeping mean aerodynamic chord positions (25-percent subsonic, 50-percent supersonic) at the same percent bodylength station as the baseline aircraft. If overlap occurs between the wing and tail surfaces, the program will output a warning and continue operation.

ORIGINAL PAGE IS OF POOR QUALITY

Fuel /olume.- Conventional fuel is assumed to be stored in the wings and in the fuselage where wing carry-through structure is located. The maximum wing-fuel volume, $V_{\rm FW}$, is given by

$$V_{FW}/V_{W,EXP} = K_A + K_B V_{W,EXP}$$

where $V_{W,EXP}$ is the total volume of the exposed wing, K_A a constant determined from the baseline value of maximum wing-fuel volume, and $K_B = 7.16 \times 10^{-6}$, which was derived from studies of wing-fuel capacity performed by the Kentron International Inc., Kentron Technical Center, Hampton, Virginia. The maximum fuselage-fuel volume is scaled from the baseline value and it is assumed to vary directly with root chord, maximum thickness of the wing, and the maximum width of the fuselage.

Cryogenic fuel is contained only in the fuselage at locations covered previously under fuselage sizing. Fuel tanks are simple constant area tanks having a length that provides the required volume. The tank cross-sectional shape is the same as the fuselage after accounting for the wall thickness for cryogenic tankage.

<u>Propulsion System</u>.- The length, L_N , and diameter, D_N , of circular nacelles are sized by the installed, sea level, static thrust, T_{SL} , in the following manner:

$$L_{N} = L_{N,BL} (T_{SL}/T_{SL,BL})^{N_{L}}$$
$$D_{N} = U_{N,BL} (T_{SL}/T_{SL,BL})^{5}$$

where the subscript BL refers to the baseline aircraft and T_{SL} varies with input thrust-to-weight ratio (or power-to-weight ratio for propeller-driven aircraft). The engine sizing exponent N_i , which varies with engine concept, is an input.

For two-dimensional inlets, the wetted area is assumed to scale directly with thrust. Both the length and width of these inlets, therefore, vary directly with $(T_{SL}/T_{SL,BL})^{-5}$.

In a similar manner, the propeller diameter, $D_{\rm p}$, is sized by

 $D_{P} = D_{P,BL} (T_{SL}/T_{SL,BL})^{5}$

and the RPM of the propeller, RPM_{p} , and engine, RPM_{r} , by

$$RPM_{p} = RPM_{P,BL}(T_{SL,BL}/T_{SL})^{.5}$$
$$RPM_{E} = RPM_{E,BL}(T_{SL,BL}/T_{SL})^{.5}$$

Nacelle positions are established by keeping their lengthwise locations a constant percentage of the local wing chord and their spanwise pod-to-pod and pod-to-fuselage clearances a constant percentage of wing span.

÷ •

З

١.

An illustration of the effects of these sizing procedures on the supersonic transport is shown in figure 3.

AERODYNAMICS

The baseline aerodynamic input includes lift and drag polars for both takeoff and higher speed conditions and zero-lift drag items. All, except the takeoff data, are corrected for sizing effects. Corrections are obtained by applying the methods described below to both the baseline and the sized aircraft, then adding the difference in the results to the baseline input value.

Lift-Orag Polars.- For subsonic aircraft, the shape of the lift-drag polars are functions of wing aspect ratio, thickness, and sweep, and also Mach number when compressibility effects become important. To account for these variables, the program uses a method based on the drag build-up system given in reference 5. Some results that the method provides for sizing variations to the subsonic transport are shown in figure 4.

For higher speed aircraft, the program treats only wings that are geometrically similar to the baseline (equal aspect ratio, sweep and thickness ratio). It is therefore assumed that the shape of the lift-drag polars for these aircraft is not affected by changes in component size.

The lift-drag polars at all speeds will shift along the drag axis because of drag increments that result from sizing effects on zero-lift drag.

<u>Zero-Lift lrag.</u> The items that contribute to C_{D_0} are the friction drag,

roughness drag, and wave drag. To these, engine bleed and air-conditioning drag must be added if they are not included in the baseline engine data. All drag items are corrected for sizing effects. The drag coefficients for roughness, $C_{D,RUF}$, air-conditioning, $C_{D,AC}$, and engine bleed, $C_{D,B}$, vary by

$$C_{D,RUF} = (C_{D,RUF}) (S_{WET}/S_{REF})/(S_{WET}/S_{REF})_{BL}$$

$$C_{D,AC} = (C_{D,AC})_{BL} (T_{SL}/S_{REF})/(T_{SL}/S_{REF})_{BL}$$

6

The second s

•

i

Ì

where $S_{\mbox{WET}}$ is the aircraft wetted area, NPAS, the number of passengers, and $S_{\mbox{REF}}$ the aircraft reference area.

<u>Wave Drag</u>.- To avoid the long computing times required to determine the wave drag by existing computer codes, a quick, simple, but approximate approach was adopted. The method treats the aircraft as a collection of isolated components, all exposed to free-stream conditions. Since the wing and tail surface vary geometrically along with the aircraft reference area, the wave-drag coefficients for these surfaces are assumed to remain constant as the size of the component changes. Sizing, however, does affect the fuselage wave-drag coefficient. As mentioned previously, the fuselage is composed of a cylindrical midsection with identical end caps. Only the end caps are assumed to contribute to the wave drag and their shape was chosen to be a Sears-Haack profile which allows the fuselage wave-drag coefficient to be obtained (see ref. 6) by

 $C_{DW,F} = 24V (S_{MAX}/S_{REF})/L^3$

where V, L, and S_{MAX} are the total volume, length, and maximum cross-sectional area of the fore- and aft-end cap combination.

The contribution of the engine nacelles to the wave drag is considered to be small enough to ignore the effects of sizing.

A comparison of the results of this simple approach with those from the wavedrag program of reference 7 for the supersonic transport aircraft with JP fuel is shown in figure 5. Although some differences do occur, the method provides an improvement over the assumption that wave drag is unaffected by sizing.

<u>Friction-Drag</u>.- For calculating skin-friction drag, the fuselage, tail surfaces, and engine nacelles are treated as flat plates with corresponding wetted areas and lengths. The wing, however, is treated as a collection of strips with the strip mean geometric chord as the characteristic length. All surfaces are at zero angle of attack. Skin-friction drag corrections are made at all Mach number-altitude combinations required by the mission flight profile.

Two different procedures are used to calculate friction coefficients. One, which applies to fully turbulent flow, uses the reference temperature method (ref. 8) along with the constants for turbulent flow given in reference 9, and the Prandtl-Schlichting formula for incompressible average skin friction (ref. 10). An input value for emissivity is required for the solution of wall temperature.

The other procedure applies to mixed laminar-turbulent flow and is based on assumptions of an adiabatic wall temperature, a recovery factor of .88, and a discontinuous change from laminar to turbulent flow at the specified location. Since these assumptions are more appropriate to wind tunnel, rather than flight conditions, the results are not used directly. They are used, instead, to increment the fully turbulent flow results obtained as described above.

7

A LEVEL

An illustration of the effects of sizing on the zero-lift wave drag and the maximum lift-drag ratio for the supersonic JP-fueled transport under turbulent flow conditions is shown in figure 6.

WEIGHTS

The weight input for the baseline aircraft include component structural weights, propulsion system weights, system and equipment weights, and crew, passenger, and cargo weights. Empirical weight relationships are used to find the effects of sizing on each item. These emperical weight equations and the method in which they are used are described in Appendix A.

An example of the weight results obtained from sizing the supersonic JP-fueled transport is shown in figure 7.

MISSION ANALYSIS

After the aircraft is sized and its aerodynamic, propulsion, and weight characteristics are known, a mission analysis is made to determine the range capability. The mission profile includes taxi, takeoff, climb-to-cruise Mach number, climb-to-cruise altitude, cruise, descent, approach, and reserve segments. For supersonic cruise missions, a subsonic cruise leg may also be specified for the outbound and/or inbound flight segment.

Taxi and Takeoff.- During taxi, the engines are throttled to provide the fuel flow rate and thrust required to overcome rolling friction. The fuel for taxi is found from this fuel flow rate and the input taxi time.

The Mach number-altitude profile during takeoff is not input; it results from influence of the aircraft's aerodynamic and maximum power characteristics on the equations of motion.

 $\frac{1}{g} \vec{V} = (T \cos \alpha - D)/W - \sin \theta$ $\frac{V}{g} \vec{\theta} = (T \sin \alpha + L)/W - \cos \theta$ $\vec{H} = V \sin \theta$ $\vec{R} = V \cos \theta$ $\vec{W} = - \vec{W}_{E}$

During the ground run, these equations can be solved easily because $\dot{\theta}$ and \ddot{H} are zero. But after "lift-off," when these simplifications no longer apply, they are solved by more time-consuming numerical integration using the fourth order Runge-Kutta formula.

The takeoff segment includes the ground run and climb over the obstacle to an altitude of 400 feet. Analyses include "all-engines-go" and "one-engine-out" situations but no analysis of the balanced takeoff field length (ref. 11) is made.

As shown in figure 8, the the ground run begins at zero velocity, zero flap deflection, and ground angle of attack using takeoff aerodynamics that include landing gear drag increments and ground effects. At velocity V_{rotate} , the flaps are deflected and the aircraft begins its rotation to the takeoff angle of attack. After rotation is complete, the angle of attack and flap deflection are held constant until "lift-off" occurs. After "lift-off," the aircraft climbs with angle of attack and flap deflection unchanged; however, the aerodynamics are corrected for landing-gear drag retraction over an input time interval and for the diminishing influence of ground effect over an input altitude interval. The climb continues at constant angle of attack until the input climb gradient is reached; then, angle-of-attack changes are made to maintain this gradient. The end of the takeoff segment occurs when the aircraft reaches an altitude of 400 feet.

When the aircraft reaches the height of the obstacle (typically 35 feet) 115 percent of the horizontal distance covered is the takeoff field length when all engines are operating; but, for the "one-engine-out" condition the takeoff field length is the actual distance.

The minimum takeoff field length, as indicated in reference 11, occurs at an optimum value of the velocity for start of rotation, V_{rotate} . If more than a few aircraft are to be analyzed, however, the computing time required to find the variation in takeoff field length with V_{rotate} becomes prohibitive. A shorter approach was therefore adopted in which an iterative solution is used during the ground run to find the value of V_{rotate} that allows rotation to be completed and the takeoff angle of attack to be attained just at "lift-off." The takeoff field length that results from this value of V_{rotate} is a close approximation to the minimum value as shown in figure 9.

<u>Climb</u>.- After the takeoff phase is complete, the aircraft is at an altitude of 400 feet. Its Mach number and altitude are then phased into the input H-M profile and the climb segment begins. This and all remaining segments of the flight profile use simplified differential equations of motion (ref. 12). These simplifications are based on the following assumptions: the time derivative of the flight-path angle is zero, the angle of attack and flight-path angle are small, and the aircraft's altitude is negligibly small compared to the earth's radius. For climb, over interval points 1 and 2 along the specified flight path, the weight change, when velocity is increasing, is given by

$$\ln (W_2/W_1) = \frac{-\overline{SFC}}{g} \frac{V_2 - V_1 + g (DH/DV) \ln (V_2/V_1)}{(1 - 5/T)}$$

and, where velocity is constant, by

$$\ln (W_2/W_1) = \frac{-SFL}{V} \frac{H_2 - H_1}{1 - 0/T}$$

DH/DV is the climb-path slope and the barred quantities represent effective values which are taken to be simple averages of interval point values.

9

F

Time and range changes over the interval are:

 $t_2 - t_1 = (W_2 - W_1)/W_F$

and a strate that my

$$R_2 - R_1 = \frac{(V_1 + V_2)}{2} (t_2 - t_1)$$

where \dot{W}_{r} is the average fuel flow over the interval.

The aircraft follows the input H-M profile up to the cruise Mach number unless, for a supersonic cruise mission, an outboard subsonic cruise leg is specified. If this occurs, the climb stops at the input subsonic cruise Mach number and a search (at constant M) is made for the altitude that provides the best Breguet factor with engines throttled. The subsonic cruise leg is then flown at constant lift coefficient for the specified range. Next, the aircraft accelerates at constant altitude until it intersects the input H-M profile, which it then follows to the supersonic cruise Mach number. During the climb, the acceleration can be controlled by input to occur at maximum power or at partial power settings that use least fuel.

After the cruise Mach number is reached, a climb at constant Mach number is made to the cruise altitude. Unless specified otherwise, cruise will start at the altitude which provides the best Breguet factor; however, the altitude at the start of cruise can be input directly or restricted by inputs for constant angle of attack, constant throttle setting, or minimum rate of climb. After the cruise altitude is reached, the climb fuel is known.

<u>Reserves.-</u> Since the fuel available for cruise and descent is the remainder after taxi, takeoff, climb, and reserve fuel are allotted, the reserve fuel requirements must be determined next. Reserves can include a trip fuel allowance, fuel for a missed approach, a flight to an alternate airport, and a hold at constant Mach number and altitude. A typical reserve flight profile is shown in figure 10.

+0.00

The solution for reserve fuel, which is iterative since the weight of the aircraft at the end of descent is not known at this time, starts with the trip fuel allowance. This fuel allowance for subsonic aircraft is obtained from the fuel burned for an input time interval using the fuel flow rate at the start of cruise. For other aircraft, the allowance is an input percent of the trip fuel, $W_{F,T}$, which at this time may be obtained from

$$W_{F,T} = W_{F} - W_{F,R} - W_{F,TAXI}$$

where W_F is the total fuel weight, $W_{F,TAXI}$ the taxi fuel weight, and $W_{F,R}$ the total reserve fuel weight (which must be assumed for the first iteration). The fuel for missed approach is obtained by either calculating a "wave-off" and acceleration to an altitude of 700 feet with landing gear retracted and "out-of-ground" aerodynamics in effect, or, more simply, by the fuel burred for an input time interval (typically 2 minutes) at the takeoff fuel-flow rate. For the detailed calculations, the weight at the start of the missed approach segment is:

10

Frank and the second second

$$W = W_G - W_F + W_{F,R} - W_{F,TPA}$$

where W_G is the gross weight and $W_{F_{\star}TPA}$, the trip fuel allowance.

For the alternate airport requirement, the aircraft climbs a linear H-M profile from the end of the missed approach to the altitude at the start of cruise, cruises the required distance, then descends to approach conditions. The total range for these segments is the required distance to the alternate airport. The analysis is performed for various climb and cruise throttle settings and cruise Mach numberaltitude combinations to find conditions for least fuel.

During the descent to the alternate airport, the hold segment is performed. The time for hold is input and the Mach number-altitude combination is again found for the least fuel requirement. The range covered during hold is not credited to the alternate airport distance.

After all reserve segments are completed, the total reserve fuel is updated and the process repeated until successive values are within .1 percent. An example of the effects of sizing on the reserve fuel requirements for the supersonic transport are shown in figure 11.

<u>Cruise</u>. The total fuel available for cruise and descent is now known, and solutions of these segments are repeated until the required and available fuel are within .1 percent. The process starts by assuming the fuel weight for descent (about .5 percent of the aircraft gross weight) then finding the fuel for cruise. During cruise, the aircraft flies at the selected cruise option (like constant C_L or others described below) until the cruise fuel is exhausted.

For cruise, the increment in range, R, over interval points 1 and 2 is given by

$$R_2 - R_1 = \overline{BF} \ln [1/(1 - W_F/W_1)]$$

where W_F is the fuel weight used over the interval, and \overline{BF} is the numerical average of the Breguet factor, which changes over the interval because of the input cruise option selected. The computing interval during the main cruise segment is a fuel weight increment obtained from the weight of cruise fuel and an input number of intervals. For outbound or inbound subsonic cruise legs, the computing interval is the entire cruise leg.

The main cruise segment is normally controlled by different input options. These include: cruise at maximum available Breguet factor, constant lift coefficient (or constant angle of attack), constant altitude, and constant engine throttle setting. The different types of cruise segments, of course, affect the cruise altitude variation and cruise range of the aircraft. Some examples of this behavior for the supersonic transport for several wing sizes are shown in figure 12. For all cruise options, except maximum power, the start of cruise was selected to start at the altitude for maximum available Brequet factor.

With the largest wing (W/S = 50 psf), the altitudes for maximum Breguet factor are above the climb cfiling. Therefore, unless constant altitude is specified, cruise, with the better range, will occur at maximum power.

With the median wing (W/S = 85 psf), the maximum Breguet factor at start of cruise occurs at a lower altitude (60,000 ft) and thrust is now sufficient to provide the altitude variation that meets this condition throughout cruise. For this wing and engine size combination, the constant C_L (or angle of attack) option is equivalent to the maximum Breguet factor option and any of these gives the best cruise range.

With the smallest wing (W/S = 110 psf), the altitude for best Breguet factor at the start of cruise is below the climb path. A constant altitude cruise with decreasing $C_{\rm L}$ therefore occurs until maximum Breguet conditions can be met and the best cruise range now occurs only for this option.

From these results, regardless of thrust or altitude limitations, it is evident that the best cruise range will always be obtained by selecting the option for maximum available Breguet factor.

Long-Endurance Cruise.- For this type of mission, the cruise segment must use minimum fuel and the program will find the variations in Mach number, altitude, and lift coefficient to provide this condition throughout cruise. If the optimum conditions prove to be unsatisfactory, there are inputs available to specify the cruise Mach number and/or altitude. An example of the effects of optimum and nonoptimum conditions on endurance for size variations of the long-endurance aircraft are shown in figure 13.

<u>Descent.</u> Like the climb, the computing interval for the descent is a Mach number increment. It is defined by the difference between the Mach number for the main cruise segment and the Mach number at the end of descent and an input number of intervals. If velocity is decreasing, the change in time, t, over the interval is:

$$t_2 - t_1 = \frac{W_1}{g} \frac{V_2 - V_1 + g (DH/DV) \ln (V_2/V_1)}{\bar{T} - \bar{D}}$$

and if velocity is constant

$$t_2 - t_1 = \frac{W_1}{V} \frac{H_2 - H_1}{T - D}$$

Again, numerical averages of interval point values are used for the barred quantities and the altitude at point 2 is found at the lift coefficient for $(L/D)_{MAX}$ with $W_2 = W_1$ (a reasonable assumption since fuel expenditure during descent is very low). W_2 is subsequently incremented by

$$W_2 - W_1 = \bar{W}_F (t_2 - t_1)$$

After cruise, the aircraft enters the descent phase by making the transition to flight at $(L/D)_{MAX}$ during the first computing interval. The remainder of the descent is then performed at $(L/D)_{MAX}$. If the aircraft is supersonic and an intound subsonic cruise leg is chosen, the descent stops at the specified Mach number and a search is made for the altitude giving the best Breguet factor. A subsonic cruise at constant lift coefficient is then performed over an input range, after which descent to the start of the approach at M = .4 and H = 4000 feet is calculated.

3

12

A CARGAN TO PERCONDING 1977

<u>Approach.</u> This portion of the descent extends from M = .4 and H = 4000 feet down to an altitude of 370 feet. Using the equation given previously for the descent, an iterative solution is required to find the aircraft weight and velocity at the end of the approach. The angle of attack and flap deflection for approach must be input. The takeoff aerodynamics are used without ground effect but the drag increments for the extended landing gear are included.

Overall Mission Characteristics. - Typica! results from different segments of the mission analysis are now presented for several wing and engine sizes on the supersonic transport with JP fuel. For all size changes, the aircraft gross weight was held constant and the cruise segment was specified to occur at maximum available Breguet factor.

Figure 14 shows the flight profile that results from changes in wing size with T/W = .45. Controlled by input, the climb profile is restricted, but the cruise and descent profiles are different for all cases.

Takeoff results, presented in figure 15, show that changes in the fuel required due to sizing are small; the spread of values is less than .25 percent of the aircraft gross weight. On the other hand, changing lift (W/S), or acceleration (T/W), capability has a large effect on takeoff field length. The velocity at "lift-off" is seen to be primarily a function of wing loading.

Climb results that show excess thrust capability are given in figure 16. Decreasing with Mach number, the excess thrust reaches its minimum value at the end of the climb, and this general trend is not affected by sizing. Changes in excess thrust are, of course, almost directly proportional to changes in engine size, while those resulting from wing changes are much less pronounced since they reflect only the different drag characteristics encountered during the climb.

The climb time, fuel, and range are shown in figure 17. The effects of engine size are large and aircraft with low acceleration, naturally, take longer times, use more fuel, and cover more range to reach cruise. Wing size does not seem to be too important except for the larger wings (W/S = 70 and 50 psf) at lower engine sizes where time, fuel, and range increase while climbing to the higher cruise altitude.

The fuel available for cruise has a significant effect on cruise range and time as shown in figure 18. Because of the additive affects of wing and engine size on total fuel and the fuel required for other flight phases, the aircraft with the smallest wing (W/S = 110 psf) and medium engine size (T/W = .35) has the maximum available fuel for cruise. The maximum cruise range, however, occurs at W/S = 90 psf because the slightly larger wing improves the L/D characteristics without an appreciable decrease in available fuel. The more efficient larger wings produce lower ranges because their high weight limits the available fuel.

Descent results are given in figure 19. Fuel for descent is less than 1 percent of the aircraft gross weight for all size variations. Because the descent is essentialy a glide at $(L/D)_{MAX}$, aircraft with the largest wings give the longest range. The effect of engine size is primarily due to different nacelle skin-friction drag increments.

Approach speeds (fig. 20) are primarily a function of wing size, although engine size also has an effect, but much smaller, because of its influence on approach weight.

Total trip time and range are shown in figure 21. Because the longer ranges in the climb and descent segments (figs. 17 and 19), the lowest engine size provides the greatest overall range.

APPLICATIONS

'n

e,

i

ļ

ALL TAL TO BUT TO A

1

14

To show some of the capabilities of the program, application will now be made to four different types of aircraft which include: two supersonic transports, one using JP fuel, the other, liquid-hydrogen fuel; a subsonic propeller-driven transport; and a hypersonic aircraft using liquid-methane fuel. The baseline aircraft are shown in figure 1. During the discussion, input variables may be referred to. For a definition of these variables, see Appendix B.

Sizing Thumbprints

During each computing cycle, selected output from the sizing and mission analysis are recorded on a file named TAPE14. This data can be used to construct the sizing "thumbprint"--a diagram that pinpoints the best wing and engine size of the aircraft. The "thumbprint" contains contours of quantities that are to be optimized and limit contours of quantities that restrict the choice of wing and engine size. Examples of optimizing contours are range, gross weight, and seat miles/gallon, while takeoff field length, fuel limit, maximum rate of climb and thrust margin are typical limit contours. TAPE14 and an example of all the information it contains for contouring is described in Appendix C.

A typical "thumbprint" for the supersonic transport, using JP-fuel, with a range of 4000 nautical miles is shown in figure 22(a). To obtain the data for this "thumbprint," the essential inputs are the required range (RNGDES), wing sizes (WOSTB), and engine sizes (TOWTB). The contours are for constant gross weight and they show that a minimum occurs at a wing loading, W/S, of approximately 90 psf and a thrust-to-weight ratio, T/W, of about .28. The limit contours, however, show that this combination is unrealistic because the wing is too small to hold the required fuel, and the takeoff field length is longer than 10,000 feet. If design requirements include a maximum lift-off speed of 200 K, a maximum approach speed of 160 K, a maximum takeoff field length of 10,000 feet and a minimum rate of climb during cruise of 300 ft/min., the choice of wing and engine size are those included within the boundaries provided by the limit contours for approach speed, takeoff field length, and rate of climb. Influenced by these restrictions, the conditions for lowest weight aircraft would change to about W/S = 82 psf and T/W = .32.

Although a low gross weight is an important quantity that decreases the cost of the aircraft and its maintenance, it is not the only criteria for selecting wing and engine size. Quantities that relate to the cost of operating the aircraft may also be important. One of these, which could assume a major role if fuel prices multiply, is a high value of the seat-miles/gallon-of-fuel arameter. The corresponding "thumbprint" for the supersonic transport with contours of this parameter is shown in figure 22(b). For this aircraft concept, the conditions for maximum passenger-miles/gallon are about the same as those for minimum gross weight with flight restrictions considered.

ORIGINAL PAGE IS OF POOR QUALITY

"Thumbprints" for the other aircraft are shown in figures 23 to 25. These include the hydrogen-fueled transport, the subsonic transport, and the methanefueled hypersonic aircraft. The "thumbprints" for the transports are at constant range, whereas the hypersonic "thumbprint" is at constant gross weight. To obtain this "thumbprint," inputs for design gross weight (WGDES), wing sizes (WOSTB), and engine sizes (TOWTB) are required. There are no fuel limit lines on the figures for the aircraft with cryogenic fuel because these aircraft are sized to hold only the required fuel. The symbols on the "thumbprints" define the gross weight and wing and engine sizes of the "design-point" aircraft that will be used to show some of the additional capabilities of the program. Although the capabilities discussed are divided among the different types of aircraft, applications, in most cases, can be made to all types.

Supersonic Transport (JP fuel)

<u>Payload - Range Trade</u>.- With design-point inputs for gross weight (WGDES), wing loading (WOSDES), thrust-weight ratio (TOWDES), and the payload-range trade requested (ICALPRC=1), data for the curve shown in figure 26 will be output. The computing process involves a computing cycle at the design conditions, then additional cycles with payload off-loaded. Two possibilities can occur when the payload is off-loaded. The first occurs when the aircraft has ample fuel capacity, then as payload decreases, fuel is added to keep the gross weight constant. Range increases because of the increased fuel mass fraction (fuel weight divided by gross weight). If, however, the aircraft cannot hold the added fuel, the gross weight is decreased by an amount equal to the weight of the excess fuel. Again the range increases (fuel-mass fraction has increased) but this time, not as rapidly. These two conditions are illustrated by the solid and dashed curves in figure 27.

<u>Radius to 'ayload Drop</u>.- A fallout from the payload-range analysis is the radius-to-payload drop useful for bomber studies. To provide this output, the program executes two computing cycles--one with full payload and one without payload. The results are then used to find the point at which the outbound range with payload equals the inbound range with payload out. The program does not account for the possibility that the altitudes, with and without payload at the drop, may not be equal. Typical results for the drop radius compared to radii with and without payload are shown in figure 27.

<u>Fuel Itt-Loacing</u>. Distances below the design range can be flown with or without fuel off-loading. Both cases can be treated by the program. Reduced ranges without fuel off-loading are initiated by inputs in RRTB and solved simply by shortening the cruise segment the required amount. Reduced ranges with fuel off-loading are obtained by inputs in OLRTB and complete mission analyses are performed which solve for the required fuel. From the standpoint of fuel efficiency, fuel off-loading is the better of the two because the dead weight of excess fuel is not carried along. Figure 28 shows this result as well as the fact that for best fuel efficiency a redesign of the aircraft for the reduced range capability would be required.

<u>Subsonic truise Legs.</u> During a supersonic mission, subsonic cruise may be required during the outbound and/or inbound flight segments to avoid sonic boom problems. If these options are chosen, the range capability of the aircraft is reduced because of the lower cruise efficiency at subsonic speeds. Typical range penalties that result from different subsonic cruise ranges are shown in figure 29. The best subsonic range is, of course, obtained by all subsonic cruise because of the extra cruise fuel gained by eliminating the acceleration to cruise Mach number.

15

14. 1. Sr

Passenger Load.- Abreast seating arrangements, to some extent, affect the aircraft's range because changes in fuselage length and fineness ratio alter the drag and structural weight. This effect is shown in figure 30 where the gross weight required for a range of 4000 nautical miles with various passenger loads at different seating arrangements are shown along with accompanying changes in fuselage length and fineness ratio. Four or five seats abreast are reasonable choices, but six-abreast seating is not competitive because of high fuselage drag.

1. and the second second

.

١

.

•

Supersonic Transport (Liquid-Hydrogen Fuel)

In this program, the low-density hydrogen fuel is located only in the fuselage. Since the fuel weight is affected by fuselage size and weight, which, in turn, changes with fuel weight, aircraft sizing is an iterative process which continues until the contained fuel equals the required fuel. Because of the large fuel volume, the maximum equivalent cross-sectional area and length of the fuselage is not only dependent on passenger load and seating arrangement, as is the case for noncryogenic fuel, but also on the volume of the fuel tanks. In order to make the fuselage sizing a tractable problem, the process may be controlled, through inputs, to occur at constant fuselage length (KBL), constant maximum equivalent radius (KBR), or constant fuselage fineness ratio (KBFN). The effects of these choices on the range capability of several size variations of the aircraft are shown in figure 31.

An alternative solution to passenger packaging for these large volume aircraft is the use of two-passenger levels (LEVELS = 2). With this choice, the fuselage maximum equivalent cross-sectional area is again dependent on the passenger-abreast seating arrangement and the fuselage length and fineness ratio cannot be controlled by input. For comparison, the range for aircraft with two-passenger levels are also shown in figure 31. For these aircraft, two-level arrangements may be superior and this inference agrees with industry conclusions in reference 13.

Subsonic Propeller Driven Transport

The performance characteristics of this type of aircraft depend on the design conditions (altitude, Mach number, and tip speed) of the propeller. These conditions, which cannot be controlled in the program, must be used to develop the input characteristics of the baseline engine discussed in Appendix B. The effects of these propeller design conditions on the baseline aircraft and some of its size variations, as provided by this program, are discussed in reference 14.

<u>Technology Improvements</u>.- The effects of technology advances are found by simple percentage changes in the required areas with interactions in other areas falling out as a result of the sizing and mission analysis procedures. Areas available for improvement (or decav) are given in Appendix B. To illustrate some results, the sensitivity of gross weight and seat miles/gallon for the subsonic transport to changes in engine weight, propeller weight, specific fuel consumption, drag, and structural weight are shown in figure 32.

Laminar-Iurbulent flow.- Another technical advance that shows considerable promise, if successful, for improving the energy efficiency of the aircraft is laminar flow control which preserves laminar flow over large areas of the aircraft components. Potential gains, predicted by the program, are shown in figure 33 for various percentages of mixed laminar-turbulent flow. <u>Refueling.</u> The program will compute a refueling segment but it must occur sometime during cruise. Refuel is initiated by specifying refuel at the start of cruise (IRFSOC = 1), or at end of cruise (IRFEOC = 1), or at a range (RNGSRF). During the refuel segment, the fuel taken onboard and the fuel used while cruising are used to find the net fuel added. Refuel continues until the gross weight of the aircraft with net added fuel equals the input weight after refuel (WGARF). Typical results for various refueling flow rates are shown in figure 34.

CONCLUDING REMARKS

-

A computer program (ASP) has been developed to allow preliminary sizing and performance evaluations for subsonic, supersonic, and hypersonic aircraft that use either JP, liquid-hydrogen, or liquid-methane fuel. Both jet and propeller propulsion systems can be treated. Some of the output the program provides includes: range for given gross weight and passengers, gross weight for given range and passengers, passengers for given range and gross weight, payload-range trade, passenger and fuel off-loading, effects of technology improvements, effects of inflight refueling, radius to payload drop, and the basis for preparing aircraft sizing "thumbprints" which allow the selection of wing and engine size for best performance.

The program has been used extensively for in-house studies of subsonic and supersonic transport aircraft concepts, some of which were developed by industry. For these, the results obtained by this program agreed very well with those provided by the companies. For several of the concepts, the program has been used to direct design improvements through changes in wing and engine size. These improvements were later confirmed by in-depth contractual studies.

APPENDIX A

WEIGHT EQUATIONS

This section contains the empirical relationships used to compute the effects of sizing on the weight characteristics of the aircraft. The expressions contain only the essential sizing parameters and, therefore, cannot be used to compute absolute weights. Instead, weight scaling is done by the following general form.

$$W_{I} = W_{I, BL} (F/F_{BL})$$

and the second second and the

where W_{I} is the weight of the scaled item, $W_{I,BL}$, the weight of the baseline item, F, the result of the weight equation(s) applied to the scaled item, and F_{BL} , the similar result for the baseline item. In this way, the relationships are used only to account for sizing changes through increments to baseline weights. At hypersonic speeds, aircraft require "hot-structure" solutions to survive severe local temperatures, but, as noted, the relationships do not account for this. Even so, the above approach still seems appropriate, at least from a preliminary standpoint, because the higher weights for the higher temperatures are introduced through the baseline aircraft.

The weight relationships are listed below without proof of their validity. Also, since they have been obtained from several different industry contractual studies, a recognition of their source, in most cases, is omitted.

Subsonic Wing Weight

$$F_{W} = \frac{K W_{G} N_{Z} A b (.375 + .7\lambda)}{\frac{t}{c} K_{S}} + .57 S W_{S}^{.1845} + .572 S^{1.07}$$

where

ţ

The and the second second second

$$K = 1.427 \times 10^{-0} (1 - 0.45 N_{\rm r})(1 + \sqrt{6.75/b})$$

N_F number of engines on wing

c

h wing span

W_G gross weight

N₇ ultimate load factor

A aspect ratio based on basic trapezoidal planform

 λ wing tip chord-root chord ratio

S wing reference area

t/c wing thickness-to-chord ratio (weighted average)

- $K_{\rm S}$ cos² Λ
- Λ sweep angle of the wing quarter chord line

For a wing with multiple panels and varying t/c, the weighted average t/c is obtained from:

$$t/c = \frac{\sum_{N=0}^{N} 2b_{p} [4(t/c)_{r} + (t/c)_{t}]}{b/2}$$

Subscripts t and r refer to the tip and root of the panel, $b_{\rm p},$ the span of the panel, and N, the number of panels.

Supersonic Wing Weight

$$F_{W} = .0241 \frac{(S W_{DM})^{.53} M_{D}^{.1}}{T_{HM}^{.22}}$$

where

$$W_{DM} = \frac{N_Z (W_M - W_{RM})}{Cos \Lambda}$$

$$W_M = W_G (C_A + \frac{WB}{2})$$

$$W_{RM} = W_{RM,1} + \sum_{nacelles} Y_N (W_E + W_{TR} + W_N)$$

$$W_{RM,1} = W_{F,W} (C_R + \frac{WB}{2}) + W_{MLG} W_B + Y_W F_W$$

iterative solution of this cycle of equations is required unti

An iterative solution of this cycle of equations is required until the initial estimate and final value of the wing weight, F_W , are about equal. Quantities that do not change during the iterations are:

$$W_{MLG} = .8803 W_{LG}$$

$$C_{R} = Y_{D} \frac{W_{F,W}}{W_{F,W,MAX}}$$

if there are no fuel tanks in the wing, $C_R = 0$.

$$T_{HM} = T_A + T_C$$

19

an al 🗤 🗤 a norrege ta banan in gitat 🕺 👘 🖌

$$T_{A} = T_{R} + P_{CR} (1 - \frac{P_{CR}}{2})$$

$$T_{C} = P_{C0}^{2} (\frac{\Gamma_{R}}{-6} + \frac{\Gamma_{I}}{3})$$

$$T_{R} = \frac{t}{c} C_{BK}$$

$$T_{T} = \frac{t}{c} C_{0,1}$$

$$C_{BK} = C_{I,1} P_{C0} + C_{0,1} P_{CR}$$

$$P_{CR} = \frac{W_{B}}{b}$$

$$P_{CR} = I - P_{CR}$$

$$Y_{D} = Y_{W} (1 - P_{CR})$$

$$C_{A} = \frac{(\cdot24 + \cdot.0225A)}{\cdot5(b - W_{B})}$$

$$Y_{W} = \frac{\frac{b}{2} (\frac{A_{0} + \frac{AM}{2}}{1 + A_{0}} + C_{I,1} T_{0,1} + C_{0,1} T_{I,1})$$

$$A_{D} = C_{0,1} T_{0,1}$$

$$A_{I} = C_{I,1} T_{I,1}$$

$$T_{I,1} = \frac{t}{c} C_{I,1}$$

$$C_{0,1} = \lambda C_{I,1}$$

$$C_{1,1} = 2.2994 \frac{S}{b}$$

1 . Patter and the second second

Ē

ţ

ł

1 ...

1

ORIGINAL PAGE 'IS OF POOR QUALITY

20

A-1 -

ŧ

In these equations

むけいたりついる ひたい シュチック

S	wing reference area
Ь	wing span
t c	weighted average of wing thickness-to-chord ratio
Α	aspect ratio, b ² /S
λ	wing taper ratio
Λ	sweep angle of wing mid chord
W _G	gross weight
W _E	engine weight (one)
WTR	thrust reverser weight (one)
W _N	nacelle weight (one)
Y _N	spanwise distance to nacelle-engine combination
W _{LG}	landing gear weight
₩ _{F,W}	weight of fuel in wing
W _{F,W,MAX}	maximum weight of fuel in wing
WB	maximum width of fuselage

The equations for both subsonic and supersonic wings were provided by Kentron International, Inc., Kentron Technical Center, Hampton, Virginia.

Canard, Horizontal and Vertical Tails

The weights of these items are directly proportional to their total wetted areas.

Fuselage

 $F_{F} = (N_{\chi} W_{G} S_{W,F})^{6}$

where $S_{W_{n}F}$ is the total wetted area of the fuselage

Landing Gear

 $F_{LG} = (W_{G} L_{F})^{25}$

21

where L_F = length of fuselage

and an and the state of the

Nacelles

The weight of the nacelles is directly proportional to their total wetted area.

Engines

$$F_E = N_E T^E W$$

where N_E = number of engines

T sea-level static thrust of one engine

 E_W engine weight exponent

Thrust Reverser

$$F_{TR} = N_E T^{*88}$$

where $N_{\mbox{E}}$ and T are defined above.

Propeller

$$F_p = N_E T^{(.5 E_p)}$$

where E_p propeller weight exponent.

Gear Box

a

 $F_{GB} = N_E T^{1.5}$

Miscellaneous Systems

The weight of this item is assumed to be unaffected by sizing.

Fuel Systems for Conventional Fuel

Only the weight of the plumbing is considered for these systems. For subsonic design Mach numbers

$$F_{PS} = 8.117 (N_E)^{.825} (T)^{.38}$$

and for supersonic design Mach numbers

$$F_{PS} = \frac{(W_{F,MAX})^{.565}}{(1. + \frac{W_{F,W,MAX}}{W_{F,MAX}})}$$

where

WF,W,MAX maximum fuel load in wing

Fuel Systems for Cryogenic Fuel

These systems include the weight of the plumbing, fuel tanks and insulation. Plumbing weight is given by:

$$F_{PS} = .01569 (T_T)^{.75} + 25.433 (N_E)^{.825} (T)^{.38}$$

where

The weights for the fuel tank and its insulation are both directly proportional to the total wetted area of the fuel tank.

Surface Controls

If the design Mach number is subsonic

 $F_{SC} = \frac{(L_F + 1/\cos \Lambda)S^{-5}}{A_{TR}}$

`. .

where

- L_F = length of fuselage
- b = wing span

F. matter Marshan

- Λ = sweep angle of quarter chord
- S = total wing area
- A_{TR} = wing aspect ratio

If design Mach number is supersonic, the weight of the surface controls is directly proportional to the gross weight of the aircraft.

Auxiliary Power Unit

The weight of this item is assumed to be unaffected by sizing.

Instruments

$$F_{IN} = N_E^{.354} L_F^{.5} b^{.68}$$

Hydraulics

$$F_{HY} = \left(\frac{W_G}{S_{CS}}\right)^{.34} (L_F + 5)^{.52} (1 + M_D) N_E$$

where

 S_{CS} total area of surface controls

M_D design Mach number

Avionics

 $F_{AV} = W_{G}^{*7}$

24

Electrical System

 $F_{EL} = (N_E)^{424} (L_F + b)^{69} (W_{AV})^{473}$

where

W_{AV} weight of the avionics

Furnishings and Equipment

The weight of this item is directly proportional to the number of passengers.

Air Conditioning

$$F_{AC} = (N_{PAS})^{1.2} + 11.17 (M_D)^{.6} (V_P)^{.58}$$

where

Vp volume of passenger compartment
NpAS number of passengers

Anti-icing

F_{AI} = h.95

Unusable Fuel

 $F_{11F} = 100 N_{E} + .176 S$

Engine 011

 $F_{E0} = W_{E,T}^{26}$

where

WE.T weight of all engines

Passenger Service

The weight of this item is directly proportional to the number of passengers.

Cargo Containers

The weight of cargo containers is directly proportional to the maximum cargo weight.

Crew

Weights for the flight and cabin crew are directly proportional to the number of crew members.

Passengers and Baggage

Weights for these items are directly proportional to the number of passengers.

ĥ

Ņ

1

APPENDIX B

DEFINITIONS OF INPUT

The program is coded in FURTRAN Extended Version 4 (ref. 15). Provisions are made for two input files. One file contains propeller design data and is required only if propeller output data is to be computed. The data on this file must be input in the following format.

Coluin	Type of Data					
9-10	number of propeller blades, a right justified integer					
11-20	Mach number					
21-30	propeller advance ratio					
31-40	propeller power coefficient					
41-50	propeller thrust coefficient					

Data is listed by increasing power coefficient at constant advance ratio, then by increasing advance ratio at constant Mach number, then by increasing Mach number. During program execution, the file containing this data must be named TAPE3.

The other file contains the input for the baseline aircraft and sizing options. It is always required and during execution it must be called TAPE5. The input segments on TAPE5 are listed below in their order of occurrence.

Input segments for sized aircraft

Aircraft Identification \$PRNTCON \$DESGNVB \$TWINFUS \$MISSVB \$RESRV \$TECHCHG

Input segments for baseline aircraft

Wave-Drag Geometry Deck or \$SACGEM \$AIN \$WTIN \$ENIN Baseline Engine Characteristics

Seconents prefixed by a \$ sign are inputs in the NAMELIST format (ref. 15). Definitions of input variables follow, with default values, if they exist, enclosed in parenthesis behind each definition. Variables with parenthesis are arrays and the included numbers indicate their maximum size.

INPUT SEGMENTS FOR SIZED AIRCRAFT

The first input is the aircraft identification. It is one free-field line of 80 characters.

\$PRNTCON

Inputs in this segment control program output. All inputs are integers with a value of either 1 or 0. Unless noted, a value of 1 activates the option; 0 suppresses it.

- IPPRNT = 1 prints all output = 0 prints only output for sized aircraft (default)
- IPAERU prints aerodynamic data, (0)

- and the contraction

>

्<u>-</u>

۰ ۱

•

, ,

1

-

4

4

11 5

Ę

.

۰.

1

·

- IPRPROP prints engine characteristics (0)
- IPRWTSM prints weight statement, (0)
- **IPRMPR**: prints mission profile data, (U)
- ISCOPE prints output showing progress of execution during interactive terminal sessions, (0)

\$DESGNVB

This input segment contains aircraft design and sizing information. For clarity, the inputs have been separated into typical groups.

Miscellaneous Design Input

ISSAC	= 0 for supersonic aircraft (default) = 1 for subsonic aircraft
ISGEOM	<pre>= 0 if aircraft geometry is input in wave-drag format (default) = 1 if aircraft geometry is input in \$SACGEM</pre>
IJP	= 1 for aircraft using JP fuel, (0)
IH2	= 1 for aircraft using hydrogen fuel, (0)
IMTH	= 1 for aircraft using methane fuel, (0)
NOFIW	= 1 for aircraft with no fuel in wing, (0)
IBLAC	<pre>= 0 for sizing of baseline aircraft (default) = 1 for no sizing of baseline aircraft</pre>
RHOJP	density of JP fuel, 1b/gal, (6.75)

RH0H2	density of liquid hydrogen fuel, lb/gal, (.592)			
RHUMTH	density of liquid methane fuel, lb/gal, (3.54)			
RHOCAR	density of caryo, lb/ft ³ , (10.)			
EIPEN	reduction in thrust to account for interference effects between propeller and wing, percent, (0)			
The next	three variables apply to aircraft using hydrogen or methane fuel.			
KBEN	= 1 for constant tuselage fineness ratio, (0)			
KBL	= 1 for constant fuselage length, (1)			
KBR	= 1 for constant fuselage radius, (0)			
	Passenger Cabin Design Input			
DGLW	width of door-galley lavatory, ft, (7.3)			
NPPUGL	number of passengers per door-galley-lavatory, integer, (75)			
STSAB	number of seats abreast; O provides the baseline value STSABR, (O)			
LEVELS	number of passenger levels, 0, 1, or 2; 0 provides the baseline value, (0)			
TP	wall thickness of passenger cabin, inches, (4)			
TF	wall thickness of fuel tanks for liquid hydrogen or methane fuel, inches (9)			
	Specific Design Inputs			
FNDES	design fuselage fineness ratio			
IPASDES	number of passengers, integer			
NENDE 3	number of engines, integer			
NPDES	number of engine nacelles, integer			
RMAXDES	design radius of fuselage, ft			
ZLBDES	design length of fuselage, ft			
NCARDES	design cargo load, lb			
TUWDES	design thrust-to-weight ratio			
TPEDES	design single engine thrust, lb			
WOSDES	design wing loading, psf			
	29			

.

at i

44 × 12

.

5

.....

REFADES design wing reference area, ft^2

WGDES design gross weight, 1b

King Viller in and the

RNGDES design range, n.mi.

ZMCRDES design cruise Mach number

The next six variables apply to subsonic aircraft.

ASPRDES design wing aspect ratio

EDES design endurance, h

POWDES design shaft horsepower-to-weight ratio, hp/lb

SHPDES design shaft horsepower, hp

SQCDES design sweep of wing quarter chord line, deg

WTOCDES design thickness ratio of wing, percent

If RNGDES is not input, the program solves for the range at input gross weight and passenger load. If RNGDES is input, the program solves for the gross weight that provides this range at input passenger load.

,

!

To find the passenger load for a given range and gross weight, use the following integer variable.

IGRAWEP = 1 (default is 0)

along with inputs for WGDES and RNGDES.

Each of the above variables, which defaults to its baseline value, is used to hold that design parameter constant through one or more sizing passes during program execution. If design parameters are to be changed in each sizing pass during execution, the following design variable arrays must be used. All arrays are onedimensional.

Design Variable Arrays.-

TOWTB(7) an array containing design thrust-to-weight ratios

TPETB(7) an array containing design thrusts for a single engine, lb

NTOW the number of values in either the TOWTB or TPETB arrays, (0)

WUSTB(7) an array containing design wing loadings, psf

REFATE(7) an array containing design wing reference areas, ft^2

NWOS the number of points in either the WOSTB or REFATB arrays, (0)

ARTB(10) an array containing design wing aspect ratios

30

L

NASPR the number of points in ARTB, (0)

POWTB(7) an array containing shaft horsepower-to-weight ratios

NPOW the number of values in POWTB, (0)

<u>Restrictions on Use of Variables.</u> Not all of the design variables are independent parameters. The following restrictions, therefore, are placed on the use of several of these variables.

- 1. Since POWDES, TOWDES, TPEDES, POWTB, TOWTB, and TPETB all control engine sizing, use only one of these variables.
- Similarly, WOSDES, REFADES, WOSTB, and REFATB all affect wing sizing, therefore, use only one.
- 3. The ARTB array must not be used with any other design variable array.
- 4. The integer variable IGRAWFP may not be used with any design variable array.

\$TWINFUS

This input segment contains input for the geometry of twin-fuselage aircraft. The only component of this aircraft that can be sized is the propulsion system; therefore, only the design variables WGDES, TOWDES, TPEDES, and RNGDES are allowed. If changes in any other design variable, like wing size, passenger load, etc., are required, a new baseline aircraft (with its aerodynamics weights and propulsion) must be developed and input.

The only geometry input necessary for twin-fuselage aircraft are the reference lengths and wetted areas of the components. These are required for skin-friction calculations during the mission analysis. To prevent program aborts, however, a complete geometry input segment in either the wave-drag format or \$SACGEM is also required but any available input segment will suffice because it will not affect results.

- ITWINF = 0 for conventional aircraft, (default) = 1 for twin-fuselage aircraft
- FURLIN fuselage reference length, ft
- FUSWIIN fuselage wetted area, total of both fuselage, ft²
- TWFREFA wing reference area, ft²
- IWSEGIN number of wing segments
- WRLIN(20) a one-dimensional array containing the reference length of each wing segment, ft
- WSWETIN(20) a one-dimensional array containing the wetted area of each wirg segment, ft²

CRLIN	canard	reference	length,	ft
			0	

in which we have

2

1

20 j

_ I

- - - Ak- -

]

v

Zi.

ι,

÷,

ite - The way

CSWETIN canard wetted area, ft²

HRLIN horizontal tail reference length, ft

HSWETIN horizontal tail wetted area, ft²

IFINS number of vertical fins

FRLIN(6) a one-dimensional array continuing the reference lengths of the vertical fins, ft

FSWETIN(6) a one-dimensional array containing the wetted areas of the vertical fins, ft²

PRLIN the reference length of one engine pod, ft

PSWETIN the wetted area of one engine pod, ft²

\$MISSV8

This segment provides the inputs required for the flight profile analysis. The inputs, again, have been separated into typical groups.

Overall Mission Input

IENDUR = 1 mission profile for long endurance aircraft, integer, (0)

IRADIUS = 1 provides range to payload drop, integer (0)

- OEW operating empty weight, lb, (if greater than U, this value will replace the calculated OEW)
- PAYLOAD total payload weight, lb, (if greater than 0., this value will replace the calculated payload)

POLF payload factor, percent (100% gives full payload), (100.)

NPASOL number of passengers in off-loaded aircraft, integer (-1, the default, gives no off-loading)

WCAROL cargo weight in off-loaded aircraft, lb (-10, the default, gives no off-loading)

ICALPRC = 1 provides data for the range-payload curve, integer, (0)

OLRTB(10) a one-dimensional array containing the ranges for fuel off-loading, n.mi.

NOLR the number of values in OLRTB, integer, (0)

RRTB(10) a one-dimensional array containing reduced ranges with no fuel
off-loading, n.mi.

NRR the number of values in RRTB, integer, (0)

IRFSOC = 1 start refueling at start of cruise, integer, (0)

IRFEUC = 1 start refueling at end of cruise, integer, (0)

RNGSRF range to start of refuel, n.mi. (refueling must occur sometime during cruise. If RNGSRF is set too low, refuel will begin at the start of cruise; if set too high, refuel will begin at the end of cruise. To activate refueling, the value of RNGSRF must be greater than 10.), (0)

RFRIGPM refuel flow rate, gal/min, (600.)

WGARF the aircraft gross weight after refueling, lb (-10, the default value, gives the design gross weight)

DELTCG standard day temperature increment during main mission, deg., C (0.)

EM surface emissivity, (.8)

11 - and it was a the

TDFLM thrust deflection during main mission, deg., (0)

Takeoff Input

NUTO	= 1 no takeoff calculations, (0)
FWDTU	fuel weight used during takeoff, lb (may also be input as a fraction of gross weight), (0.)
ALFUUT	aircraft rotational speed, deg/sec, (3.)
DELTCTO	standard day temperature increment during takeoff, deg, C,
DTGRUP	time for landing gear retraction, sec, (10.)
IIEOUT	= 1 one engine out during takeoff, integer, (0)
RFF	rolling friction factor, (.02)
TXTME	taxi time, min, (10.)
GRALFA	angle of attack before start of rotation, deg (-4)
TOALFA	angle of attack after rotation, deg, (5.5)
TODELF	flap deflection during takeoff, deg, (30.)
TOFLTO	thrust deflection during takeoif, deg, (0.)

33

(0.)

TFACT factor for increasing or decreasing net thrust during takeoff, (1.)

WFFACT corresponding factor for fuel flow, (1.)

HOBS obstacle height, ft, (35.)

HNOGE altitude for disappearance of aerodynamic in-ground effect, ft, (wing span)

TOCLGR takeoff climb gradient, percent, (6.8)

Climb Input

HASNT(50)	a one-dimensional	array	containing	the	altitudes	in the	climb	profile
-----------	-------------------	-------	------------	-----	-----------	--------	-------	---------

- ZMASNT(50) a one-dimensional array containing the corresponding Mach numbers in the climb profile
- ICLPR the number of points in the climb profile
- ZMSTTH Mach number at which engine throttling may begin to conserve climb fuel, (.6)

ZMMPCL Mach number above which maximum engine thrust is used, (1.)

Cruise Input

NCRP the number of points at which cruise calculations are made, (4)

ZMCR cruise Mach number

ROCMIN the minimum rate of climb during cruise, ft/min

CRALT1 altitude for start of cruise, ft (-10)

CRALT2 altitude for second leg of two-step cruise (-10)

IBFCR = 1 gives cruise at best available Breguet factor, integer, (0)

ICACR = 1 gives cruise at constant altitude, integer, (0)

ICLCR = 1 gives cruise at constant lift coefficient, integer, (0)

- ALFCR angle of attack for cruise, deg (Note: this input may be used only if CLAR or ALPHAT are input in NAMELIST segment \$AIN)
- CRTUTM cruise throttling factor (0.) (if CRTUTM = 1., tull power is applied; if defaulted, CRTOTM is not used)

34

;

.....

ļ

The following input is for subsonic cruise legs on a supersonic mission. Kange or time for cruise may be input, but not both at the same time. Cruise on both legs may occur.

1

For subsonic cruise on the outbound leg:

ZMSBCOB cruise Mach number

The state of the s

- HSBCOB cruise altitude, ft
- SSRNGOB cruise range, n.mi.
- TSBCOB cruise time, min

For subsonic cruise on the inbound leg:

ZMSBUIB Cruise Mach n	umber
-----------------------	-------

- HSBCIB cruise altitude, ft
- SSRNGIB cruise range, n.mi.
- TSBCIB cruise time, min

Input for Long-Endurance Cruise

- CLMAX maximum lift coefficient, (2.2)
- NENCR number of engines operating during cruise (-1)
- DCFACT increment in drag coefficient for engines not operating, (0.)
- VKCR1 velocity at start of cruise, k
- ICONVCR = 1 for constant cruise velocity, (U)

Descent Input

ICALDS = 1 descent calculations are made = 0 descent calculations are not made

NUSP the number of points at which descent calculations are made, (4)

- USFF the fraction of fuel flow at maximum power that is used during descent, (.067)
- WFDRCF an initial estimate of the fuel used during descent normalized by aircraft gross weight, (.005)

35
Approach Input

.

くういち ちょうしょう

D

	**· · · · · · · · · · · · · · · · · · ·
APALFA	angle of attack during approach, deg, (-40)
APDELF	flap deflection duriny approach, dey, (30.)
IFXAFLP	= 1 uses input flap deflection = 0 finds flap deflection for minimum drag, (default) (used only if VAPIN is input)
VAPIN	approach speed, k, (-10) (if defaulted, approach speed is calculated internally) Note: VAPIN is used only if aerodynamic data for more than one flap deflection is input in \$AIN.
	\$RESRV
The inp	ut for the reserve fuel legs are placed in this segment.
RFWT	reserve fuel weight, in either pounds or as fraction of gross weight. (use this input only if reserve fuel calculations are to the bypassed)
IRCRO	= 0 calculates climb, cruise, and descent segments of reserve
	= 1 calculates only cruise segments of reserve fuel legs, (1)
	Trip Fuel Allowance
TPFATME	time at fuel flow at start of cruise, h or min (use for subsonic aircraft), (0.)
TPFA	percent of trip fuel (use for supersonic aircraft), (U.)
	Missed Approach
ICALMA	<pre>= 0 uses RMAFA to calculate fuel requirement = 1 calculates missed approach to find fuel requirement, (1)</pre>
RMAFA	time at takeoff fuel flow, min, (2.0)
	Alternate Airport
AAU	distance to alternate airport n.mi., (0.)
For thi engine thot following v	s leg, the program normally iterates through Mach number, altitude, and tling during climb to find the conditions for least fuel. If any of the ariables are input, iteration on that condition will not be performed.

HALT altitude for cruise to alternate airport

36

:

.

2.4.7.4.5

TUTMALT factor for engine throttling during climb to cruise, value between U and 1.

ZMALT Mach number for cruise to alternate airport

Hold

THLD time for hold, min

HHLD altitude for hold, ft

ZMHLD Mach number for hold

Again, optimum conditions for least fuel are normally determined but inputs in HHLD and/or ZMHLD will eliminate the iteration on that condition.

\$TECHCHG

This segment contains the inputs for finding the effects of changes in the technology of the various aircraft systems.

TIML the lowest Mach number at which changes apply, (-1)

TIMH the inghest Mach number at which changes apply, (10.)

TDCDT(15) a one-dimensional array of percentage changes in total drag coefficient, a function of Mach number; a positive value gives drag reductions

TMDCDT(15) the Mach numbers corresponding to the values in TDCDT

NDCDT the number of values in the TDCDT array, (0)

The following input is all in percentages. A positive value gives a technology improvement. Default values for all inputs are 0.

USFC engine specific fuel consumption

DCDW wave drag

DCDRUF roughness drag

DCDAC air-conditioning drag

DCDBL bleed drag

DCDO zero-lift drag

DCDL drag due to lift

DCDT total drag

4. Attack to the most of

DCDFWNG	wing
DCDFCS	canards, horizontal tails, and vertical fins
DCDFBDY	fuselage
UCDFPDS	nacelles
DCDF	tetal friction drag
	Weight Changes
DWWING	wing
DWCHV	canard, horizontal tail, vertical fin
DWFUS	fuselage
DWLG	landing gear
UWNAC	nacelles
DWST	total structure weight
DWENG	engines
DWTR	thrust reversers
DWTPR	propellers
DWTGB	gear box
DWMIS	miscellaneous propulsion system weights
DWPLM	plumbing system
DWFT	fuel tank for hydrogen or methane fuel
DWINS	fuel tank insulation for hydrogen or methane fuel
DWPPS	total propulsion system weight
DWSC	surface controls
DWAP	auxiliary power
DWINST	instruments
DWHYD	hydraulics .
DWELE	electrical
38	

DWAVON avionics

DWFEQ furnishings and equipment

DWACOND air conditioning

DWANTICE anti-icing

DWSEQ total systems and equipment weight

DWEMP empty weight

DWOEW operating empty weight

Laminar Flow

The following inputs express the percentage of laminar flow on the surface. A value of 0. gives all turbulent flow; a value of 100. gives all laminar flow. All default values are 0.

PCLAMW wing

PCLAMF fuselage

PCLAMC canard

PCLAMH norizontal tail

PCLAMBV body vertical fins

PCLAMWV wing vertical fins

PCLAMP nacelles

INPUT FOR BASELINE AIRCRAFT GEOMETRY

The geometry for the baseline aircraft can be input by one of two methods. The first method which applies only to supersonic aircraft uses the zero-lift wave-drag program format described in reference 7. This input is very detailed and unless it is already available from the analysis of wave drag, the effort required to assemble the information is not justified for this program. The alternate method available is the use of \$SACGEM.

\$SACGEM

Wing

REFA wing reference area, ft^2

WXO

distance from fuselage apex to wing apex at wing centerline, ft

WRC root chord at wing centerline, ft

in the way that a series in

WTC tip chord, ft

WSPAN wing span, ft

i

~

- WDXT longitudinal distance from wing apex to leading edge of tip chord, ft (positive rearward)
- YWCREX spanwise distance from wing centerline to exposed root chord, ft
- NWBP number of breakpoints in wing leading and trailing edges, an integer. Wing apex and tip are not included. If leading edge and trailing edge break at the same spanwise station, count as one breakpoint.
- WDXBP(12) a one-dimensional array of the longitudinal distances from wing apex to leading edge at breakpoints, ft (positive rearward)
- WYBP(12) a one-dimensional array of the spanwise distances to the breakpoints ft
- WBPC(12) a one-dimensional array of wing chords at the breakpoints, ft

WTOC average maximum wing thickness-chord ratio in percent

Fuselage

FLGTH length, ft

FUPTHMX maximum depth, ft

FWDTHMX maximum width, ft

FRAD maximum radius, ft (Note: If FRAD is input, FDPTHMX and FWDTHMX inputs are not required)

FWETA total fuselage surface area, ft^2

FVOLTOT total fuselage volume, ft³

Horizontal Surfaces

The dimensions for norizontal surfaces are input in the folloiwng onedimensional arrays.

NH the number of horizontal surfaces, (2 maximum)

HDXT(2) the longitudinal distance from the apex of the surface to its leading edge at the tip, it

HRC(2) root chord, ft

HTC(2) tip chord, ft

- HSPAN(2) span, ft
- HTUC(2) average thickness-to-chord ratio, percent
- HXO(2) longitudinal distance from fuselage apex to surface apex, ft

Vertical Surfaces

The dimensions for the vertical surfaces are input in the following onedimensional arrays. A spanwise mounted surface is assumed to be located symmetrically about the fuselage centerline and is counted as one surface.

- NV the number of vertical surfaces, (4 maximum)
- VDXT(4) the longitudinal distance from the apex of the surface to its leading edge at the tip, ft
- VRC(4) root chord, ft
- VTC(4) tip chord, ft
- VSPAN(4) span, ft
- VTOC(4) average thickness-to-chord ratio, percent
- VXO(4) longitudinal distance from fuselage apex to surface apex, ft
- VYO(4) spanwise distance from fuselage centerline to surface, ft

Nacelles

- XOP(9) a one-dimensional array containing the longitudinal distances from the fuselage apex to the nacelle, ft
- YOP(9) a one-dimensional array containing the spanwise distances from the fuselage centerline to the nacelle centerline, ft
- NPI the number of nacelles in the above arrays

Spanwise mounted nacelles are counted in the same manner as the vertical surfaces.

\$AIN

The baseline aerodynamic input is located in this segment. Trimmed angle of attack, lift, and drag data are preferred.

41

<u>ا</u>ر ا

÷ 🔶

Takeoff Aerodynamic Input With Ground Effect

- TALPTUG(15,4) a two-dimensional array of angle of attack for various flap deflections, deg
- $T\cap LTOG(15,4)$ a similar array for the lift coefficients, C₁
- TCDTUG(15,4) a similar array for the drag coefficients, C_n
- NTOG the number of values in each of the above arrays at each flap deflection, (15 maximum) (If NTOG = 0, an internal routine is used to calculate values in the above arrays when the following takeoff input is provided.)

Takeoff Aerodynamic Input Without Ground Effect

- TALPHTU(15,4) angle-of-attack array
- TCLT0(15,4) lift-coefficient array
- TCDT0(15,4) drag-coefficient array
- NTUP the number of values in the above arrays at each flap deflection, (15 maximum), (0)
- NFD the number of flap deflections, (4 maximum) (0)
- TFSET(4) a one-dimensional array containing the flap deflections, deg
- CDGRT(15) a one-dimensional array of increments in drag coefficient of the landing gear as a function of lift coefficient
- CLGRT(15) the corresponding array of lift coefficients
- NLGD the number points in the above arrays, (0)
- UCULG increment in drag coefficient of landing gear (independent of lift coefficient, use if NLGD = U

Main Mission Aerodynamic Input

- CLT(15,15) a two-dimensional array of lift coefficients for various Mach numbers
- ALPHAT(15,15) the corresponding array for angles of attack, deg

CDPT(15,15) the corresponding array for the drag coefficients

NAI the number of values in each of the above arrays at each Mach number (the value of the first dimension; NAI points must be input at each Mach number)

When have the second second

IPBOL	= 0 aerodynamic input in CLT, ALPHAT, and CDPT will be used for aerodynamic data (the default value)
	= 1 the parabolic polar inputs (CDOR, CLAR, DLFR, and CLOR defined below will be used for aerodynamic data
CDOR(15)	a one-dimensional array containing the minimum drag coefficients at various Mach numbers
CLAR(15)	a similar array for the lift-curve slope, per deg
DLFR(15)	the array for drag-due-to-lift factors
CLOR(15)	the array for lift coefficients at minimum drag coefficient
NAJ	the number of Mach numbers for the lift and drag data (15 maximum)
MAEROT(15)	a one-dimensional array containing the Mach numbers for the lift and drag data
THARO(15)	a one-dimensional array containing the altitudes at each Mach number at which the skin friction contributions to drag were calculated

- DELCD(15) a one-dimensional array containing increments in zero-lift drag coefficient for the Mach numbers in MAEROT
- CDW(15) a one-dimensional array containing the wave-drag coefficients at each Mach number in MAEROT
- CDRUF(15) a similar array of roughness drag coefficients
- CDAC(15) a similar array of air-conditioning drag coefficients
- CDBL(15) a similar array of engine-bleed drag coefficients

Note: Input for CDAC and CDBL is required only if values are included in CDPT or CDOR.

\$WTIN

This segment contains the weights and all other input for the baseline aircraft but not the engine data. Except where noted default values are 0 and input weights are in pounds.

Structural Weight Input

WWING wing

WHT horizontal tail

- A AN MART STATE
- WVT vertical tails (sum of all)
- WCAN canard
- WFUS fuselage
- WLG landing gear

Weight Input for Cryogenic Tanks (Hydrogen on Methane Fuel)

- WFT fuel tank, total
- WINS insulation, total
- WFTINS combined weight of fuel tank and insulation (required only if WFT and WINS cannot be separated)
- TSA total surface area of fuel tank, ft²

System and Equipment Weight Input

- WSC surface controls
- WAP auxiliary power
- WINST instruments
- WHYD hydraulics
- WELE electrical
- WAVON avionics
- WFEQ furnishings and equipment
- WACOND air conditioning
- WANTICE anti-icing

Operating Weight Inputs

A11

- WFCR weight of flight crew
- IFCR number of flight crew members, integer
- WCCR weight of cabin crew
- ICCR number of cabin crew members, integer
- WUFUEL unusable fuel
- 44

WENO engine oil

WPSER passenger service

the and the state of the second

WCCONT cargo containers

WOPIN sum of all operating weights (use only if all individual weights cannot be supplied)

Payload Weight Input

- WPAS weight of passengers
- IPASR number of passengers, integer
- WPB passenger baggage
- WCAR weight of cargo

Miscellaneous Input

WGREF	yross	weight	of	basel	ine	aircraft
-------	-------	--------	----	-------	-----	----------

- ULF design load factor, (3.5)
- ZMDESBL design Hach number for baseline aircraft

STSABR number of seats abreast

LVLR number of passenger levels, (2 maximum)

- XPASC length of passenger compartment, ft
- VCARMX maximum volume for cargo, ft^3
- BFCILBS maximum fuel capacity in fuselage, lb
- WFCILBS maximum fuel capacity in wing, 1b
- BFCIGAL fuel capacity in fuselaçe, gal
- WFCIGAL fuel capacity in wing, gal (Note: input for PFCIGAL and WFCIGAL is not required if BFCILBS and WFCILBS are used)

•

45

•	-		•		
•	-	N.	х.	N	
	•				
τ.	_		-		

Data for the engine and nacelle are input in this segment.

the and the second in the

NENR	the number of engines, integer
NEW	the number of engines mounted on the wing, integer
NEF	the number of engines mounted on the fuselage, integer
NPODSR	the number of engine nacelles, integer
PDAVG	the average diameter of the nacelle, ft
PLGTH	the length of the nacelle, ft
ESEXP	nacelle length sizing exponent, (.438)
EWEXP	engine weight sizing exponent, (1.085)
SLSTHR	sea level static thrust for the engine having the following weight, lb
WENG	weight of one engine, lb
WTR	weight of one thrust reverser, lb
WNAC	weight of one engine nacelle, lb
WMIS	total miscellaneous propulsion system weight, lb
WPLM	total propulsion plumbing system weight, lb

The following three variables are provided for engine bleed and air-condition drag. These variables should be used only if the drag items are not included in gross thrust values or by entries in CDAC and CDBL in SAIN.

- DOQINT(15) a one-dimensional array containing the sum of engine bleed and aircondition drags divided by dynamic pressure for a range of Mach numbers, ft²
- DUQMT(15) the corresponding array of Mach numbers

NBDP the number of Mach numbers in the above arrays

Note: These variables cannot be used for engines with two-dimensional inlets.

Input for Propeller-Engine Combinations

Propeller-driven aircraft require no additional input if: (1) propeller output data is not required, (2) the weight of the propeller and gear box are included in the engine weight, WENG, and (3) the design inputs TUWDES, TPEDES, TOWTB, or TPETB, rather than PUWDES, SHPDES, or PUWTB are used to size the propulsion system. This analysis treats the aircraft as a jet-driven aircraft.

The propeller will be treated in more detail, however, if TAPE3, described previously, is provided and the following data is input.

AUVRDES design advanced ratio

No Distant

-

يد 12

17 12 M

- CPDES design power coefficient
- CTDES design thrust coefficient
- EPRDES propeller efficiency at design conditioning
- EOVDES overall efficiency of the propeller-engine combination at design conditions
- POD2DES shaft horsepower-propeller diameter squared ratio at design conditions, hp/ft²

PTIPS propeller tips speed at design conditions, fps

DIAMPBL propeller diameter, ft (-10.)

- SHPREF shaft horsepower of the engine at sea level static conditions and having its weight entered in WENG
- RPMEBL engine RPM
- RPMPBL propeller RPM

PSEXP propeller weight sizing exponent (2.488)

WTGB weight of one dearbox, 1b (-10.)

WTPR weight of one propeller, 1b (-10.)

The propeller weight, WTPR, is used to test if a jet analysis the (default case) or a propeller analysis is to be made. When WTPR is input, all of the above propeller inputs and the P/D^2 values, described below, are required.

Input for Engine with Two-Dimensional Inlets

INL2D	 = 1 engine nacelles are two-dimensional = 0 engine nacelles are circular, (default)
PW I D2 D	width of the nacelle, ft
PHGT2 D	height of the nacelle, ft
PLGTH	length of the nacelle, ft
PSWET2D	wetted area of one nacelle, ft ²

BASELINE ENGINE CHARACTERISTICS

This final input segment contains four groups of data for the installed engine. These include the identification of the baseline engine, full-power data as a function of altitude and Mach number, part-power data, and for engines with twodimensional inlets, full-power data as a function of Mach number, angle of attack, and altitude. The engine identification, the first input of this segment, is one line of free-field input limited to 80 characters.

The next input provides the full-power characteristics of the engine as a function of Mach number and altitude. The data format is as follows:

Column	<u>Type of Data</u>
1-5	Mach number
6-15	altitude, ft
21-30	gross thrust, lb
31-40	ram drag, 1b
41-50	ivel flow, 1b/h
51-60	P/D ² , hp/ft ²

Where P/D^2 is the shaft horsepower-propeller diameter squared ratio. P/D^2 data is required only if the propeller data described above is input.

The data is arranged by increasing altitude at constant Mach number, then by increasing Mach number. Up to 15 separate values of altitude and 15 separate values of Mach number are allowed. On the last line of this data segment, the characters 9. located in columns 2 and 3 are required.

The next group of data pertains only to engines with two-dimensional inlets and is required only if the effects of angle of attack are to be included in the fullpower data. To indicate the presence of this data group, which is restricted to supersonic and higher Mach numbers, the first line of input must contain the three characters -9. in columns 2, 3, and 4. On succeeding lines thereafter, the data is input in the following format.

Column	Type of Data
15	Mach number
6-15	altitude, ft
16-20	angle of attack, deg
21-30	gross thrust, lb
31-40	ram drag, 1b
41-50	fuel flow, 1b/h

The data is arranged by increasing altitude at constant angle of attack and constant Mach number, then by increasing angle of attack at constant Mach number, then by increasing Mach number. Input is restricted to 15 values of Mach number, 3 values of angle of attack at each Mach number, and 3 values of altitude at each

A. . . .

angle of attack--Mach number combination. Sufficient data must be input to provide the same number of angles of attack at each Mach number and the same number of altitudes at each angle of attack--Mach number combination. If this requirement is not met, the program will abort. To end this data group, the two characters 9. must be located in columns 2 and 3 on the last line of input.

The last input provides the part-power characteristics of the engine. The format for this data is:

Column	Type of Data
1-5	Mach number
21-30	gross thrust, lb
31-40	ram drag, 1b
41-50	fuel flow, 1b/h

いいろ こうちょう いちちょう ひってき しいしょう

ç,

*;)

1

. 반스냅

·- 7

N. I. H. J. M.

Data is arranged by increasing thrust at constant Mach number, then by increasing Mach number. The last input of this group must contain the two characters 9. located in columns 2 and 3.

SAMPLE INPUT LISTING

An input listing that illustrates the content of the previous section is given in Table B1. This input is for the design point of the supersonic transport (JP fuel) shown in figure 22 and the resulting output is discussed in Appendix C.

While the sizing "thumbprint" (fig. 22) provides fairly accurate values of W/S and T/W for the design point, the gross weight value is very approximate. To more accurately determine this value, the computer must be directed to find the gross weight that provides the design range at the design point conditions. This is done in input segment DESGNVB by inputs for the required range (RNGDES = 4000.), wing loading (WOSDES = 82.), and thrust-weight ratio (TOWDES = .32). These and the other inputs for the sized aircraft are shown in Table B1.

49

ENDIX C

JUTPUT

The output from the program is contained on three mass storage files. Unless changed by the user at execution time, these files are labeled TAPE6, TAPE11, and TAPE14. TAPE 6 contains a listing of all the results provided by the program, TAPE11 contains selected data in a format suitable for input to a plotting program, and TAPE14 contains the basis for preparing sizing "thumbprints."

TAPE6

On this file, several types of output are available. These include the preliminary output, sized aircraft output, a short listing of selected output quantities, weight statement, and a mission profile output.

Preliminary Output. - This printout, which is optional and obtained with IPPRNT=1 in \$PRNTCON, contains a listing of the input values for all input segments. Because of its length, an example of this output is not given here.

<u>Sizeu Aircraft output</u>.- This printout, which cannot be suppressed, contains the results for each sizing variation requested. A listing of the output that results from the input for the design-point aircraft given in Table B1 is given in Table C1. A short summary of this listing is also output and this is shown in Table C2. A listing of the weight statement, if selected by IPRWTSM=1, is given in Table C3. With IPRMPRF~1, mission profile results are output and these are listed in Table C4.

TAPE11

This file, produced for every computer cycle, contains the same parameters as the short output list (Table C2) located on TAPE6. The file is formatted to allow the sizing and performance results to be plotted during interactive plotting sessions where the abscissa and ordinate of the plots are identified by the indices of the chosen variables. The indices are the numbers of the variables on the short output list in Table C2. An illustration of the listing this file contains is shown in Table C5 and the different sections of data correspond to different computer cycles in which the sizing parameters are varied. The first section contains the same results as the short oucput list (Table C2) for the design point aircraft; the remaining sections contain the results for a systematic variation in thrust-toweight ratio at constant wing loading. The integer at the beginning of each section has a constant value for all sections of data that belong to the same curve (in this case, a constant value of wing loading).

TAPE14

This file contains the basis for preparing sizing "thumbprints" like that shown in figure 22. Unlike TAPE6 and TAPE11, this file is produced only when a matrix of wing and engine size variations are to be computed. To produce the "thumbprint" for the supersonic transport, (fig. 22), inputs were required for the design range

(RNGDES = 4000.), an array of values for wing loading (WOSTB = 110., 100., 90., 80., 70., 60., 50.), an array of thrust-to-weight ratios (TOWTB = .25, .30, .35, .40, .45, .50, .55), along with NWOS = 7 and NTOW = 7. The values that resulted from one computer run are shown in Table C6. The listing contains the abscissa values of wing loading, the ordinate values of thrust-to-weight ratio, and the values of the parameters to be contoured that are functions of wing and engine size. The rows provide the change in data with W/S at constant T/W, whereas the columns give the data change with T/W at constant W/S. The large negative values (-1000000) are default values used where no solutions were obtained.

Table C6 identifies all the parameters that are available for contouring. To obtain the coordinates of the actual contours, the data on this file can be either cross-plotted by hand or TAPE14 can be used to prepare an input file for a contouring program.

51

.

APPENDIX D

JOB CONTROL CARDS

The program executes on the Network Operating System (NOS) Version 1.4 currently in use at the Langley Research Center. The control cards required for execution are: GET, ASP/UN = 273347N

ASP (F5, F6, F11, F14)

where

F5 is the file containing the baseline aircraft input and sizing options (TAPE5)

F6 is the output file (TAPE6)

F11 is the file containing plot data (TAPE11)

F14 is the file containing the data for contour plots (TAPE14)

Note: Although the file containing the propeller design data (TAPE3) does not appear in the execution card ASP, it must be a local file during execution.

The storage requirement for program execution is about 210,000 (octal) words.

REFERENCES

- 1. Fetterman, David E., Jr.: Preliminary Sizing and Performance Evaluation of Supersonic Cruise Aircraft. NASA TM X-73936, 1976.
- 2. Staff of the Langley Research Center: Noise and Performance Calibration Study of a Mach 2.2 Supersonic Cruise Aircraft. NASA TM-80043, 1979.
- Staff of the Langley Research Center: Jet Noise and Performance Comparison Study of a Mach 2.55 Supersonic Cruise Aircraft. NASA TM-80094, 1979.

- and a server and a server

- Sears, W. R.: On Projectiles of Minimum Drag. Quart. Appl. Math, vol. 4, no. 4, 1947, pp. 361-366.
- 5. Morrison, W. D., Jr.: Advanced Airfoil Design Empirically Based Transonic Aircraft-Drag Buildup Technique. NASA CR-137928, 1976.
- 6. Ashley, Holt; and Tandahl, Marten: Aerodynamics of Wings and Bodies. Addison-Wesley Publishing Company, Inc., 1965, pp. 176-181.
- 7. Harris, Roy V., Jr.: An Analysis and Correlation of Aircraft Wave Drag. NASA TM X-947, 1964.
- 8. Rubesin, M. W.; and Johnson, H. A.: A Critical Review of Skin Friction and Heat Transfer Solutions of the Laminar Boundary Layer of a Flat Plate. Trans. ASME, vol. 71, no. 4, May 1949, pp. 383-388.
- Monoghan, R. J.: On the Behavior of Boundary Layers at Supersonic Speeds. Fifth International Aeronautical Conference, Los Angeles, California, June 20-23, 1955, Institute Aeronautical Sciences, Inc., pp. 277-315.
- 10. Schlichting, H.: Boundary Layer Theory. Pergamon Press, 1955.
- Foss, Willard E., Jr.: A Computer Program for Detailed Analysis of the Takeoff and Approach Performance Capabilities of Transport Category Aircraft. NASA TM-80120, 1979.
- 12. Jackson, Charlie M., Jr.: Estimation of Flight Performance With Closed-Form Approximations to the Equations of Motion. NASA TR R-228, 1966.
- Brewer, G. D.; and Morris, R. E.: Advanced Supersonic Technology Concept Study - Hydrogen Fueled Configuration, Summary Report. NASA CR-114717, 1974.
- 14. Johnson, Vicki S.: Comparison of Advanced Turboprop and Turbofan Airplanes. NASA TM-85692, 1983.
- 15. FORTRAN Extended Version 4 Reference Manual. Control Data Corp., 1980.

Ľ.

•.

NAC GUN

A. Ke

ì

;

1

,

(a) Subsonic transport

Figure 1.- Baseline aircraft.

(4_

							/		
718,000	315	138	.367	72	Turbojet	292	2.62	4,230	
Gross weight, Ib	cength. fi	Span, ft	T/W	W/S, pst	^p ropulsion	ossenger s	<i>M, cruise</i>	Ronge, nm	

d

6

(c) Supersonic transport, JP fuel.

Figure 1.- Continued.

4

14

-

du'

лP

-

....

.

57

H'A .

•

V

;

1

ķ

and the set of the second s

N. 14

J,

Figure 1. - Concluded.

り

ORIGINAL PAGE 'IS OF POOR QUALITY

¢

Figure 4.- Effect of sizing on lift-drag polars. Subsonic transport, M = .8, $W_G = 104,000$ lb

61

43 . W.

·· •··· •

.

ŝ

62

1 **.**...

<u>ه</u> . ^ر مو

I

Figure 6.- Effect of sizing on aerodynamics. Supersonic transport JP fuel. W_G = 718,000 lb

(o) M=1.2, H=34,833 ft

-

•

(b) M=2.62, H=57,711 ft

63

12 July 1- 1

*\$

•

.

;

、 ; .

ł

ļ

Figure 8. - Typical takeoff flight profile.

;

with:

:

•

(a)
$$W/S = 75 \, psf$$

Figure 9.- Effect of velocity at start of rotation on takeoff characteristics. Supersonic transport. JP fuel, W_G = 718,000 lb.

." -

٢

ORIGINAL PAGE IS OF POOR QUALITY

-

69

ور ار ا

ALL AN ALL ALL

-

71

!

ł.

•1

....

]

-3

Figure 15.- Effect of sizing on takeoff characteristics. Supersonic transport, P fuel, $a_{LO} = 8 \deg$, $\delta_F = 20 \deg$. $W_G = 718,000 \ lb.$

73

W.

- 61%

. 1

L

ωu

н., Å

80

. 16

Figure 19.– Effect of sizing on descent characteristics. Supersonic transport, \mathcal{P} fuel, $\mathcal{W}_G = 718,000$ lb

Figure 20. – Effect of sizing on approach conditions. $\alpha = 9.5 \text{ deg}, \delta_F = 20 \text{ deg}, \text{ Supersonic}$ transport, JP fuel W_G = 718,000 lb 400

78

weight. Ib

I derold the differ the states a matter a

d

Figure 21.– Effect of sizing on trip time and range. Supersonic transport, JP fuel, W_G = 718,000 lb

.,

,

ļ

1

ELT NUMBER

- 7....

• ·

, *****(-, *

83

•

"

ソ

##1275

•:

;

1

),

84

F.

1

;

The second s

• • • • •

;

2

•

.....

Figure 26.- Effect of design conditions on payload-range trade. Supersonic transport, JP fuel, T/W = .32, W_G = 643,633 lb.

85

リ

Figure 27.– Effect of sizing on mission radius. Supersonic transport. JP fuel, W_G = 643,633 lb

86

the Set of the second

-

87

• •

1 1 2

Figure 29.- Subsonic range-total range trade for supersonic transport. JP fuel, W/S = 82 psf, T/M = .32, $W_G = 643,633$ lb, $M_{cr_{\rm uise}} = .9$ and 2.62.

<u>س</u>

A the same of

a series of section and a second

88

- **- -**

بم.

تولخه

•••

•

.

89

د`

•

]

miles/gallon. Subsonic transport, range = 1,000 nm, W/S = 133.5 pst, P/W = .257 hp/lb, M_{cruise} = .8.

91

. mine m

: ,

ţ

1.

*

W/S = 133.5 pst, P/W = .257 hp/lb, M_{cruise} = .8. miles/galkin. Subsonic transport, range = 1,000 nm,

· · · · · · · · · · · ·

TABLE B1, - INPUT LISTING (TAPE5).

ś

1

SUPERSONIC TRANSPORT: JP-FUEL IPRUTSN-1, IPRWPAF-1. FRESCULS RESCULS RE

ORIGINAL PAGE IS OF POOR QUALITY : . . .

2

d

TABLE B1. - CONTINUED.

CMT(11.1) = 01137, 010535, 000555, 011455, 011455, 011555, 011555, 011455, 011555, 011555, 011555, 011555, 011455, 011555, 000555, 000555, 000555, 000555, 011455, 011455, 011555, 011555, 000555, 000555, 000555, 011455, 011455, 011555, 00055

ORIGERM, FLORE & OF POCH (CO EDY

TABLE B1. - CONTINUED.

N " 1. 18. 1

1.1

2

والمعرية المعرية

J

5

 FDNU

 FDNU
 FDNU
 FDNU

 FDNU
 FDNU
 FDNU

 FDNU
 FDNU
 FDNU

 FDNU
 FDNU
 FDNU

 FDNU</th

(1)

7

TABLE B1.- CONTINUED.

1 I W

日け上

1

:6553.2	25833.0	35411.2		54844.4	63999.2			4228.7	C 467 A		1.0220	C 18C 1	13282.5	13979.7		29711.6	C 12525		52253.3	26.84 5		5053.7	0000	1.6600	3688.7	11862.9	1.50817	14773.1	DYILLO	36581.8	41286.5	10945	58611.9	1224.1	0000	7.0220	4377.4	0000		2 - 10-10	3064.3	13689.6	1 BECG			30413.1	1030.9	1296 0		4387.1	5434.8	6484 9		0.05P.	11382.0
8697 . 6	8697.6	8697 6		8597.6	8697.6		6547.7	7486.7	0 1000	0.9071	500 F	C PCOC	10180.9	10172.9		10172.9	0 24141	7.12 TAT	10172.9	070C 7	1.1611	12266.6	0 0345		5.E7441	14322.9	100001	:5371.1	1001	1.1/641	15371.1	1 2 2 4	1.1.641	6.387.7	7161.0	- 272 ·	8541.8	0110			9529.4	9529.4	36,70	00000		1. NUSN	8966.5	0045 J		11826.1	12199.2	C C 9761	10.01		12545.3
25214.2	19698.8	C.00C.84		60516.7	65675.5	0.19616	7258.1	9775.5	0 00000	15665.00	20080.1	0 00 00	25975.5	26516.2		41456.0	1 2224		5484 8			14706.6	10101	10101	9. V C B C L	27289.1	0 . CAGAC	31120.3	2 20LCA	1.21184	54127.9	50405	SRI49	6914.3		い・1 キンヨー	12823.6	15401.8			19312.5	24058.3	1.81.81			10700 · C	8135.8	9.75401		15531.9	17250.4	2255		0.70071	23758.8

C - 2

OF THE REAL

97

F

2

ドト

ļ

150 150 150 150 150 150 150 150 150 150		19295.2 19295.2 19497.2 19473.1 194721.8 19472.1 19472.1 19472.1 19472.2 19472
12545.3 12545.3 12545.3 12545.3 125555.3 1255555.3 1255555.3 1255555.3 1255555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 125555.3 1255555.3 12555555.3 125555555.3 12555555.3 1255555.3 125555555555.3 12555555.3 12555555555555.3 1255555555555555.3 12555555555555555555555555555555555555	19733.6 19733.6 19733.6 19733.6 19733.6 19733.6 21221.5 21221.5	212212 212212 212212 212212 2212212 221221
27749.6 39255.4 33739.8 36281.2 26281.2		A B A A A A A A A A A A A A A A A A

98

. .

4.1

:.

÷

TABLE C1. - OUTPUT LISTING FOR SIZED AIRCRAFT (TAPE6).

in Σ × 42 0,52

ł

1

1 SIZING AND PERFORMANCE RESULTS (9.41 AM J MAR 28, 1985)

JP FUEL

(IN LING AND BODY)

SUPEKSONIC TRANSPORT, JP-FUEL Turøojet Engine for Supersonic Transport, Jp-Fuel Rance, 4012.2 nm ug, 643633.0 lb Endurance, 3.13 krs 4/5, 82.00 PSF 1/4, .320 Passengers, 292 m,ch, 2.62

B. LBS, CARGO PAS LEVELS, 292 SEATS, AB, 5 12848. LBS, BAGGAGE THRUST/ENG, SL, 51490.64 LB SEATS, 48180. LBS, PAS PASS MILES/GAL, 32.35 7849.18 50 FT (292 PAS BTU/PAS/NH, 3839.0 61928. LBS S,REF, PAYLOAD,

TECHNOLOGY IMPROVEMENTS (IN PERCENT) (APPLIED FROM M- 0.00 TO M- 2.62 UHERE APPROPRIATE)

NONE

MOTE--MAIN CRUISE LEG OCCURS AT BEST AUAILABLE BREGUET FACTOR

		NEICHL	FRACTIONS					
4084746 115US746 115US746	UEU UUNG/UG UEU	LERP/U LCAN/U UUUN	gg	USEO/UG UHT/UG UUFT		e e	USTR/UG UEN/UG	00/140 01/010
.54529 .07626 5.03703	.45847 .11485 4.26927	60 400 1000	450 888 888	.89822 .88517 8.88888	. 88 . 98	206 721	. 26222	.03801 .09482
ING UÅRIABLES,	T/C, 2.820	PERCENT	SUEEP, C/	4, 47.45	SPAN,	122.274	۶٩	
SPECT RATIO (AREA	1.905	(REFERENCE)		1.727 (TOTAL	~	1.727	(TRAPEZOIDAL)	
REAS, (SO FT)	REF.,	784º.18	TOTAL,	8657.61	UETTED,	EXP	14925.28	

FUSELAGE VARIABLES FN+ 27.320 LENGTH+ 315.00 FT RADIUS,MAX-Tail volume coefficients...ktail .056 canard 0.000

5.765 FT

99

۱,

TABLE C1. - CONTINUED.

. ...

` -

ļ

5060.72711 1588.33507 12877.26771 UING FUEL, MAX, BODY FUEL, MAX, EXPOSED, 39782 39782 95769 UF/UG 16972.25734 5060.72 '11 735.40622 **255533.19160** 255533.19160 37133.14227 80200.39853 UF, LBS WOLUMES, CU. FT. ---- UING, TOTAL, UING FUEL, BODY FUEL, FUEL DENSITY 6.750 LB/GAL LING. MAX LING, MAX BODY, MAX FUEL DISTRIBUTION

. 1

. 19 x x 8 -.

.

--- ter. .

;

.

. .

× .}

۲

TAKEOFF CONDITIONS

5.211 L/D, TO AIR 00000.03 CDT0 .1280 TAXI TIME CL,TO .6148 .02000 7.8 5.8 FLAP DEFL,DEG 20.0 ALPHA,GR,DEG -4.0 ALPHA,YO,DEG CLIMB GRADIENT, N 9663. FT TAXI DRAG/UG U.TO 193.48 KN 0.0 TAKECFF FIELD LENGTH U,ROT 177.14 KN DAY TEMP, DEG C.

APPROACH CONDITIONS

4.471 2 CD .1336 CL .5975 FLAP DEFL, DEG 20.0 ALPHA, DEG 9.5

U, APP 159.43 KN UEIGHT 399198.4 LB

A . 00 MISSIN 9.99 THRUST DEFLECTION, DEG TAKEOFF

0.0000.0 DAY TEMP., MISSION, DEG. C

AINIAUM THRUST MARGINS, PERCENT

14.51 AT H- 2.620 CLIMB

155.15 AT M. .375 50.17 AT M. 1.400 14.51 AT M. 2.628 SUBSONIC TRANSONIC SUPERSONIC

9.13 AT M. 2.620 CRUISE

1642.54 FT/MIN MIN RATE OF CLIMB DURING CRUISE

RANCES, NH

3266.72720 R, CRUISE -R, TOTAL -273.16358 0.00000 273.16358 R, DESCENT, TOT-R. SSC, IB-R, DESCENT-472.32523 0.00000 472.32523 R, ASCENT, TOT= R, SSC, OB= R, ASCENT= ing

ころうろう あままます ちょうちょう しゅうかい

3-11

. . 1

ш
=
_
~
-
-
~
\circ
$\overline{\mathbf{O}}$
-
I
•
1.
\sim
1.1
LL L
┛
-
_

TRIP TINES, MIN

			E, PROP		900°.			.5009¢	
10.40195 1.00135	26034 1977 . 45471 . 52162	7.16	7		•			IAX, C . I MB	9636
1881	Ĩ.E.	486		÷.	•	9 .9		E F	13.19
T, CRUISE- Y, TOTAL-	CRUISE, TRIP, Mission, Max, Fuel,	ERVES,	TATHAX	. 8733	. 8997	.9163	2625	12.978	L/D,
.35896 0 06	5 41	4.6 RES	BRG FCT	9522.	9487.	9241.	•	L/D,CR	B/HR/LB H/LB
26. 35896. 26. 35896	6.086940 .086940 .0854	24440) SFC	1.3663	1.3725	1.3800	, UF/UG	8. FT	.91033 L1 165 80000 F7 88378 LB/1
CENT, TOT- , 18- CENT-	мт. тот. 21, 21,	ск),	,MID,END L/D	8.574	8.510	8,392	RIP FULL)	. 02806 To 3080	R LG+ . 013 25000.
, T 250 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DESCE SSC.IC DESCE TAXI.	TRIP (BLO	NS (START CD	.01168	.01282	.01211	FO CENT OF 1 .00	, UF/UG-	SFC,C , UF, ALT, SFC,
31 . 24044 9800 14844	• 10360 • 10360 • 10360 • 10360	1866.3	E CONDITIO CL ALPHA, DEG	.1002	6.6666 6.623 6.6066	.1017 0.0000	RESERUE IN (7.0 PER UF/UG=	260.0 MM,) ALT, CR	.30070 25000.0 F1 900 .25982
• N •	045, LF / LG • • • • 103 • 103 • 00 • 00	292	CRUIS ALT	LEG 9211.	3971.	7811.	FUEL LLOUANCE Mach	IRPORT (.827	, CR אוא איז 650
T, ASCENT, TOI	FUEL FRACTI(ASCENT, TUT, SSC,08, ASCENT, ASCENT, TAKEOFF, RESERVES,	FUEL, (LB) Total,	¥.	MAIN CRUISE 2.620 63	2.620 6	2.620 6	TRIP FUEL A	ALTERNATE A	T/THAX HOLD (34.0 H, T/THAX

273 -DF 2

5

TABLE C1. - CONTINUED.

AERODVNAHICS

States and the second second

ŧ

i

4

1

` '

AT ALTITUDES ALONG CLIMB SCHEDULE

£	ALT, FT	CDU	CDF	CDPST	CDRUF	CDBL	CDAC	CD,ZL		CL, 0PT	CB, 0P
•		9,66494	.00680	.00132	.00027		. 0029	. 00896	13.29999	.17696	5619.
Эф.	1909.	0.00000	• • • • •	. 00038	. 00027	.00057	. 88829	.0862	13.32795	.17600	.01 32
.68	7286.	9. 88888	.88621	6989.	.88827	.00057	. 00029	.00828	13.35421	.17600	1610.
92.	14857.	0 , 00000	. 00622	6600.	.00027	. 88367	.00030	. 00839	13.32729	.17700	.0132
.88	22429.	0.e0 00	. 00623	. 38693	. 29827	. 86076	.00031	.00851	13.30078	.17800	.6133
.95	30806.	9.99999	.00618	. 00033	. 88827	.00124	.06032	. 00895	12.52308	.18400	. 8146
1.05	32417.	. 88276	. 00606	9.6966	. 00064	.00226	.00034	.01206	10.50192	.19000	.6186
1.10	33222.	.00201	.00630	9.63666	. 80064	.00212	.60034	.01201	10.10660	.18867	.0186
1.20	34833.	.00321	. 00588	6.66666	. 00064	.60184	.00036	.01192	9.38486	. 18689	.6198
1.40	38055.	.00258	-9569.	99999.9	46003.	.00120	.00038	.01015	9.43437	.17200	. \$182
1.60	41278.	.00250	. 88544	9.9999	. 66633	.66699	.00041	.00957	9.43615	.16000	.0159
1.80	4 1588.	.90242	.00523	0.00000	. 00032	. 88859	.89843	.00899	9.43822	.14800	.0156
2.00	.7722.	.00234	.00505	0.00000	.69630	.09061	. 88846	.00876	9.22494	.14000	.0151
2.20	58944.	.88227	.00487	0.00000	.00029	.00052	. 00048	.00853	8,99698	.13200	.9146
2.40	54167.	.00224	.00471	0.00000	.000.3	.00052	. 88838	. 00804	8.88191	.12343	.0139
2.62	57711.	.00221	.00453	0.00000	.99926	. 86646	. 66669	. 48749	8.73955	.11460	.0130
UALUE	S AT START	OF CRUISE									
2.62	60211.		.00462	. 00026	. 88848	. 88662	.66758	8.68015	. 11400	EIEIG.	

~ N

LO

, ·

• •)

:

•

TABLE C1. - CONCLUDED.

,

FLP DFL, APR, 20.0000 .00025 .88827 9.50000 .0058 .00057 DELCD, .00063 FLP DFL,TO, ALPHA, APR, . 00029 9.300 51490.64090 THRUST DLF., 177.14154 T/U, .320 TAKEOFF DRAG COEFFICIENT INCREMENTS FROM BASELINE UALUES 6.0000 E7000. 399198.41 .78642 .00654 . 86781 T, SLS, RESIZE, MAX THRUST UALUES/ENGINE, SEA LEVEL STATIC U,ROT. MISSION DAY, 0.000 82.999 III INPU'S TO TAKEOFF PROGRAM ISI CFTTOB, CFETOB, TOCDACB, TOCDBLB, TOCDRFB U, APR, **### ENGINE SIZING INFO ###** CFTTO, CEETO, TOCDAC, TOCDBL, TOCDRF -4.00000 ENGINE SIZING FACTOR, ESF-**3628.78** 0.0 DEG. DAY T,SLS,DECK, 65978.00000 12/N 643633.00000 T.O. DAV, C.888 ALPHA,GR. ROLL, TAXI FUEL, s,

20.0000

FUELBL- 24434.6 NSEATS- 292 VCJ- 205962.6 TIT INPUTS FCR DOC-ROI PROGRAM III **c.**173 NENGS UGROSS- 643633.0 39802.1 **6**.9 TCRUISEm 40-58 -50A UTENG-LCARGO+ NCRE: J-TBLOCK- 3.300 4012.2 BEU- 273221.1 2.62 MUPAS - 292 TOU- .3200 RNGE -XNCR+

;

|

TABLE C2. - SUMMARY OUTPUT LISTING (TAPE6).

•

•

•

. .'

2 4

90/0		. 1 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4			• • • • • • • • • • • • • • • • • • •
	66689 49344 16756 9 65272 24845 550775 244434 59175 248431 57229 28231 57229 292666 333387	73923.24931 5327.66793 4532.1198 49982.02529 24466.12182 13336.523335 13336.12182 13336.12182 13336.12182	39882.09455 0.00000 1780.99000 4796.91872 46379.01327 8430.87516 3134.56794 5757.86346	4754.59582 2491.79311 25111.0000 8200.00900 58067.37589 58067.37239 273221.14332 16717.52281 289938.66613 48180.00000 12848.00000	359986 6.0000000 6.00000000
	36. CLIMB FUEL, L95 37. CRUISE FUEL, L95 38. Descent Fuel, L95 39. Block Fuel, L85 40. Reserve Fuel L85 41. Total Fuel, L85	42. UING U'., LBS 43. HORIZONTAL TAIL UT. 44. VERTICAL TAIL UT. 45. LANDING GEAR UT. 46. LANDING GEAR UT. 48. TOTAL STRUCTURE UT.	49. ENGINE UT. 50. THRUST REVERSER UT. 51. MISC. SYSTEM UT. 52. PLUNBING SYSTEM UT. 53. TOTAL PROPULSION SYSTEM UT. 54. FLIGHT CONTROLS UT. 55. AUXILIARY PUER UT. 55. HYDRAULICS	58. ELECTRICAL 59. AUNICS 61. AIN EQUIPMENT 61. AIN CONDITIONING 62. ANTI-ICING 63. TOTAL SYSTEFI AND EQUIPMENT UT. 64. EMPTY UT. 65. OPERATING ITEMS 66. OPERATING EMPTY UT. 67. PASSENGER UT. 62. PASSENGER UT. 62. CABCO UT.	70. ZERO FUEL UT. 81. RPM, ENGIME 82. RPM, ENGIME 82. RPM, PROP 84. POUERVDS0, AUE. CRUISE 84. POUERVDS0, AUE. CRUISE 85. SUVANCE RATIO, AUE. CRUISE 88. EFF. PROP. AUE. CRUISE 88. EFF. PROP. AUE. CRUISE 99. PROP. UT. 91. GEAR BOX UT.
JF+FUEL		*****	שיטימשימשי עשיטימימוישי		
HIC TRANSPORT.	64363, 0000 4012, 21662 31, 13336 292, 00006 292, 00006 32, 15469	82.0000 .32000 7849.18293 51490.64000 1.90479 17.45043 47.45043	2.82966 315.96968 315.96968 27.32698 27.32698 29.99689 96629.99889 133.32712 133.32712	88.68915 89.68915 89.68915 89.68915 89.68915 89.68915 99.695 90.695 12552 273.12 26.258 12652 273.12 26.258 273.12	
SUMMARY OUTPUT FOR SUPERSON	3. Caross Metcht, LBS 2. Range, Ma 3. Endurance, Mrs 4. Passencer, Mrs 5. Cruise Mach Manber 6. Pass Milles/Gallon	7. UING LOADING, PSF 2. THRUST TO UEIGHT RATIO 3. REFERENCE AREA, SQ FT 1. HAUSTYENG, SLS 1. ASPECT RATIO 2. UNGS SPAN, FT 3. GUEFE C/A. DEG	 LING THICKNESS RATIO, K FUSELAGE LENGTH, FT FUSELAGE FINENESS RATIO FUSELAGE FINENESS RATIO B DÉLTA TEMP, TO, DEG. C B DÉLTA TEMP, MISSION, DEG. C TAKEOFF SPEED, K TAKEOFF SPEED, K TAKEOFF SPEED, K 	MAX L/D, CRUISE MAX L/D, CRUISE S. AUERAGE SFC.CRUISE AUERAGE SFC.CRUISE AUERAGE SFC.CRUISE AUERAGE SFC.CRUISE AUERAGE MA B. CLIMB RANGE, MA A. CLIMB TIME, MIN A. CLINB TIME, MIN A. CLINB TIME, MIN A. CRUISE TIME, MIN A. CLINB TIME, MIN A. CRUISE TIME, MIN A. CLINB TIME, MIN A. CRUISE TIME, MIN A. CRUISE TIME, MIN A. CLINB TIME	<pre>J3. BLUCK TIR, TIN DATA FOR PROP DRIVEN AIRCRAFT 21. POWER/D5G, DES 72. PUANCE RATIO, DES 73. POWER COEF., DES 73. PROP THRUST COEF., DES 74. EFF, PROP, DES 75. EFF, PROP, DES 75. EFF, OVAL, DES 76. EFF, OVAL, DES 77. POWER TO UNEL MATIO 78. SHAFT HORSEPOWER 79. PRUP DIANETER, FT 10. CEAR RATIO</pre>

Production Bar Comment

• • • •

1

TABLE C3. - WEIGHT STATEMENT (TAPE6).

Ŀ

ii.

my contribution with the

	. 2622			.4245	. 8268	.4505	. 0948	.5453	.4547	1.0000
07/7		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6					.8749 .8268 €.8888			
	168775.	46379.	63965 58	273221.	16718.	289939.	61428.	353967.	2\$2666.	643633.
561'n	733223 33223 4628 33223 4688 3328 13468 13	33 39 30 30 47 47 30 30 47 47 30 30 30 30 30	8431. 3135. 3135. 4775. 4775. 8511. 187. 187. 187.		675 1646 19246 19246 29852 2969		48186. 12848. 6.			
ITEN	WING HTAIL UTAIL CANARD FUSELAGE L. SELAGE NACELLES TOT. STRUCTURE	ENGINES THRUST REU TROPELLER GEAR BOX MISC SYSTEMS MISC SYSTEMS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS TANKS	SURFACE CONTROLS AUXILIARY POUER AUXILIARY POUER Hydraulics Electrical Auonics Furn. And Equipment Air cond Air cond Anti-iciG	EMPTY UEIGHT	FLIGHT CREU Cabin Creu Fuel, unus Fuel, unus Passenger Seri (Ce Cargo Containers Opreating Items	OPEKATING EMPTY UT.	PASSENGERS (292) Baggage Cargo Total Pavlumd	ZERO FUEL UEIGHT	IISSION FUEL	PROSS VEIGHT

TABLE C4. - MISSION ANALYSIS RESULTS (TAPE6).

HISSION ANALYSIS RESULTS FOR

4 2

: ; ; ;

۰.

,*****

à

;

;

, , , , ,

> ---

1

٣

	U/S+ 62.0	PSF 1/U+	.320 IPI	NS- 292 U	G- 643633.0 LB			
A A C A C P C C B C C C B C	ALPYA, DEG Thax, LBS	ALT, FT CL CP CP	0, PSF THAX (D CT	U, LBS L/D T/TRAX R, PRCP	SFC,LB/H/LB FJEL,LA/SEC	RANGE, NII BF, NM FLAP, DEG	YIME, SEC L,LBS FUEL,LB	FPA, DEG DRAG, LBS E, OUALL
• • • • • • • • • • • • • • • • • • •	6.969 -4.969 265962.558 8.998			649694.2235 9.9999 1.9996 9.9906	.9553 1.0117 57.8826	0.000 0.000 20.000 20.000	0.000 0.000 3028, 7765	C 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
. 893 2933 2933 2933 2933 2933 2933 2933 2	59.0472 -4.800 205234.6477 0.800	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	11.86036 .0447 40.5435 6.0068	639995.3294 2.4229 1.0000 9.0000	.9943 1.0383 59.1939	. 8 853 8. 8888 28. 8888	10.4032 10035.8992 3637.6706	6 - 6 - 6 1 1 1 1 1 1 1 1 2 - 6 0 0 0
. : 785 . 2749 204506. 7354 8. 0900	118.0944 -4.0000 204505.7354 0.000	■.9699 .1883 12.3419 9.6999	47.8142 .0447 12.3419 0.0000	639343, 2949 2, 4229 1, 8888 1, 8888 8, 4808	.9933 1.0649 60.4943	.3531 (8988 20,0006	21.2555 40147.5968 4289.0051	6.000 16572.0644 8.9088
.2678 .2423 24 23 .2433 .24333 .243333 .24333 .24333 .24333 .24333 .243333 .24333 .24333 .24333 .24333 .24333 .24333 .24333 .24333 .24333 .243333 .243333 .24333 .24333 .243333 .243333 .24333 .24333 .24333 .24333 .243333 .243333 .24333 .24333 .243333 .2433	177.1415 -4.0000 203778.8231 0.0000		1 66.2328 6447 5.4658 8.9668	638612.8719 2.4229 1.6090 9.0000	.9922 1.8915 61.7848	. 8435 9.9990 29.9999	33.2484 26332.0229 5020.1281	9,000 37282.6448 0,000
.2324 .1323 203578.4173 203578.4173 0.000	1981,3981 7,7682 203578,4178 203578,4178	6.666 .6148 1.7361 0.000	126.6245 .1180 1.7361 0.0000	638369.4775 5.2112 1.0600 0.0000	.9918 1.6988 62.1372	1.2464 6.0000 28.0000 28.0000	37.1757 611659.2897 5263.5225	9.999 117259.6997 0.8893
.3165 203249.4568 209249.4568 2062	203249.4568 203249.4568 2.83886	35,1723 .6014 1.62255 0.0000	142.6386 11196 1.6225 0.0000	637992. 4189 5.3746 1.0000 8.0000	. 9912 5.1042 62. 3392 62. 3392	1.3829 999.6473 20.0080	43,2382 673871,8976 5640,9920	2.3977 125269,1217 8.8688
.3195 .0876 202793.9006	211.2920 7.1829 202793.9806 0.8008	109.3249 .5184 1.8729 0.6808	158.6576 .0916 1.8729 0.0000	637758.4419 5.6621 1.0000 0.0000	. 9999 1.1968 62.3454	1.6466 1080.9567 20.0000	47.1132 613973.0938 5882.5581	3.3468 108276.7089 0.0000
.3353 .99.5 2683 9.96 593 2663 9. 0	221.5953 6.1224 202009.6839 0.0006	237.2328 14732 1.9539 9999	165.8892 .0798 1.9530 9.0000	637376.3399 5.9431 1.0000 1.0000	.9963 11111 52.3571	1.9666 1185.1130 20.0000	53.1132 614742.4328 6256.6601	2.3468 103437.4909 0.0000
.3467 .1827 .1827 .1827 .8243 .80999	229.1091 5.3709 201462.5343 8.0000	326.0280 1467 2.0571 2.0571 8.000	176.0157 .0709 2.0571 2.0571 0.0000	637126.8845 6.3821 1.0000 0.0000	.9899 1.1145 62.3721	2, 2165 1295 - 4691 20 - 009	57.1132 ∪17181.4313 6506.1155	3.3468 97933.0980 6.0008
.3567 1879 201002.1584 8.0005 T.0. SE	235.6495 4.7798 201002.1684 8.0000 GRENT	400 147 2.17 2.17 2.17 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8 2.8	185,88028 .9647 2.1288 6.606	636924.1479 6.5572 1.0000 0.0000	.9896 1.1174 62.3894	28.4259 1382.8329 28.000	60.3632 619120.2323 6708.8521	3.3468 94419.0488 6.000

· 1 ·

1

;

ţ

and a summary and

4

۶

4

Beaufine Managements Press

۳ ۱

~

TABLE C4. - CONTINUED.

1

ひとしんかいろう 一部 してい 子書 業者 さいて

1 2 11

2

T T T T T T T T T T T T T T T T T T T	С.К. Асриа, DEG Тмах, CBS	A L1, F1 4 CC 4 CD 7 CD 7 CD	0. PSF 78 0.05 77 0.05 01	U.LBS L.LB T.LT F.PROP PROP	SFC, LB/H/LB FUEL, 58/SEC	RANGE, HE BF, NT FLAP, DEC	TIME,SEC L,LBS FUEL,LB	FPA, DEG Drag, Las E, ouall
.3567 .1896 201002.1684	235.64 95 V.9698 201002.1684 0.6398	4 4 4 4337 2.3388 2.3388 4.8000	195 . 89 88 . 65 89 2 . 33 88 9 . 6 6 8	636924.1479 7.4692 1.9000 9.9000	.9896 1.1174 62.3894	2.4259 1562.3976 8.2017	60.3632 636774.3568 6708.8525	7.3468 85243.2001 9.9000
4275. 4921. 4921. 4758 4000.0	247.7323 8.8666 199327.4758 19966	786.9994 .3983 2.5515 8.000	203.5462 .6489 2.5515 8.000	636454.8512 8.1451 1.0000 0.0000	.9889 1.1225 62.1522	2.9211 1798.0375 0.0000	67.7359 636299,4359 7168.1488	5.7951 78129.6285 9.6099
.40 00 2382 1971,78,799	263.5991 8.0000 197135.7700 9.0000	1034.3591 .3555 2.8224 0.0000	227.7946 .8391 2.8224 8.8808	635510.3979 9.1815 1.8068 0.8088	. 9880 1.1292 61.8357	2125.27353 2125.2731 8.8038	76.6825 635723.2771 7722.6030	5.8553 69348.2286 8.0000
	327.6637 8.0000 192886.6183 8.0000	2698.1197 .2405 3.7315 0.0000	335.6338 .8195 .7315 .7315	633984.5581 12.2592 1.0000 0.0000	, 2850 1.1519 61.7287	6.1162 3488.6357 9.0030	187.8557 633696.3065 8648.4419	5.9081 51691.6363 0.0000
.5580 2251 1 90875 .2800 0.6000	359.4166 3.0000 198875.2800 6.0000	3500.8000 .2045 3.9467 0.8868	394.2720 .0156 3.9467 0.8000	633144,3982 13.8842 1.8088 1.8088	.9837 1.1630 61.6626	7.4152 4645.8366 0.0006	121.4744 632798.6322 10488.6018	5.8188 48363,5271 6.2008
. 6/188 . 1462 1462 1462 14665 14626	386.8235 6006.9 175624.1033 175624.1033	7285.7143 .1974 2.9364 8.8868	467.6992 .0158 3.6639 0.0088	631142.7935 13.1972 ,8000 ,8000	.9366 1.9312 40.1171	12.3821 4953.8483 0.0000	169,3965 630742,8459 12499,2065	7.1588 47743.5515 0.0000
.7000 .1361 136774.0572 8.0000	438,7747 0,0000 147526,7302 8,0000	14857.1429 .1937 2.8010 0.0000	412.1775 0147 3.1122 0.4006	627238.8657 11.2214 9090 9.3050	. 6745 1.1684 46.8787	22.4416 5238.2679 8.000	257.1188 626727.4766 16394.1343	7.0080 47.10254 0.0008
. 3669 . 1197 122269.4234 8.6888	486.7297 8.889.489 122289.4234 8.8888	22428.5714 2.2616 2.5690 0.0000	393,5423 6154 2.5698 6.9889	623377.8546 13.6598 1./9699 0.0899	.9685 1.1795 40.0408	33.7129 5407.4132 0.0060	244.7265 622751.6469 . 20255.9460	6.3465 47571.6378 8.0000
.040. 0812 0812 0340. 0340.	530.4990 0.6000 100704.0340 9.0000	34546.8686 .2287 1.9965 0.0000	357.6251 .0186 1.9965 0.008	619318.2888 12.2634 1.0008 0.0008	.9622 1.1816 33.0543	49.3915 5512.2625 6.4600	455.7711 618530.1810 24314.7120	4 .5513 5441 .0795 8 .000
1.890 .0757 100755.6246	585.3295 0.0000 100756.6296 0.0000	31611.1111 .1918 1.8657 6.0000	460,4874 ,6168 1,8657 1,8657	617373.3690 11.4151 1.0000 0.0000	.9592 1.1919 33.3584	5614	514.3429 616477.5228 26259.6310	1 . C738 54005 . 3479 8 . 8000
1.100 .665 102335.0729	639,3659 639,3656 162335.8729 162335.8729	33222.2222 1782 1.6632 0.0000	459.8367 .0178 1.6632 9.0009	615285.5229 5.9825 1.0000 0.0000	928° 1,1997 1,1997	6,99986 5338,2557 6,666	578,25°° 614229,57,4771 25547,4771	6996 4537 ' ''' ''''''''''''''''''''''''''''''

€T, ž G, ,

i. _

ソ
TABLE C4. - CONTINUED.

💑 i 😪 🕅 🐔 🔊 🖓

." :

÷

.

5 , . .

-:'

1

.

٠¢

FPA, DEG Drag, Lus E, ouall	1.2998 62636.0309 9.0000	1,2511 63877,2399 6,000	1.2218 65100.2673 0.0000	1 , 1824 { 6329 , 6076 0 , 0900	1.1429 67581.5158 0.0000	1.0014 58441.2065 8.0000	.9630 63245.0728 0.000	8958, 8958, 3958 8, 8988	. 2423 69793. 2446 6. 6269	-7897 - 7897 - 9989	.7388 69226.5741 6.9800
TIME, SEC L, LBS FUEL, LB	582.3 965 613739.4566 3793.4602	692.5432 613249,9897 29247.4059	615.9871 612751.2885 29710.1777	629.6617 612242.5555 36182.5828	643.5918 611723.0938 30565.4483	713.2890 60989.3119 33106.1522	786.2629 606293.3287 35679.5086	859.7437 603455.2214 38280.1319	932.7831 600593.1885 40883.9985	1005.9652 597718.8495 43497.7462	79.7203 594811.4468 46124.3514
RANGE, MI BF, MI FLAP, DEG	71.3364 5309.5551 0.000	73.7486 5285.2959 8.0000	76.2334 5260.8743 0.4008	78.8829 5235.4678 8.6888	81.4317 5208.8281 0.0000	9099°, 9099°, 9099°, 9099°, 9099°, 9099°,	111, #787 5783, 3067 0, 0099	128. 6547 6064. 1346 0. 8669	146.0923 6363.6543 0.0000	163,3312 6686,9194 8.0008	185,8959 7036,5754 0,0000
4740 SFC, LB/H/LB FUEL, LB/SEC	. 2563 1. 2367 34. 2287	. 00140 1. 100140 14. 0594	. 9538 1.2033 34.4855	.0531 1.2045 34.6070	.2524 1.2057 34.7237	.2486 1.2132 35.3150	.25446 1.2244 35.2124	.5485 1.2349 35.5729	.9365 1.2454 35.7281	, 9324 1 - 2559 35, 7032	.9283 1.2664 35.5211
С. 1.10 1.10 1.11 1.11 1.12 1.12 1.12 1.1	614839.5347 0.7947 1.9094 9444	614385.5941 9.6004 1.89004 9.8004	61395 8223 4.4124 1.0000 9.0009	613459.4172 9.2303 1.0000 8.0000	612967.5517 2.8516 1.0000 8 0009	610526.8378 8.8595 2.0000 0.0000	607 153.4914 8.7937 1.0000 9.0000	605357.8581 8.6768 1.0000 0.0000	602745.8915 8.6653 1.0000 8.0000	690135.2538 8.5783 1.0000 0.0000	597508.6486 8.5922 1.0000 0.000
0, PSF Thaxid CI CT	469.5857 0178 1.6371 0.0000	479.2151 0170 1.6110 8.0008	488.7198 .0179 1.5848 0.0000	498,0953 0170 1.5593 0.0000	507.3369 1.6178 1.5341 0.0088	551.4028 .0158 1.5311 0.0000	592.0000 0148 1.5017 0.0000	629.1437 0141 1.4911 9.0000	662.6857 .0134 1.4797 0.0000	692.5816 .0128 1.4687 9.0000	716.7343 5.4.7343 1.4.86 9.96 9.96
ALT, FT CL T/D CP	33544.4444 1444 1.6371 9.6999	53855.5667 .1638 1.6110 8.0000	3+188.58893 1597 1.5848 6.0000	34511.1111 1566 1.5593 0.0000	34833,3333 14535 1,5741 6,6663	36444 .4744 1487 1.5311 8.8200	38455.25556 1.3055 1.50017 0.0000	32665.6667 .1222 1.4911 0.0000	41277.7778 11155 1.4797 9.0000	42888.8889 .(138 1.4687 6.000	44588 1854 . 1854 . 4585 8.000
ALPHA, DEG Thax, Les	649,9979 6.0000 6.0000 1.00024.0979 9.0000	666 . 6553 0 . 6669 1 82903 . 3227 0 . 809	671.2789 64.0009 6.0009 103172.3965 0.0008	581.8659 8.88659 8.88888 8.88888 1.03438.9817 8.89888	692.4190 0.0000 1.43678.7533 0.0000	745.6546 8.8868 8.8868 104792.9312 0.8808	803.8120 0.8838 0.8888 103535.8054 0.3008	866.3706 6.8686 103781.2765 3.8638	917.728 8.6968 103272.8251 9.6068	975.0860 0.0000 192335.0436	1032.4440 0.0000 100374.5695 0.0000
5 5 5 5 5 7 7 6 7 7 7 7 7 7 7 7 7 7 7 7	1.1200 .0550 102624.9970 .0000	1 • 1 • 0 • 6 4 0 • 6 2 3 • 6 2 3 • 6 2 9 • 6 8 9 9	1.160 .0620 .0620 103172.3965 0.0000	1 . 1880 • 6680 • 6680 • 6680 • 6881 • 6881 • 6881 • 6880 • 6881	1,2000 0589 10078,7593 0,0000	1.3000 .0595 1012.0312 0.0000	1,4000 ,8562 193536,0054 3,0000	1.5000 .0564 .0564 .0564 .0500	1 6000 .6755 103272.8251 A.6000	1.7900 14233.241 142338.241	1.8000 .0531 100014.5535 8.0000

1.3,

2

1

ł

Ţ

d,

TABLE C4. CONTINUED.

a Si Lana Si Lana

; •

000 100 100 100 100 100 100 100 100 100	U.K ALPHA, DEG TRAX, CBS	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	С. Р5 С. Р5 Танх / р Ст	L, LWS LVD TVTR X R, PROP	ULUC SFC, LB/H/L FUEL, LB/SEC	RANGE, NA BF, NA I LAP, DEG	11ME, SEC L, LBS FUEL, LB	FP3, DEG DRAG, LBS E, OUALL
1,3848 8586 99982,6476 9.9988	1032.2020 8.0000 9.000 99982.6479 9.0000	46111,1111 - 1017 1 - 4312 0,9000	7487 1487 1487 1487 1487 1487 1487 1487	594828.5415 8.4787 1.0000 6.0006	.9842 1.2788 35.4857	208.1464 7262.2962 8.8840	1155.2079 5811336.8357 58804.4585	. 5223 . 63268 . 0004
0.400 0.4477 0.400 0.400 0.9000 0.9000	1 1 1 1 1 1 1 1 1 1 1 1 1 1	47722.2222 9086 1.4055 9.0020	76 8 .5424 . F.18 1.4925 6.9966	5926 41, 9199 8, 3892 1, 0000 1, 0000	- 2198 1.2311 35.3014	232.6070 7495.4211 9.0000	1233,9383 588742,5969 51501,0801	16218.9421 1942.9421 96999
6.941.5 0.455.5 0.455.5 0.9000	1996 1996 1996 1996 1996 1996 1996 1996	2626.5000 1926.1 1926.1	9997.9 119. 119.1 9070.1	5891.5. 9488 8. 3194 1. 9668 8. 9668	.9153 1.3050 35.1809	259.51-1 7726.4156 0.0009	1316.3152 585519.0743 5454.1792	78388.1858 78388.1858 8.8988
2,2008 6405 2525 2525 85325 8000 8000 8000 8000 8000 8000 8000 80	1261.8758 3.0000 35326.7789 9.0000	58244,4444 ,0948 ,0948 ,0948 ,0968	788.9324 .8114 115.3534 9999	585197.4258 8.2551 1.0688 0.0000	0010. 0010. 0010. 0010. 0010. 0010.	289.1372 7961.3138 0.0009	1402.7953 382155.1511 51.25.5778	78435.5757 78435.5757
69980 63980 6398 63311,7288 6999,9	1319.2348 6.9004 933.1.7228 9999	52557,5555 , 4923 1,32,1 1,32,1	798,3072 5113. 1155.1 1115.900	582531.1999 8.2344 1.0060 0.0000	.9057 1.3330 34.5503	321.9148 8230.0755 0.0000	1494.2230 578634,8743 68761.8001	7 99 90,91655 7 99 0,9165 91659
600 	1376,5923 9.6000 91060,7889 9.600.889	54166.6667 09100 1.3494 6.6948	884.7824 61.10 50.10 50.00 5000 6000	579601.5255 8.2676 1.0008 0.0008	2002, 1745,1 1745,1 24,46	358,24°1 6516,8459 8,0600	1591.2646 574856.2653 64031.4745	.4182 69542.5830 0.0000
0,000 0,000000	1433,9568 2433,9568 2432,5625 3625,5625	55777,7728 ,6090, 1,2856 6,666,6	808.500 .010.505 1.1.2850 0.0500 0.0500	575 679 , 4731 8, 3008 1, 0000 0, 0000	. 8958 1.3647 33.5124	398,9284 8798,4596 8,0000	1695.4808 571663.1367 67553.5269	.3735 58756.515 8.0000
2,6600 .03-0 85638,4804 85638,4804	1491.3028 8.0000 85638.4834 8.6000	57363.8889 .8889 .2614 .2614	200.6575 .0107 1.26114 8.0000	572316.1713 8.3506 1.0000 0.0000	.8892 3823 32.8329	444,9823 9094,7479 8,0000	1898.8343 566925.9456 71316.8287	. 3299 67890, 4981 8.8830, 8030
2.6201 .0301 85875.7835 85875.7835	1502,7796 0.0000 85075,70499 85075,70499	57711.1111 2892 1.2568 0.0000	849.5957 .0167 1.2568 0.0010	571536.1225 8523 1.0000 9.0000	.8880 1.3858 32.7499	454.8670 2155.6566 0.000	1832.0044 565879.1114 72896.8775	.3674 61692.9053 0.00 J
2.6290 75423.7775 9.0988 9.0988 7.047 CF CRUISE	1562,7796 8.0996 75423,775 8.0866	Facil.1111 1602 1.1451 0.0000	718.4190 .0117 .1451 0.8660	576243.6649 8.5745 1.0048 9.0908	. 8869 1. 3869 23. 8558	472.3252 9380.9537 0.0000	1874.4267 564799.0145 73389.3351	1 ,504 65869,8374 0.000
0000000000000000000000000000000000000	.582.7796 .58699 .5423.7775 .5469	7021:.111 .1002 1.0000 1.0000	718.4190 .0117 1.1451 0.9080	570243.66649 8.5745 8.7745 8.0000	. 8866 1. 3663 24. 9984	472.3252 9522.2745 8.8969	1874.4267 564799.0146 74389.3351	1.3544 658.8074 0.0000

. Di ex 4

ţ

4

TABLE C4. - CONCLUDED.

, •

・ 「「「「「「」」」

:

--**ķ**

FPA, deo Drag, løg E, ovall	61212.5247 61212.5242 6.0000	. 0225 56617. 4555 0. 0000	.0161 52186.2364 9.0000	47822.0456 47822.0456 5.4688		.9246 47522.0456 8.0869	- 6866 45448 . 6279 • . 8896	1.5429 43952.5266 0.0900	-2,4977 33413,1667 8 88 80	- 3. 5331 33649 - 2323 8. 8866	-5.7229 89276.6164 8.000
TINE, SEC L, LBS FULL, LB	360 9.8461 523304.5269 115279.4481	5477.3220 481811.63 2 157169.56	7498.4910 440321.5515 109055.6740	9698.5435 395821.3657 240949.7870		969%, 5435 398821, 3657 240949, 7870	984()-3112 400신남시-1998 241135-7987	100481,1585 4012181,5828 2412621,1649	10373,4425 401759,6851 2 - 1824,5155	111 77.6246 \$99486.2352 244031.5763	11280,080,080 309109,0731 24434,3848
RANGE, WI BF, Mi Flap, deg	1196.7566 9467.2237 9.000	1976.3135 9407.3502 0.0000	2820.0278 9332.1245 0.9600	3739.8524 9248.6226 8.6886		7735.8524 8,8008 8 6004	3725.4882 8.8888 8.8988	0.852,0322 8.0069 8.0009	3915.9088 8.0008 0.0008	8400 ° 8400 ° 8400 ° 9	4812.2168 8.6868 26.6868
UVUG SFO LBVH/LW FUEL, LBVSEC	.8200 1.3790 23.2967	, 7558 1.3725 21.5862	19,8864	.5255 1 3806 18-2162		. 67256 . 6666 1. 3385	. 62554 8. 6868 1 296	.6258 0.0000 1.1578	. 6243 8. 8090 1. 6886	. 6289 0.0000 3.8976 3.8976	6262 66262 1.05555
287. 20 7. ₩\$X 8. 7. 3.	528353,5515 8,5481 8,8894 8,9894 8,4098	426463,4339 8.5099 82997 8.8999 8.8999	444573,3268 8.4375 .8899 8.0000	402683.2130 8 3223 8 3162 8 9163 0.0000		482653,2136 7,3223 8,8880 8,8886 8,8886	462497.2813 8.0075 9.0000 9.0000	402269.8352 5.1285 0.0000 6.0000	401808.1845 12.1697 0.0004 0.0004	399661.4237 11.8752 4.0070 0.8880	399198.6152 4.4715 8.2488
O, PSF CD CT CT	656.0687 .0116 .1240 6.0000	696.2857 .0128 1.115 9.0008	568.3337 .0119 1.1237 0.0000	499.7632 .0121 1.0913 0.2008		499.7632 .8121 1.8313 8.8888	371.1567 18156 1.0264 0.0000	300.0445 .0181 . 469 0.0900	277,7253 .0151 21512 6.8988	1,400 4,400 4,000 4,000 4,000 4,000 4,000 4,000 4,000 0,000	85.1151 - 1335 2.2635 9.000
	62111.1111 .1016 1.8058 9.8058	63971.1111 1823 1.9896 1.9866	65411.1111 .1001 1.0000 0.000	67811.1111 .1017 1.0400 9.0000		67811.1111 .1017 0.9090 0.3006	54876.9141 1374 9.0008 9.0008	5+095,5976 •1654 •2654 •867 •867	37887,9297 -1845 -9008-0 -0008-0	4 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	1,4 ,6 ,6 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0 ,0
ALP U.K ALPAN DEG HRAX, DEG	1502.7796 0.0000 68828.8277 0.000	1502.7795 8.8000 82932.6143 8.6040	1582.7796 0.0000 58642.7996 6.4989	1504.2655 9.0000 51252.2833 9.3000	NT.	1504, 3655 8.0000 5.862,2888 9.0000	1185,8%67 86,0000 466,00064 8,00064	855.1458 855.1458 54487.1155 54487.1155 6.0000	547.7689 9.8689 76584.7651 9.8885	260, 3333 0, 0000 182711, 9628 0, 0060	159, 4264 9, 5000 202078, 1569 9, 9008 PROFILE
4 8 7 - 1 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	0.5 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	2.6203 6.8000 56617.4655 6.8000	2.5240 0.0000 52185.2364 8.4963	7,6209 6,9029 47522,0455 6,0000 6,0000 5MD OF CRUISE	START OF DESCE	2,528 1,189 8,999 9,999 9,997	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.5100 1.1000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		01321130 0133

· (*

,

ş

•

6

;

•

110

TABLE C5. - LISTING OF PLOT TAPE (TAPE11).

Le service and Harris H.

ļ

ł

۲

•

.

۰ ۱

↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓
↓

ì.

(**1**):

1.00

HOSHJANS	IC TRANSPORT.	JP FUEL, DESI	ON POINT			9791E FC		32.6.8
1		5812,29855 F1101 F2000	1407130				315.89999	5.76509
							4 1 4 1 4 1 4 8 4 4 4 4 4 4 4 4 4 4 4 4	8.68017
							277.16443	34.24623
			84101 * 9777					
2	130.40507	260.35.35					21202 36661	158777 25596
บี			100		46370 B1401			3134.58616
	14262.2001 5777 00000	23003 P347		25111 69666		187.45841	58967.60726	273224.67813
	5717.55206		48189.99999	12848.00003	0.09000	358978.23019	9.99999	8.96696
	99999	00000	9.6999	9.99999	-18.83808	-19.63639	-19,04998	-18.0098
	-15.00000	-18.4000	0.0000	6.9639.9	8.89999	0.0000	0.5005	00000
	9.99996	8.99996	0.0000					
SUPERSON.	IC TRAMSPORT.	JP FUEL, EFFEC	T OF 1/U HT U/	S+110 PSF FOR R				19.40
ف س	43414.49589	3999.54655	3.31663	222.46966	2 . 628 9 0	30.02766		
	5849.22269	40213.40599	1.90418	185.53645	47.46396			
	27.31986	9.96968	6.64630	17484.77857	224.88762	186.39166	18661	
	5.48533	1.38536	8859.42928	9.94239	1228.68830	2522.86159	248.88466	
	166.72781	22.768'2	198.92763	126468.81833	116489.24472	2495.59280		ようハスス・ロークがす
m	11192.66796	70738.64537	2474.92667	3457.07895	49672.5672.000	54421.81257	19576.53636	
	96438.49870	୧.୫୫୬୫୫	1789.68943	3815.91559	36834.43279	8428.0178.8		
	6241,50347	4627.89653	2491,29893	2511 . 09699	8200.0058	163.01644	56126 - 8612C	
	16284.38366	271193.82793	48130.089636	1 C X 4 K . 0 6 6 6 6				
	00000 01-		000000 0		00000 0			0.02000
	-10.00000	- 16.0000	0 00000	3 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				
Q C	6166619 6166619			00000 000	N. C.V.R.P.	30.86555		00000
ມ ບ								C. 76521
							3153.35732	8.11511
			20000 - 20000	66666 B			241.95841	38.53348
	126.64213		187.37748	78338.12213	166876 47901	2947.03929	255101.41433	42591.11215
(Å	#4692.52647	78016.22666	2482.23974	3466.78356	49:54.63274	24526.47313	12582.21989	162228,57572
,	37205.65789	66666.6	128.60000	3824.11067	12813.76556	3451.67185	6.69863	2838,99530
	6242.56298	4633.31925	E+20.00-2	25111.00000	8200.0000	163.23365	58136.87711	263179.22139
	16320.92060	279588.14199	48150.00000	12848.00050	6.0000	340528.14159	9.03600	6.00043
	-19.39698	999999999	0.0000	99993 3	-16.0000	-10.00000	-10.00000	-10.95064
	-10.30068	-10.0000	0.00000	6.00990	9.96999	6.0000	6.69660	0. \$0000
	6.6669.8	999999.9	0.0000					
e n	71585.39432	3998.96557	3.05117	242.00000	S . 52000	28.66473		9995E.
	6165.36 C	58763.72206	31.492.1	107.32209	47.46395	6.85966	315.96685	5.76521
	6.7 - C	8.606.60		11684.00056		184.001		
							10700.00FU	10.00.00 10.00.00 10.00
"		2010111 - 00000	100.001 1000 1000	7690 AA170			15626.21133	92346-38-391
1	45937.17863	80000	1789,66699	18476.5425	71664.55344	8797.02638	8.84868	2877.91713
	6257.83747	4711.61556	2567.06011	25111.000449	8290.0000	166.35860	53683,81925	279537.42699
	16404.35192	2622-1-2582	48186.0000*	12848.00000	8 . 9 5 5 6 6	356969.77292	6.0000	9.99994
	~10.00000	6.96666	0.00000	0.00050	-10.0000	- 10.00000		- 19. Saus
	9999999 91 -			10000.0				
ň	90439 8	999999,9 96367,7364	8 . 6 4 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	900 . A00	2.62420	18008 . NA	00000 0000 0000	. 4000
J	6422.26497	70644.255412		110.58482	47.46356	00000 N		5,75521
	27.31966	969993 . 4	6.0000	9954,52923	222.25790	183.56951	9012.35597	5r06a.d
	8.01312	22146.3	9955.34810	0.0000	238.26775	3490.81719	235.69036	16717-01
	19475.351	21.52128	189.51368	55792.11679	205446.33485	4237.87181	273400.62995	59289.6518H
M	29489.68183	8E+++ +4428	2765.42100	3795,72993	51902.18025	26853.67192	17942.07592	178033.72343
	56695.64965	0.0000	1780.00000	4699.01795	61975.55868	2253.61925	999999 N 1 1	2227.85786
	5677-51199		2023.61616 40.00 00000	89998.11153 11153	999999. GH28	178.41576 176763 06633		ANTER DARKS
	10000 01-0400		90000 00 00 00 00 00 00 00 00 00 00 00 0			11100000000000000000000000000000000000		999999 91 -
	- 19.89000		0.900.0					0.00000
		a, 00038	6.60000		A . 407 0	~ ~ ~ ~ ~ ~		****
		****	****					

China De la Collingua .

95. P.

ANTE ALL

. . . A.

đ

له سل ۲

1 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000

ł

----- 18 (1442/1993), Angle S S . An S

	γγομι Nave	(-								
		59.40000	.S. \$ 0 \$							
14).		66.8000	-1000004.9800 -1000004.9800 -1600004.0000	91308822576 10515280.5576 1154385.3898 1154385.3898	19859.9402 14369.9898 14368.9898 14368.9898	14001.1002 21030.4131 23087.7078 24218.6501	62062.3131 53850.0900 62825.0000 98308.8258 118296.0738 114298.1736 144298.1736	-11000000.0000 0100000.0000 1000000.0000 22.5933 21.4604 21.4604 13.75579 17.5579	14(00000.0000 10(0000.0000 10(0000.0000 120(0000.0000 1252.8045 1255.8045 1255.8045 1260.2276 1541.2472	-1603000.0000 1460300.0003 1060800.0003 1060800.000 10201 1712 1712 1712 17553
BASIS (TAPE		76.8666	-1600908.6008 753303.1376	7832899,99899 833814,7925 994698,48888 992997,61888	14603.8015 12655.0523 12523.3722	10000000000000000000000000000000000000	54764.2557 56947.7353 55747.7948 65747.7948 93804.1642 93804.1642 113011 3110 136537.0888	-1999 27,2180 27,2180 27,9885 27,9885 24,5564 24,5385 24,5196 28,5342 24,5196	-1000000 0000 7726.7754 5502.6119 5675.2538 5675.2538 5675.2538 5675.4837 4510.4837 4510.4837 4516.7968	-1999006.00006 603006 01422 1827 1823 1823 1823 1823 1823 1823 1823 1823
THUMBPRINT		e.eeee	.46000 LB)4 715783,7569 663367,6176 67765,6176	708055,7552 752113,3542 806232,1905 8762228,0906	10225.5680 3476.6803 9679.4671	10744.4766 11517.6827 12517.5442	44736.8598 49752.5713 59286.7361 70865.5795 86612.7595 86612.7595 86612.7595 126481.3653	2000 2000 2000 2000 2000 2000 2000 200	11333.5965 8995.35965 7539.6552 7574 55798.25774 55798.85774 52798.84747 5208.84747	100 100 100 100 100 100 100 100
ISTING OF		89996	35000 NM, HOURS, OR 655670 3222 65785.4515 65438.4515	65233',6900 717325,0543 764214,2675 830501,8905	8195.8799 7970.3181 8179.8057 8179.8057	9552.6783 9552.6783 10381.4736	40979.3951 47821.9989 57258.6402 68233.1690 886393.6690 886599.0686 955599.0686	00000000000000000000000000000000000000	10000 1000000	6.6.1.6.7.5 6.6.1.6.7.5 8.0.0.7.6 8.0.0.7.6 8.0.0.7.6 8.0.0.4.4.0.0 8.0.0.4.4.0.0
ALE CO 1	JP FUEL	868 D 6 .	000 5 weight, 639843.5563 638843.5563 638843.5955	698580.3168 728641.98885 777923.3879 838582.7715	7109.3728 7098.1555 7098.9705	8095.0221 8095.0221 80543.5922 9321.1419	39998.2223 47912.5497 57558.1465 59658.0316 81972.2237 81972.2237 91135	20 20 20 20 20 20 20 20 20 20 20 20 20 2	14231.3244 11487.2475 9558.8321 8259.1239 7295.1239 6537.9588 6537.9588 5376.2653	6.40.400 6.40.400 6.000 9.00.4000 9.00.4000 9.0000 9.0000000000
TA	LC TRAMSPORT, SF OR SQ FT)	8 108.084 - 0r (B)	840E, 0R 6805 637433.6152 640572.8968 640572.8968	521562-1748 796773-76677 796773-7667 864123-3578	6374.9362 6405.7298 6641.4712 6641.4712	7460.8025 7460.8925 7467.7378	10000 1000 1000 1000 1000 1000 1000 10	AL. 34.7758 34.7758 34.8671 28.6851 28.68922 288.68922 288.68922 283.88922 233.88222 233.88222 233.87222 233.87222 233.87222 233.87222 233.87222 233.87222 233.87	111 152859 152859 152859 19585 19586 19586 19586 7159 9556 7159 9556 7159 9556	6187 1855 1855 1855 1855 1855 1855 1855 1
	SUPERSON]	7 110.0000 0R TPE (00000000000000000000000000000000000000	58685.6227 5865.6227 5865.6227 6105.3223 6105.3223	6862.3489 6862.3489 8686.9489 8686.9456	10213-1764 10213-466 13391-466 18391-466 18391-466 18391-466 18391-7528 18947-5283 22315-6519 22315-6519	64 30 30 30 30 30 30 30 30 30 30 30 30 30	7 11 11 11 11 11 11 11 11 11 11 11 11 11	1 1 1 1 1 1 1 1 1 1 1 1 1 1

,÷

)

ł •

. ,

TABLE C6. - CONCLUDED.

.

.

,

*

÷

: .

•

ł

,' •

1

a dana ar ba

ţ

<

Ę

Dele ta ille

CRUISE THRUS	T MARGIN.					
. 9999	9002	. 9995	. ***	· 000 ·	-100000.000	-1900(00.000
.1697	2021.	. 0900	. 6964	6000.	2000.	-1900600.0000
9610	.12096	. 2213	9C21.	.0589	. 91.96	-120000000.0000
	5 - - -	1965.	.2708	2122	9569.	7669.
ju i		5782	5268	C+16.	44.0	1991
a citation and a cita	7484	0919	1923	45.08	3365	
	2010	22.00	0000		4574	
			66.47	3666 6	-100000 2000	
5 / CF . FCIF	1941. SP25		1.900.1	4.6400		A001 00000 -
5940.5721	5935.3481	4642,6292	3164.3392	1926,2214	.8156	-10000000.0000
9012,3560	9376,9040	7235.6451	4846.3222	3697.3749	1559.7558	11.5479
12326, 8392	1985.5901	18558.9534	7831.1389	5452.2283	3585,1918	1618.7390
			1070 0708	21.20 FR 22		PLDS BALL
18240 4168	17017.7476	14982.1006	11356.2160	19981.3150	7851.0730	4867.5000
						0000 00000 I
C/ 88 . + UU	214.6569		191.0410	C/ 20.8/1		
224.8203	212,0506	201,3639	190,0438	178.0015	165.1211	-10000000.0000
222.2447	2 2.1079	201.4036	196.1148	178.1205	165.2176	-1030003.3008
222,2579	212.1248	201.4633	188.1036	175.9488	163.0897	1451,1326
10.01	C122.000	0011.001	8778 781	175.0801	163.1811	141.2435
5.						
217.9824	207.8243	197.1446	1,5.8524	173.9780	161. 2835	147.4507
APPROACH						
180.3916	172.8891	154.4927	154.8730	143.8533	-1060609.9063	-10000000.0000
182.3134	174.6259	166.2759	157.2411	4212.241	136.2328	-1000000.0000
183,0620	175 3873	167.1346	158.8943	148.4039	137.6804	-1980898.0088
187.5605	175.8456	167.4074	158.5171	140.0147	9503 851	126.0670
141.000	1/00.01	16/	BARE.BCI	144.55286	132.2446	9478.21
183.5670	175.9596	167. 507	158.9880	149.7138	139.50.24	126.1878
FUEL FRACTIO	- SH					
.4837	.4767	.4726	2674.	.4318	-1688400.0080	-1000000.0000
. 4722	.4659	. 1606	. 4561	7534 ·	. 4548	-1000040.0000
.4685	.4616	. 4551	4504	.4458	. 4401	-1000040.0808
. 4664	.4596	4536	. 4 4 8 9	. 4487	1454.	2024
1567	2057		000	Dack	DUCT	
	1000					
TACESS FUEL		3000.			1011.	
		3883 38061-	07 JC 63397			
1000 10000 -				1 T L V . J D T J		
						19999 9346691-
				1 /8696.8/15	JEAC JS. (410	
D-17.UR-0/1	0700°04070	5000 UIN63	8867J. 5005	200861.21/0	436683.5561	
			1986/1.0668	243347.87	586444.6574	1018014 . VC60
	-10740.4P/A		138196.65/9	292579.2764	695464.8377	1516309 839

\$.

1. Report No. NASA TM-86357	2. Government Accessio	n No.	3, Reci	pient's Catalog No.
4. Title and Subtitle			5. Repo	ort Date
PRELIMINARY SIZING	AND PERFORMANCE OF	AIRCRA	AFT Jul	<u>y 1985</u>
			6, Parto	orming Organization Code
			505	5-43-43-01
7 Author(s) David E. Fetterman,	, Jr.		8. Perfo	orming Organization Report No.
			10. Worl	Unit No.
9. Performing Organization Name and Add	1916			
NASA Langley Reseau Hampton, VA 23665	rch Center		11. Cont	ract or Grant No.
			13. Typ	of Report and Period Covered
12. Sponsoring Agency Name and Address	 		To.	chnical Momorandum
N A	a and Coasa Admini	ctuatio		
National Aeronautic Washington, DC 20	546 546	5 LT & L (14. Spor	soring Agency Code
16. Abstract The basic processes baseline aircraft a propulsion, weights requirements are de by applying the met	s of a program that and determines thei s, and mission perf efined and output 1 thod to several typ	perfo r subs formance isting bes of	rms sizing op equent effect e are describe s explained. aircraft are o	erations on a s on aerodynamics, ed. Input Results obtained discussed.
17. Key Words (Suggested by Author(s)) Design Mission analysis Hydrogen Methane Jet Propelier	1.	8, Distribut Un c	ion Statement Classified -	Unlimited Subject Category 05
19 Security Classif. (of this report)	20. Security Classif (of this pa	ge)	21. No. of Pages	22. Price
Unclassified	Unclassified		114	A06

6....

\$

N-305

VIERNE NONCE TO SERVE CONT

For sale by the National Technical Information Service, Springfield, Virginia 22161

-