NASA Tcibuical Ḿemorandum 80557

PRE : iminar: sizing and performance of aircraft

David E. Fetterman, Jr.

```
Juey 1985
```


($\mathrm{A} A S \mathrm{~A}-\mathrm{MM}-86357$)

SUMMARY
A procedure that allows preliminary assessment of the effects of component size changes on the characteristics and performance capability of aircraft has been developed into a computer proyram. Applications can be made to subsonic, supersonic, and hypersonic aircraft using JP, liquid-hydrogen, or liquid-methane fuel. Jet engines as well as propeller systems can be treated. Basically, the program requires an input baseline aircraft on which component sizing changes are made; new aerodynamic, propulsion, and weight characteristics are then determined and a mission profile, including a reserve fuel segment, is computed to find the new aircraft's range capability. One of the output options provided by the program is the basis for preparing aircraft sizing "thumbprints" which pinpoint the wing and engine size for best performance.

INTRODUCTION

A computer program for aircraft sizing is a useful tool for preliminary aircraft system studies. The method must account for the interactions between aircraft geometry, derodynamics, propulsion, and weights while providing rapid, low-cost evaluations of design ontioris. Important advantages offered by this capability include the realistic assessment of technological advances and the identification of promising areas that justify further stadies in greater depth.

A program that satisfies these requirements has been developed for use in the Aeronautical Systems Office at the NASA Langley Research Center. An earlier version was reported in reference 1. Briefly, the method performs sizing operations on a baseline aircraft and then a mission analysis to determine the effects of sizing on range. In the fer instanc.as where comparisons are possible, results of the method are in close agreement with similar ones in industry (refs. 2 and 3).

This paper enntains a tescriptinn of the procepses used in the ornurem, snme applications of the proyran to subsonic, supersonic, and hypersonic aircraft, and definitions of input and output. For identification purposes, the progran is called ASP, (A)ircraft (S)izing (P)erformance program.

SYMBOLS
BF Breguet factor, $V(L / D) / S F C /\left(1-V^{2} / g R_{e}\right)$
C centigrade
$C_{0} \quad$ drag coefficient
$C_{D, B L}$ engine bleed drag copefficiant
$C_{D_{0}} \quad$ zero-lift drag coefficient
$C_{L} \quad$ lift coefficient

0	drag
$\mathrm{D}_{\text {MAX,F }}$	maximum diameier of fuselage
$F_{N, F}$	fuselage fineness ratio
g	gravitational acceleration
H	altitude
L	lift
L/D	lift-drag ratio
(L/D) MAX	maximum lift-drag ratio
$L_{\text {F }}$	length of fuselage
M	Mach number
P/W	shaft horsepower-to-gross weight ratio
R	range
R_{e}	radius of earth
SFC	specific fuel consumption
t	time
T	thrust
T/W	thrust-to-gross weight ratio
v	velocity
$V_{\text {AP }}$	approach velocity
$V_{\text {LO }}$	lift-off velocity
$V_{\text {rotate }}$	velocity at start of rotation during takeoff
W	weight
W_{F}	fuel weight
W_{G}	gross weight
W/S	wing loading, gross weight/reference area
2	angle of attack
θ	flight path angle
${ }^{\text {F }}$ F	flap deflection
2	

Subscripts

AP	appruach
BL	baseline aircraft or bleed drag
F	fuel
LO	lift off
MAX	naximum
SL	sea level

A dot over a symbol denotes its time derivative.

PRELIMINARY CONSIDERATIONS

The computer program described herein cannot be used to design an aircraft concept. Instead, the program performs operations on a baseline aircraft which has already been designed in sufficient detail to provide the required inputs. Within the program, this baseline aircraft is sized according to optional input values such as wing loading, engine thrust, number of passengers, and gross weight. After sizing, the aerodynamic, propulsion, and weight characteristics of the aircraft are determined; then a mission profile with reserve fuel segments is computed to find the range of the aircraft.

Some of the output provided by the program include:

1. Range for given gross weight and number of passengers
2. Gross weight for given range and number of passengers
3. Number of passengers for given range and gross weight
4. Pa;load - range curve
5. Passenger and fuel offloading
6. Effects of technology advances in aerodynamics, propulsion, and weights
7. Effects of in-flight refueling
8. Mission radius to payload drop
9. Information for preparing an aircraft sizing "thumbprint." (A "thumbprint" is a map of constant value contours, like range or gross weight, plotted as a function of engine and wing size.)

The program can he applied to subsonic, supersonic, or hypersonic aircraft using JP, liquid-methane, or liquid-hydrogen fuel. Jet or propeller propulsion systems can be considered.

Five baseline aircraft have been chosen to illustrate the capabilities of the program. Computer drawings of these aircraft are shown in figure 1. All aircraft are preliminary concepts designed during in-house activities.

METHODS

Component Sizing

Fuselage.- To simplify drag calculations nd packaging, the fuselage is approximated by an equivalent body consisting of a coristant area midsection with end caps having a Sears-Haack profile (ref. 4). The constant area midsection contains the passengers, door-galley-lavatory sections, cargo, and, if required, cryogenic fuel tanks. Variables that affect the passenger compartment are the number of seats abreast, seat pitch and width, aisle width, and the length and number of door-galley-lavatory sections. Although these quantities may be input, their values may not all be preserved because final values are determined from the baseline aircraft using input values for passenger compertment length and abreast seating arrangenent.

The arranyements available for fus' 'ge packaging are shown in figure 2. The first arrangement (fig. ?a) applies to aircraft with one-passenger level and conventional fuel. In addition to the passengers, the arrangement contains the cargo normally stored bened:h the floor; however, if not enough space is available, the excess cargo is stored in a section behind the passenger compartment. The cargo is assumed to be stored in cargo containers which occupy 60 percent of the available volume.

If the aircraft uses cryogenic fuel, the second arrangement (fig. $2 b$) places all the cargo behind the passenger compartment and fuel tanks are located beneath the floor. If more fuel volume is required, it is located in full-depth sections of the same length at both ends of the midsection.

The third arrangement (fig. 2c) has two identical passenger levels with aft cargo storage. If cryogenic fuel is required, it is stored in duplicate tanks fore and aft of the passenger compartment.

In application, the midsection length and diameter are calculated first for the requirements of the baseline aircraft. Then, from the length of the baseline aircraft, the length of the fuselage end caps are found. During sizing, a new midsection of different length and diameter is determined to satisfy the requirements for passengers, cargo, abreast seating, and fuel volume (if the fuel is cryogenic). The new fuselage length is then obtained by adding the end caps to this midsection.

Wing and Tail Surfaces.- From the inputs for the baseline wing and tail surfaces, definftive geometric properties are determined and then normalized by a representative dimension (such as wing root chord or geometric chord). Baseline tail volume coefficients are also found for each surface. During sizing, the nondimensional properties are used to shape the components in a geometrically similar manncr. Wing size is specified by wing loading or reference area, while the tail surfaces are sized to keep their volume coefficients equal to baseline values. The locations of the components are established by keeping mean aerodynamic chord positions (25 -percent subsonic, 50 -percent supersonic) at the same percent bodylength station as the baseline aircraft. If overlap occurs between the wing and tail surfaces, the program will output a warning and continue operation.

Fuel Jolume.- Conventional fuel is assumed to be stored in the wings and in the fuselage where wing carry-through structure is located. The maximum wing-fuel volume, $V_{F W}$, is givon by

$$
V_{F W} / V_{W, E X P}=K_{A}+k_{B} V_{W, E X P}
$$

where $V_{W, E x p}$ is the total volume of the exposed wing, K_{A} a constant deterinined from the baseline value of naximum wing-fuel volume, and $K_{B}=7.10 \times 10^{-6}$, which was derived from studies of wing-fuel capacity performed by the Kentron International Inc., Kentron Technical Center, Hampton, Virginia. The maximurm fuselage-fue? volume is scaled from the aseline value and it is assumed to vary directly with root chord, maximum thickness of the wing, and the maximum width of the fuselage.

Cryogenic fuel is contained only in the fuselage at locations covered previousily under fuselage sizing. Fuel tanks are simple constant area tanks having a length that provides the required volume. The tank cross-sectional shape is the same as the fuselage after accounting for the wall thickness for cryogenic tankage.

Propulsion System.- The length, L_{N}, and diameter, D_{N}, of circular nacelles are sized by the installed, sea level, statlc thrust, $T_{S L}$, in the following manner:

$$
\begin{aligned}
& \left.L_{N}=L_{N, B L} \cdot T_{S L} / T_{S I, B L}\right)^{N} \\
& D_{N}=U_{N, B L}\left(T_{S L} / T_{S I, B L}\right)^{.5}
\end{aligned}
$$

where the subscript $B L$ refers to the baseline aircraft and $T_{S L}$ varies with input thrust-to-weight ratio (or power-to-weight ratio for propeller-driven aircraft). The engine sizino exponent N_{L}, which varies with engine concept, is an input.

For two-cimensional inlets, the wetted area is assumed to scale directly with thrust. Both the length and width of these inlets, therefore, vary directly with $\left(T_{S L} / T_{S L}, B L\right) \cdot$

In a similar manner, the propeller diameter, D_{p}, is sized by

$$
D_{P}={ }^{1 J_{P, B L}} \cdot\left(T_{S I .} / T_{S L, B L}\right) \cdot 5
$$

and the RPM of the propeller, RPM $_{P}$, and engine, $R P M_{E}$, by

$$
\begin{aligned}
& R P M_{P}=R P M_{P, B L}\left(T_{S L, B L} / T_{S L}\right) \cdot 5 \\
& R P M_{E}=R P M_{E, B L}\left(T_{S L, B L} / T_{S L}\right) \cdot 5
\end{aligned}
$$

Nacelle positions are established by keeping their lengthwise locations a constant percentage of the local wing chord arid their spanwise pod-to-pod and pod-to-fuselage clearances a constant percentage of wing span.

An illustration of the effects of these sizing procedures on the supersonic transport is shown in figure 3.

AERODYNAMICS

The baseline aerodynamic input includes lift and drag polars for both takeoff and higher speed conditions and zero-lift drag items. All, except the takeoff aata, are corrected for sizing effects. Corrections are obtained by applying the methods described below to buth the baseline and the sized aircraft, then adding the difference in the results to the baseline input va?ue.

Lift-Orag Polars.- For subsonic aircraft, the shape of the lift-drag polars are functions of wing aspect ratio, thickness, and sweep, and aiso Mach number when compressibility effects become important. To account for these variables, the program uses a method based on the drag build-up system given in reference 5. Some results that the method provides for sizing variations to the subsonic transport are shown in figure 4.

For higher speed aircraft, the program treats only wings that are geometrically similar to the baseline (equal aspect ratio, sweep and thickness ratio). It is therefore assumed that the shape of the lift-drag polars for these aircraft is not affected by changes in component size.

The lift-drag polars at all speeds will shift along the drag axis because of drag increments that result from sizing effects on zero-lift drag.

Lero-Lift lrag.: The items that concribute to $C_{D_{0}}$ are the friction drag, roughness drag, and wave drag. To these, engine bleed and air-conditioning drag must be added if they are not included in the baseline engine data. All drag items are corrected for sizing effects. The drag coefficients for roughness, $C_{D, R U F}$, airm conditioning, $C_{n, A C}$, and engine bleed, $C_{D, B}$, vary by

$$
\begin{aligned}
& c_{D, R U F}=\left(c_{D_{\text {RUF }}}\right)_{B L}\left(s_{\text {WET }} / S_{R E F}\right) /\left(s_{\text {WET }} / s_{R E F}\right)_{B L} \\
& c_{D, A C}=\left(c_{D, A C}\right)_{B L L}\left(T_{S L} / S_{R E F}\right) /\left(T_{S L} / s_{R E F}\right)_{B L}
\end{aligned}
$$

$$
c_{D, B}=\left(c_{D, B}\right)_{B L .}\left(T_{S L} / S_{R E F}\right) /\left(T_{S L} / S_{R E F}\right)_{B L}
$$

where the aircraft reference area.

Wave Drag.- To avoid the long computing times required to determine the wave drag by existing computer codes, a quick, simple, but approximate approach was adopted. The method treats the aircraft as a collection of isolated components, all exposed to free-stream conditions. Since the wing and tail surface vary geometrically along with the aircraft reference area, the wave-drag coefficients for these surfaces are assumed to remain constant as the size of the component changes. Sizing, however, does affect the fuselage wave-drag coefficient. As mentioned previously, the fuselage is composed of a cylindrical midsection with identical end caps. Only the end caps are assumed to contribute to the wave drag and their shape was chosen to be a Sears-Haack profile which allows the fuselage wave-drag coefficient to be obtained (see ref. 6) by

$$
C_{D W, F}=24 V\left(S_{M A X} / S_{R E F}\right) / L^{3}
$$

where V, L, and $S_{\text {max }}$ are the total volume, length, and maximum cross-sectional area of the fore- and aft-end cap combination.

The contribution of the engine nacelles to the wave drag is considered to be small enough to ignore the effects of sizing.

A comparison of the results of this simple approach with those from the wavedrag program of reference 7 for the supersonic transport aircraft with JP fuel is shown in figure 5. Although some differences do occur, the method provides an improvement over the assumption that wave drag is unaffected by sizing.

Friction-Drag.- For calculating skin-friction drag, the fuselage, tail surfaces, and engine nacelles are treated as flat plates with corresponding wetted areas and lengths. The wing, however, is traated as a collection of strips with the strip mean geometric chord as the characteristic length. All surfaces are at zero angle of attack. Skin-friction drag corrections are made at all Mach number-altitude combinations required by the mission flight profile.

Two different procedures are used to calculate friction coefficients. One, which applies to fully turbulent flow, uses the reference temperature method (ref. 8) along with the constants for turbulent flow given in reference 9, and the Prandtl-Schlichting formula for incompressible average skin friction (ref. 10). An input value for emissivity is required for the solution of wall temperature.

The other procedure applies to mixed laminar-turbulent flow and is based on assumptions of an adiabatic wall temperature, a recovery factor of . 88, and a discontinuous change from laminar to turbulent flow at the specified location. Since these assumptions are more appropriate to wind tunnel, rather than flight conditions, the results are not used directly. They are used, instead, to increment the fully turbulent flow results obtained as described above.

An illustration of the effects of sizing on the zero-lift wave drag and the maximum lift-drag ratio for the supersonic JP-fueled transport under turbulent flow conditions is shown in figure 6.

WE IGHTS

The weight input for the baseline aircraft include component structural weights, propulsion system weights, system and equipment weights, and crew, passenger, and cargo weights. Empirical weight relationships are used to find the effects of sizing on each item. These emperical weight equations and the method in which they are used are described in Appendix A.

An example of the weight results obtained from sizing the supersonic JP-fueled transport is shown in figure 7.

MISSION ANALYSIS

After the aircraft is sized and its aerodynamic, propulsion, and weight characteristics are known, a mission analysis is made to determine the range capability. The mission profile includes taxi, takeoff, climb-to-cruise Mach number, climb-to-cruise altitude, cruise, descent, apprcach, and reserve segments. For supersonic cruise missions, a subsonic cruise leg may also be specified for the outbound and/or inbound flight segment.

Taxi and Takeoff.- Uuring taxi, the engines a ee throttled to provide the fuel flow rate and thrust required to overcome rolling iriction. The fuel for taxi is found from this fuel flow rate and the input taxi time.

The Mach number-altitude profile during takeoff is not input; it results from influence of the dircraft's aerodynamic and maximum power characteristics on the equations of motion.

$$
\begin{aligned}
& \frac{1}{g} V=(T \cos x-J) / N-\sin \theta \\
& \frac{V}{g} \dot{\theta}=(T \sin x+L) / W-\cos \theta \\
& H=V \sin \theta \\
& R=V \cos \theta \\
& \dot{W}=-W_{F}
\end{aligned}
$$

During the ground run, these equations can be solved easily beraase $\dot{\theta}$ and \dot{H} are zero. But after "lift-off," when these simplifications no longer apply, they dre solved by more tine-consuming numerical integration using the fourth order Runge-Kutta formula.

The takeoff segment includes the ground run and climb over the obstacle to an altitude of 400 feet. Analyses include "all-engines-go" arid "one-engine-out" situations but nu analysis of the balanced takeoff field length (ref. 11) is made.

As shown in figure 8, the the ground run begins at zero velocity, zero flap deflection, and ground angle of attack using takeoff aerodynamics that include landing gear drag increments and ground effects. At velocity $V_{\text {rotate }}$ the flaps are deflected and the dircraft begins its rotation to the iakeoff angle of attack. After rotaition is complete, the angle of átack and flap deflection are held constant until "lift-off" occurs. After "lift-off," the aircraft climbs with angle si attack and flap deflection unchanged; however, the aerodynamics are corrected for landing-gear drag retraction over an input tine interval and for the diminishing influence of ground effect over an input altitude interval. The climb continues at constant angle of attack until the input climb gradient is reached; then, angle-ofattack changes are made to maintain this gradient. The end of the takeoff segment occurs when the aircraft reaches an altitude of 400 feet.

When the dircraft reaches the height of the obstacle (typically 35 feet) 115 percent of the horizontal distance covered is the takeoff field length when all engines are operating; but, for the "one-engine-out" condition the takeoff field length is the actual distance.

The minimum takeoff field length, as indicated in reference $1 i$, nccurs at an optimum value of the velocity for start of rotation, Vrotate. If more than a few aircraft are to be analyzed, however, the computing time required to find the variation ill takeoff field length with $V_{\text {rotate }}$ becones prohibitive. A shorter approach was therefore adopted in which an iterative solution is used during the ground run to find the value or V rotate that allows rotation to be completed and the takeoff angle of attack to be attained just at "lift-off." The takeoff field length that results from this value of $V_{\text {rotate }}$ is a close approximation to the minimum value as shown in figure 9.

Climb.- After the takeoff phase is complete, the aircraft is at an alitude of 400 feet. Its Mach number and altitude are then phased into the input H-M profile and the climb segment begins. This and all remaining segments of the flight profile use simplified differential equations of motion (ref. 12). These simplifications are based on the following assumptions: the time derivative of the flight-patin angle is zero, the angle of attack and flight-path angle are small, and the aircraft's altitude is negligibly small compared to the earth's radius. For climb, over interval points 1 and 2 along the specified flight path, the weight change, when velocity is increasing, is given by

and, where velocity is constant, by

$$
\ln \left(W_{2} / W_{1}\right)=\frac{-S H}{V} \frac{H_{2}-H_{1}}{1-\sigma / T}
$$

DH/DV is the climb-path slope and the barred quantities represent effective values which are taken to be simple averages of interval point values.

Time and range changes over the interval are:

$$
\begin{aligned}
& t_{2}-t_{1}=\left(W_{2}-W_{1}\right) / \bar{w}_{F} \\
& R_{2}-R_{1}=\frac{\left(V_{1}+V_{2}\right)}{2}\left(t_{2}-t_{1}\right)
\end{aligned}
$$

where \bar{W}_{F} is the average fuel flow over the interval.
The aircraft follows the input H-M profile up to the cruise Mach number unless, for a supersonic cruise mission, an outboard subsonic cruise leg is specified. If this occurs, the climb stops at the input subsonic cruise Mach number and a search (at constant M) is made for the altitude that provides the best Breguet factor with engines throttied. The subsonic cruise leg is ihen flown at constant lift coefficient for the specified range. Next, the aircraft accelerates at constant altitude until it intersects the input H-M profile, which it then follows to the supersonic cruise Mach number. During the climb, the acceleration can be controlled by input to occur at maximum power or at partial power settings that use least fuel.

After the cruise Mach number is reached, a climb at constant Mach number is made to the cruise cititude. Unless specified otherwise, cruise will start at the altitude which provides the best Breguet factor; however, the altitude at the start of cruise can be input directly or restricted by inputs for constant angle of attack, constant throttle setting, or mininum rate of climb. After the cruise altitude is reached, the climb fuel is known.

Reserves.- Since the fuel available for cruise and descent is the remainder after taxi, takeoff, climb, and reserve fuel are allotted, the reserve fuel requirements must be determined next. Reserves can include a trip fuel allowance, fuel for a missed approach, a flight to an alternate airport, and a hold at constant Mach number and altitude. A typical reserve flight profile is shown in figure 10.

The solution for reserve fuel, wnich is iterative since tne weight of the aircraft at the end of descent is not known at this time, starts with the trip fuel allowance. This fuel allowance for subsonic aircraft is obtained from the fuel burned for an input time interval using the fuel flow rate at the start of cruise. For other aircraft, the allowance is an input percent of tha trip fuel, $W_{F, T}$, which at this time may be obtained from

$$
W_{F, T}=W_{F}-W_{F, R}-W_{F, T A X I}
$$

where W_{F} is the total fuel weight, $W_{F, T A X I}$ the taxi fuel weight, and $W_{F, R}$ the total reserve fuel weight (which must be assumed for the first iteration). The fuel for missed approach is obtained by either calculating a "wave-off" and acceleration to an altitude of 700 feet with landing gear retraited and "out-of-ground" aerodynamics in effect, or, more simply, by the fuel burred for an input time interval (typically 2 minutes) at the takeoff fuel-flow rate. For the detailed calculations, the weight at the start of the missed approach segment is:

$$
W=W_{G}-W_{F}+W_{F, R}-W_{F, T P A}
$$

where W_{G} is the gross weight and $W_{F, T P A}$, the trip fuel allowance.
For the alternate airport requirement, the aircraft climbs a linear H-M profile from the end of the missed approach to the altitude at the start of cruise, cruises the required distance, then descends to approach conditions. The total range for these segments is the required distance to the alternate airport. The analysis is performed for various climb and cruise throttle settings and cruise Mach numberaltitude combinations to find conditions for least fuel.

During the descent to the alternate airport, the hold segment is performed. The time for hold is input and the Mach number-altitude combination is again found for the least fuel requirement. The range covered during hold is not credited to the aiternate airport distance.

After all reserve segments are completed, the total reserve fuel is updated and the process repeated until successive values are within . 1 percent. An example of the effects of sizing on the reserve fuel requirements for the superson:; transport are shown in figure 11.

Cruise.- The total fuel available for cruise and descent is now known, and solutions of these segments are repeated until the required and available fuel are within .1 percent. The process starts by assuming the fuel weight for descent (about . 5 percent of the aircraft gross weight) ther finding the fuel for cruise. During cruise, tne aircraft flies at the selected cruise option (like constant C_{L} or others described below) until the cruise fuel is exhausted.

For cruise, the increment in range, R, over interval points 1 and 2 is given by

$$
R_{2}-R_{1}=\overline{B F} \ln \left[1 /\left(1-W_{F} / W_{1}\right)\right]
$$

where W_{F} is the fuel weight used over the interval, and $\overline{B F}$ is the numerical average of the Breguet factor, which changes over the interval because of the input cruise option selected. The computing interval during the main cruise segment is a fuel weight increment obtained from the weight of cruise fuel and an input number of intervals. For outbound or inbound subsonic cruise legs, the computing interval is the entire cruise leg.

The main cruise segment is normall; controlled by different input options. These include: cruise at maximum available Breguet factor, constant lift coefficient (or constant angle of attack), constant altitude, and constant engine throttle setting. The different types of cruise segments, of course, affect the cruise altitude variation and cruise range of the aircraft. Some examples of this behavior for the supersonic trarisport for several wing sizes are shown in figure 12. For all cruise options, excer,t maximum power, the start of cruise was selected to start at the altitude for meximum available Brequet factor.

With the largest wing ($W / S=50 \mathrm{psf}$), the altitudes for maximim Breguet factor are above the climb ceiling. Therefore, unless constant altitude is specified, cruise, with the better range, will occur at maximum power.

With the median wing (W/S :: 85 psf), the maximum Breguet factor at start of cruise occurs at a lower altitude ($60,000 \mathrm{ft}$) and thrust is now sufficient to provide the aititude variation that meets this condition throughout cruise. For this wing and engine size conbination, the constant C_{C} (or angle of attack) nption is equivalent to the maximurn Brescuet factor option and any of these gives the best cruise range.

With the smallest wing ($W / S=110 \mathrm{psf}$), the altitude for best Breguet factor at the start of cruise is below the climb path. A constant altitude cruise with decreasing C_{L} therefore occurs until maximum Breguet conditions can be met and the best cruise range now occurs only for this option.

From these results, regardless of thrust or altitude limitations, it is evident that the best cruise range will always be obtained by selecting the option for maximum available Breguet factor.

Long-Endurance Cruise.- For this type of mission, the cruise segment must use minimum fuel and the program will find the variations in Mach number, altitude, and lift coefficient to provide this condition throughout cruise. If the optimum conditions prove to be unsatisfactory, iher's are inputs available to specify the cruise Mach number and/or altitude. An example of the effects of optimum and nonoptimum conditions on endurance for size variations of the long-endurance aircraft are shown in figure 13.

Descent.- Like the climb, the computing interval for the descent is a Mach number increment. It is defined by the difference between the Nach number for the main cruise segment and the Mach number at the end of descent and an input number of intervals. If velocity is decreasing, the change in time, t, over the interval is:

$$
t_{2}-t_{1}=\frac{W_{1}}{g} \frac{V_{2}-V_{1}+g(D H / D V) \ln \left(V_{2} / V_{1}\right)}{T-D}
$$

and if velocity is constant

$$
t_{2}-t_{1}=\frac{W_{1}}{\sigma^{-}} \frac{H_{2}-H_{1}}{T-5}
$$

Again, numerical averages of interval point vaiues are used for the barred quantities and the altitude at point 2 is found at the lift coefficient for $(L / 0)_{\text {max }}$ with $W_{2}=W_{1}$ (a reasonable assumption since f.sel expenditure during descent is very low $\}$. W_{2} is subsequently incremented by

$$
w_{2}-w_{1}=\bar{N}_{F}\left(t_{2}-t_{1}\right)
$$

After cruise, the dircraft enters the descent phase by making the transition to flight at $(L / D)_{\text {max }}$ during the first computing interval. The remainder of the descent is then performed at (L/D) max. If the aircraft is supersonic and an intound subsonic cruise leg is chosen, the descent stops at the specified Mach number and a search is made for the altitude giving the best Breguet factor. A subsonic cruise at constant lift coefficient is then performed over an input range, after which descent to the start of the approach at $M=.4$ and $H=4000$ feet is calculated.

Approach.- This portion of the descent extends from $M=.4$ and $H=4000$ feet down to an altitude of 370 feet. Using the equat;or given previously for the descent, an iterative solution is required to find the aircraft weight and velocity at the end of the approach. The angle of attack and flap deflection for approach must be input. The takeoff aerudynamics are used without ground effect but the drag inciements for the extended landing gear are includer.

Overall Mission Characteristics.- Typica! results from different segments of the mission analysis are now presented for several wing and engine sizes on îhe supersonic transport with jp fuel. For all size changes, the aircraft gross weight was held constant and the cruise segment was specified to occur at maximum available Breguet factor.

Figure 14 shows the flight frorile that results from changes in wing size with $T / W=.45$. Controlled by input, the climb profile is restricted, but the cruise and descent profiles are different for all cases.

Takeoff results, presented in figure 15 , show that changes in the fuel required due to sizing are sinall; the spread of values is less than .25 percent of the aircraft gross weight. On the other hand, changing lift (W/S), or acceleration (T/W), capability has a large effect on takeoff field length. The velocity at "lift-off" is seen to be primarily a function of wing loading.

Climb results that show excess thrust capability are given in figure 16. Decreasino with Mach number, the excess thrust reaches its minimum value at the end of the clirro, and this general trend is not affected by sizing. Changes in excess thrust are, of course, almost directly proportional to changes in engine size, while those resulting from wing changes are much less pronounced since they reflect only the different drag characteristics encountered during the climb.

The climb time, fuel, and range are shown in figure 17. The effects of engine size are large and aircraft with low acceleration, naturally, take longer times, use more fuel, and cover more range to reach cruise. Wing size does not seem to be too important except for the larger wings ($W / S=70$ and 50 psf) at lower engine sizes where time, fisel, and range increase while climbing to the higher cruise altitude.

The fuel available for cruise has a significant effect on cruise range and time as shown in figure 18. Because of the additive affects of wing and engine size on total fuel and the fuel required for other flight phases, the aircraft with the smallest wing ($W / \mathrm{S}=110 \mathrm{psf}$) and medium engine size ($\mathrm{T} / \mathrm{W}=.35$) has the maximum availahle fuel for cruise. The maximum cruise range, however, occurs at $W / S=90$ psf because the slightly larger wing improves the L / D characleristics without an appreciable decrease in available fuel. The more efficient larger wings produce lower ranges because their high weight limits the available fuel.

Descent results are given in figure 19. Fuel for descent is less than 1 percent of the aircraft gross weight for all size variations. Because the descent is essentialy a glide at $(L / D)_{M A X}$, aircraft with the largest wings give the longest range. The effect of engine size is primarily due to different nacelle skinfriction drag increments.

Approach speeds (fig. 20) are primarily a function of wing size, although engine size also has an effect, but much smaller, because of its influence on approach weight.

Total trip time and range are shown in figure 21. Because the longer ranges in the climb and descent segments (figs. 17 and 19), the lowest engine size provides the greatest overall range.

APPLICATIONS

To show some of the capabilities of the program, application will now be made to four different types of aircraft which include: two supersonic transports, one using JP fuel, the other, liquid-hydrogen fuel; a subsonic propeller-driven transport; and a hypersonic aircraft using liquid-methane fuel. The baseline aircraft are shown in figure 1. During the discussion, input variables may be referred to. For a definition of these variables, see Appendix B.

Sizing Thumbprints

During each computing cycle, selected output from the sizing and mission analysis are recorded on a file named TAPE14. This data can be used to construct the sizing "thumbprint"--a diagram that pinpoints the best wing and engire size of the aircaft. The "thumbprint" contains contours of quantities that are to be optimized and limit contours of quantities that restrict the choice of wing and engine size. Examples of optimizing contours are range, gross weight, and seat miles/gallon, while takeoff field length, fuel limit, maximum rate of climb and thrust margin are typical limit contours. TAPE14 and an example of all the information it contains for contouring is described in Appendix C.

A typical "thumbprint" for the supersonic transport, using JP-fuel, with a range of 4000 nastical miles is shown in figure 22(a). To obtain the data for this "thumbprint," the essential inputs are the required range (RNGDES), wing sizes (WOSTB), and engine sizes (TOWTB). The contours are for constant gross weight and they show that a minimum occurs at a wing loading, W / S, of approximately 90 psf and a thrust-to-weight ratio, T / W, of about . 28 . The limit contours, however, show that this combination is unrealistic because the wing is too small to hold the required firel, and the takeoff field longth is innger than 10,000 feet. If desian requirements include a maximum lift-off speed of 200 k , a maximun approach speed of 160 K , a maximum takeoff field length of 10,000 feet and a minimum rate of climb during cruise of $300 \mathrm{ft} / \mathrm{min}$., the choice of wing and engine size are those included within the boundaries provided by the limit contours for approach speed, takeoff field length, and rate of climb. Influenced by these restrictions, the conditions for lowest weight dircraft would change to about $W / S=82 \mathrm{psf}$ and $\mathrm{T} / \mathrm{W}=.32$.

Although a low gross weight is an important quantity that decreases the cost of the aircraft and its maintenance, it is not the only criteria for selecting wing and engine size. Quantities that relate to the cost of operating the aircraft may also be important. One of these, which could assume a major role if fuel prices multiply, is a high value of the seat-miles/gallon-of-fuel irameter. The corresponding "thumbprint" for the supersonic transport with contours of this parameter is shown in figure 22(b). For this aircraft concept, the conditions for maximuie passenger-miles/gallon are about the same as those for minimum gross weight with flight restrictions considered.

URIGINAL PAQE IS OF POOR QUALITY.

Abstract

"Thumbprints" for the other aircraft are shown in figures 23 to 25 . These include the hydrojen-fueled transport, the subsonic transport, and the methanefueled hypersonic aircraft. The "thumbprints" for the transports are at constant range, whereas the hypersonic "thumbprint" is at constant gross weight. To obtain this "thunibprint," inputs for design gross weight (WGDES), wing sizes (WOSTB), and engine sizes (TOWTB) are required. There are no fuel limit lines on the figures for the aircraft with cryogenic fuel because these aircraft are sized to hold only the required fuel. The symbols on the "thumbprints" define the gross weight and wing and engine sizes of the "design-point" aircraft that will be used to show some of the additional capabilities of the program. Although the capabilitics discussed are divided among the different types of aircraft, applications, in most cases, can be made to all types.

Supersonic Transport (JP fuel)

Payload - Range Fraue.- With design-point inputs for gross weight (WGDES), wing loading (WOSDES), thrust-weight ratio (TOWDES), and the payload-range trade requested (ICALPRC=1), data for the curve shown in figure 26 will be output. The computing process involves a computing cycle at the design conditions, then additional cycles with payload off-loaded. Two possibilities can occur when the payload is off-loaded. The first occurs when the aircraft has ample fuel capacity, then as payload decreases, fuel is added to keep the gross weight constant. Range increases because of the increased fuel mass fraction (fuel weight divided by gross weight). If, however, the aircraft cannot hold the added fuel, the gross weight is decreased by an amount equal to the weight of the excess fuel. Again the range increases (fuel-mass fraction has increased) but this time, not as rapidly. These two conditions are illustrated by the solid and dashed curves in figure 27.

Radius to 'ayload Drop.- A fallout from the payload-range analysis is the radius-to-payload drop useful for bomber studies. To provide this output, the program executes two computing cycles-one with full payload and one without payload. The results are then used to find the point at which the outbound range with payload equals the inhound range with paylcad out. The program does not account for the nossibility that the altitudes, with and without nayload at the drop, may not be equal. Typical results for the drop radius compared to radii with and without payload are shown in figure 27.

Fuel itt-loacing. - Distances below the design range can be flown with or without fuel off-loading. Both cases can be treated by the progran. Reduced ranges without fuel off-loading are initiated by inputs in RRTB and solved simply by shortening the cruise segment the required amount. Reduced ranges with fuel off-loading are obtained by inputs in OLRTB and complete mission analyses are perforined which solve for the required fuel. From the standpoint of fuel efficiency, fuel off-lcading is the better of the two because the dead weight of excess fuel is not varried along. Figure 28 shows this result as well as the fact that for best fuel efficiency a redesign of the aircraft for the reduced range capability would be required.

Subsunic iruise legs.- During a supersontc mission, subsonic cruise may be required during the outbound and/or inbound flight segments to avoid sonic boom problems. If these options are chosen, the range capability of the aircraft is reduced because of the lower cruise efficiency at subsonic speeds. Typical range penalties that result from different subsonic reruise ranges are shown in figure 29. The best subsonic range is, of course, obtained by all subsonic cruise because of the extra cruise fuel gained by eliminating the acceleration to cruise Mach number.

Passenger Load. Abreast seating arrangements, to some extent, affect the aircraft's range because changes in fuselage length and fineness ratio alter the drag and structural weight. This effect is shown in figure 30 where the gross weight required for a range of 4000 nautical miles with various passenger loads at different seating arrange.nents are shown along with accompanying changes in fuselage length and fineness ratio. Four or five seats abreast are reasonable choices, but six-abreast seating is not competitive because of high fuselage drag.

Supersonic Transport (Liquid-Hydrogen Fuel)

In this program, the low-density hydrogen fuel is located only in the fuselage. Since the fuel weight is affected by fuselage size and weight, which, in turn, changes with fuel weight, aircraft sizing is an iterative process which continues until the contained fuel equals the required fuel. Because of the large fuel volume, the maximum equivalent cross-sectional area and length of the fuselage is not only dependent on passenger load and seating arrangement, as is the case for noncryogenic fuel, but also on the volume of the fuel tanks. In order to make the fuselage sizing a tractable problem, the process inay be controlled, through inputs, to occur at constant fuselage length (KBL), constant maximum equivalent radius (KBR), or constant fuselage fineness ratio (KBFN). The effects of these choices on the range capability of several size variations of the aircraft are shown in figure 31.

An alternative solution to passenger packaging for these large volume aircraft is the use of two-passenger levels (LEVELS $=2$). With this choice, the fuselage maximum equivalent cross-sectional area is again dependent on the passenger-abreast seating arrangement and the fuselage length and fineness ratio cannot be controllea by input. For comparison, the range for aircraft with two-passenger levels are also shown in figure 31. For these aircraft, two-level arrangements may be superior and this inference agrees with industry conclusions in reference 13.

Subsonic Propeller Driven Transport

The performance characteristics of this type of aircraft depend on the design conditions (altitude, ildch number, and tip speed) of the propeller. These conditions, which cannot be controlled in the program, must be used to develop the input characteristics of the baseline engine discussed in Appendix B. The effects of these propeller design conditions on the baseline aircraft and some of its size variations, as provided by this prograin, are discussed in reference 14.

Technology limprovements.- The effects of technology advances are found by simple percentage changes in the required areas with interactions in other areas falling out as a result of the sizing and mission analysis procedures. Areas available for improvement (or decav) are given in Appendix 8. To illustrate some results, the sensitivity of gross weight and seat miles/gallon for the subsonic transport to cha..jes in engine weight, propeller weight, specific fuel consumption, drag, and structural weight are shown in figure 32.

Laminar-lurbulent rlow.- Another tecrinical advance that shows considerable promise, if successful, for improving the energy efficiency of the aircraft is laminar flow control which preserves laminar flow over large areas of the aircruft components. Potential gains, predicted by the program, are shown in figure 33 for various percentages of mixed laminar-turbulent flow.

Refueling.- The program will compute a refueling segment but it must occur sometimr rifing cruise. Refuel is initiated by specifying refuel at the start of cruise (IRFSOC = 1), or at end of cruise (IRFEOC = 1), or at a range (RNGSRF). During the refuel segment, the fuel taken onboard and the fuel used while cruising are used to find the net fuel added. Refuel continues until the gross weight of the aircraft with net added fuel equals the input weight after refuel (WGARF). Typical results for various refueling flow rates are shown in figure 34 .

CONCLUDING REMARKS

A computer program (ASP) has been developed to allow preliminary sizing and performance evaluations for subsonic, supersonic, and hypersonic aircraft that use either JP, liquid-hydrogen, or liquid-metnane fuel. Both jet and propeller propulsion systems can be treated. Some of the output the program provides includes: range for given gross weight and passengers, gross weight for given range and passengers, passengers for given range and gross weight, payload-range trade, passenger and fuel oif-loading, effects of technology improvements, effects of inflight refueling, radius to payload drop, and the basis for preparing aircraft sizing "thumbprints" which allow the selection of wing and engine size for best performance.

The program has been used extensively for in-house studies of subsonic and supersonic transport aircraft concepts, some of which were developed by industry. For these, the results obtained by this program agreed very well with those provided by the companies. For several of the concepts, the program has been used to direct design improvements through changes in wing and engine size. These improvements were later confirmed by in-depth contractual studies.

APPENDIX A

WEIGHT EQUATIONS

This section contains the empirical relationships used to compute the effects of sizing on the weight characteristics of the aircraft. The expressions contain only the essential sizing paraneters and, therefore, cannot be used to compute absolute weights. Instead, weight scaling is done by the following general form.

$$
W_{I}=W_{I, R I} \quad\left(F / F_{B L}\right)
$$

where W_{I} is the weight of the scaled item, $W_{I, B L}$, the weight of the baseline item, F, the result of the weight equation(s) applied to the scaled item, and $F_{B L}$, the similar result for the baseline item. In this way, the relationships are used only to account for sizing changes through increments to baseline weights. At hypersonic speeds, aircraft require "hot-structure" solutions to survive severe local temperatures, but, as noted, the relationships do not accuunt for this. Even so, the above approach still seems appropriate, at least from a preliminary standpoint, because the higher weights for the higher temperatures are introduced through the baseline aircraft.

The weight relationships are listed below without proof of their validity. Alsn, since they have been obtained from several different industry contractual studies, a recognition of their source, in most cases, is omitted.

Subsonic Wing Weight.

$$
F_{!!1}=\frac{K W_{G} N_{Z} A b(.375+.7 \lambda)}{\frac{t}{C} K_{S}}+.57 \mathrm{SW}_{W_{,}} .1845+.572 \mathrm{~S}^{1.07}
$$

where

$K=1.427 \times 10^{-6}\left(1-0.45 N_{E}\right)(1+16.75 / \mathrm{b})$	
N_{E}	number of engines on wing
h	wing span
W_{G}	gross weight
N_{Z}	ultimate load factor
A	aspect ratio based on basic trapezoidal planform
λ	wing tip chord-root chord ratio
S	wing reference area

$$
\begin{aligned}
& \text { thc wing thickness-to-chord ratio (weighted average) } \\
& \mathrm{k}_{S} \quad \cos ^{2} \Lambda
\end{aligned}
$$

$A \quad$ Sweep angle of the wing quarter chord line
For a wing with multiple panels and varying t / c, the weighted average t / c is obtained from:

$$
t / c=\frac{\sum_{N} .2 b_{p}\left[4(t / c)_{r}+(t / c)_{t}\right]}{b / 2}
$$

Subscripts t and r refer to the tip and root of the panel, b_{p}, the span of the panel, and N, the number of panels.

Supersonic Wing Weight

$$
F_{W}=.0241 \frac{\left(\mathrm{~S} W_{D M}\right)^{.53} M_{D} \cdot 1}{T_{H M} .22}
$$

where

$$
\begin{aligned}
& W_{D M}=\frac{N_{Z}\left(W_{M}-W_{R M}\right)}{\operatorname{Cos} \Lambda} \\
& W_{M}=W_{G}\left(C_{A}+\frac{W B}{2}\right) \\
& W_{R M}=W_{R M, 1}+\sum_{\text {nacelles }} Y_{N}\left(W_{E}+W_{T R}+W_{N}\right) \\
& W_{R M, 1}=W_{F, W}\left(C_{R}+\frac{W B}{2}\right)+W_{M L G} W_{B}+Y_{W} F_{W}
\end{aligned}
$$

An iterative solution of this cycle of equations is required until the initial estimate and final value of the wing weight, F_{W}, are about equal. Quantities that do not change during the iterations are:

$$
\begin{aligned}
& W_{M L G}=.8803 W_{L G} \\
& C_{R}=Y_{D} \frac{W_{F, W}}{W_{F, W, M A X}}
\end{aligned}
$$

if there are no fuel tanks in the wing, $C_{R}=0$.

$$
T_{H M}=T_{A}+T_{C}
$$

$$
\begin{aligned}
& T_{A}=T_{R}+P_{C R}\left(1-\frac{P_{C R}}{2}\right) \\
& T_{C}=P_{C O}^{2}\left(\frac{\Gamma_{K}}{6}+\frac{\Gamma_{\Gamma}}{3}\right) \\
& T_{R}=\frac{t}{C} C_{B K} \\
& T_{T}=\frac{t}{c} c_{0,1} \\
& c_{B K}=c_{1,1} P_{C O}+c_{0,1} P_{C R} \\
& P_{C R}=\frac{d_{3}}{b} \\
& P_{C O}=1-P_{C K} \\
& \gamma_{D}=\gamma_{W}\left(1-P_{C R}\right) \\
& C_{A}=\frac{(.24+.0225 A)}{.5-7(3)} \\
& Y_{W}=\frac{b}{\left.A_{I}+A_{0}+\frac{A M}{2}\right)} \\
& A_{M}=A_{I}+A_{0}+C_{I, 1} \Gamma_{J, 1}+C_{0,1} T_{1,1} \\
& A_{0}=c_{3,1} T_{0,1} \\
& A_{I}=\varepsilon_{1,1}{ }^{\top}{ }_{1,1} \\
& T_{1,1}=\frac{t}{c} C_{1,1} \\
& T_{0,1}=\frac{t}{c} c_{0,1} \\
& C_{0,1}=\lambda C_{I, 1} \\
& C_{1,1}=2.2994 \frac{S}{b}
\end{aligned}
$$

In these equations

S	wing reference ared
b	wing span
$\frac{t}{c}$	weighted average of wing thickness-to-chord ratio
A	aspect ratio, b^{2} / S
λ	wing taper ratio
A	sweep angle of wing mid chord
W_{G}	gross weight
W_{E}	engine weight (one)
$W_{T R}$	thrust reverser weight (one)
W_{N}	nacelle weight (one)
Y_{N}	spanwise distance to nacelle-engine combination
$W_{L G}$	landing gear weight
$W_{F, W}$	weight of fuei in wirg
$W_{F, W, M A X}$	maximuln weight of fuel in wing
W_{B}	maximum width of fuselage

The equations for both subsonic and supersonic wings were provided by Kentron International, Inc., Kentron Technical Center, Hampton, Virginia.

Canard, Horizontal and Vertical Tails
The weights of these items are directly proportional to their total wetted areas.

Fuselage

$$
F_{F}=\left(N_{Z} W_{G} S_{W, F}\right)^{\cdot 6}
$$

- where $S_{W, F}$ is the total wetted area of the fuselage

Landing Gear

$$
F_{L G}=\left(W_{G} L_{F}\right)^{.25}
$$

where $L_{F}=$ length of fuselage

Nacelles

The weight of the nacelles is directly proportional to their total whetted area.

Engines

$$
F_{E}=N_{E} T^{E}
$$

where $N_{E}=$ number of engines
T sea-level static thrust of one engine $E_{W} \quad$ engine weight exponent

$$
F_{T R}=N_{E} T^{.88}
$$

where N_{E} and T are defined above.

> Propeller

$$
F_{P}=N_{E} T\left(.5 E_{P}\right)
$$

where E_{p} propeller weight exponent.

Gear Box

$$
F_{G B}=N_{E} T^{1.5}
$$

Miscellaneous Systems

The weight of this item is assumed to be unaffected by sizing.

Fuel Systems for Conventionai Fuel

Only the weight of the plumbing is considered for these systems. For subsonic design Mach numbers

$$
F_{P S}=8.117\left(N_{E}\right)^{.825}(T)^{.38}
$$

and for supersonic design Macti numbers

$$
F_{P S}=\frac{\left(W_{F, M A X}\right)^{.565}}{\left(1 .+\frac{W_{F, W, M A X}}{W_{F, M A X}}\right)}
$$

where

$$
\begin{aligned}
& W_{F, \text { MAX }} \text { maximum fuel load } \\
& W_{F, W, M A X} \text { maximum fuel load in wing }
\end{aligned}
$$

Fuel Systems for Cryogenic Fuel

These systems include the weight of the plumbing, fuei tanks and insulation. Plumbing weight is given by:

$$
F_{P S}=.01569\left(T_{T}\right)^{.75}+25.433\left(N_{E}\right)^{.825}(T)^{.38}
$$

where

$$
T_{T} \text { total sea-level static thrust }
$$

The weights for the fuel tank and its insulation are both directly proportional to the total wetted ared of the fuel tank.

Surface Controls

If the design Mach number is subsonic

$$
F_{S C}=\frac{\left(L_{F}+1 / \cos \Lambda\right) S^{.5}}{A_{T R}}
$$

where

$$
\begin{aligned}
& L_{F}=\text { length of fuselage } \\
& b=\text { wing span } \\
& A=\text { sweep angle of quarter chord } \\
& S \quad=\text { total wing area } \\
& A_{T R}=\text { wing aspect ratin }
\end{aligned}
$$

If design Mach number is supersonic, the weight of the surface controls is directly proportional to the gross weight of the aircraft.

Auxiliary Power Unit

The weight of this item is assumed to be unaffected by sizing.

Instruments

$$
F_{I N}=N_{E} \cdot 354 L_{F} \cdot 5 b^{.68}
$$

Hydraulics

$$
F_{H Y}=\left(\frac{W_{G}}{S_{C S}}\right)^{.34}\left(L_{\Gamma}+b\right)^{.52}\left(1+M_{D}\right) N_{E}
$$

where

$$
{ }^{\mathrm{S}} \mathrm{CS} \text { total area of surface controls }
$$

MD design Mach number
Avionics

$$
F_{A V}=W_{G} \cdot 7
$$

Electrical System
$F_{E L}=\left(N_{E}\right)^{.424}\left(L_{F}+b\right)^{.69}\left(N_{A V}\right)^{.473}$
where
$W_{\text {AV }}$ weight of the avionics

Furnishings and Equiprent

The weight of this item is directly proportion to the number of passengers.

$$
F_{A C}=\left(N_{P A S}\right)^{1.2}+11.17\left(M_{D}\right)^{.6}\left(V_{\mathrm{P}}\right)^{.58}
$$

where
V_{p} volume of passerger compartment
$N_{\text {PAS }}$ number of passengers

Anti-icing
$F_{A I}={ }^{6.95}$
Unusable Fuel
$F_{U F}=100 N_{E}+.176 \mathrm{~S}$

$$
\text { Engine } 0 i
$$

$$
F_{E O}=W_{E, T} .26
$$

where

$$
W_{E, T} \text { weight of all engines }
$$

Passenger Service

The weight of this item is directly proportional to the number of passengers.

Cargo Containers

The weight of cargo containers is directly proportional to the maximum cargo weight.

Crew

Weights for the flight and cabin crew are direcily proportional to the number of crew members.

Passengers and Baggage

Weights for these items are directly proportional to the number of pasiengers.

UEFINITIONS OF INPUT
The program is coded in FURTRAN Extended Version 4 (ref. 15). Provisions are made for two input files. One file contains propeller design data and is required only if propeller output data is to be computed. The data on this file must be input in the following format.

$\frac{\text { Coluine }}{}$	Type of Uata
$9-10$	number cf propeller blades, a right justified integer
$11-20$	Mach number
$21-30$	propeller advance ratio
$31-40$	propeller power coefficient
$41-50$	propeller thrust coefficient

Qata is listed by increasing power coefficient at constant advance ratio, then by increasing advance ratio at constant Mach number, then by increasing Mach number. During program execution, the file containing this data must be named TAPt3.

The other file contains the input for the baseline aircraft and sizing options. It is always required and curing execution it must be called TAPE5. The injut seyments on TAPE5 are listed below in their order of occurrence.

Input seginents for sized aircraft
P.ircraft Identificaiion
\$PRNTCON
\$DESGNVB
sTWINFUS
\$1HISSVB
\$RESRV
\$TECHCHG
Input segments for baseline aircraft
Wave-Orag Geometry Deck or \$SACGEin
\$AIN
\$WTIN
SENIN
Baseline Engine Characteristics
Seanents prefixed by a $\$$ sign are inputs in the NAMELIST format (ref. 15). Definitions of input variables follow, with default values, if they exist, enclosed " parenthesis behind each definition. Variables with parenthesis are arrays and the included numbers indicate their maximum size.

The first input is the aircraft identification. It is one free-field line of 80 characters.

SPRNTCON

Inputs in this segment control program output. All inputs are integers with a value of either l or U. Unless noted, a value of l activates the option; 0 suppresses it.

IPPRNT $=1$ prints all output
$=0$ prints only output for sized aircraft (default)
IPAERU prints derodynamic data, (i)
IPRPRUP prints engine characteristics (0)
IPRWTSM prints weight statement, (0)
IPRMPRT prints mission profile data, (U)
ISCOPE prints outjut showing progress of execution during interactive terminal sessions, (0)

\$DESGRvis

This input segment contains aircraft design and sizing information. For clarity, the inputs have been separated into typical groups.

Miscellaneous Design Input

ISSAC $=0$ for supersonic aircraft (default)
$=1$ for subsonic aircraft
ISGEUM $\quad=0$ if dircraft geometry is input in wave-drag format (default) $=1$ if aircraft geonetry is input in \$SACGEM

IJP $=1$ for aircraft using JP fuel, (0)
IH2 $=1$ for aircraft using hydrogen fuel, (0)
IMTH $=1$ for aircraft using methane fuel, (0)
NOFIW $=1$ for dircraft with lio fuel in wing, (U)
IBLAC $=0$ for sizing of baseline aircraft (default) $=1$ for no sizing of baseline aircraft

RHOJP density of JP fuel, lb/gal, (6.75)

RHOH2
RHUMTH
RHOCAR
EIPEN
density of liquid hydrogen fuel, lb/gal, (.592)
density of liquid methane fuel, lb/gal, (3.54)
density of caryo, $1 \mathrm{p} / \mathrm{ft}^{3},(10$.
reduction in thrust to account for interference effects between propeller and wing, percent, (0)

The next three variables apply to aircraft using hydrogen or methane fuel.

KBFN
KBL
KBR
$=1$ for constant tuselage fineness ratio, (0)
$=1$ for constant fuselage length, (1)
$=1$ for constant fuselage radius, (0)

Passenger Cabin Uesign Input

DGLW
NPPUGL
STSAB
LEVELS number of passenger levels, 0,1 , or $2 ; 0$ provides the baseiine value, (0)
wall thickness of passenger cabin, inches, (4)
wall thickness of fuel tanks for liquid hydrogen or methane fuel, inches (9)

Specific Design Inputs
FHUES design fuselage fineness ratio
IPASDES number of passengers, integer
NENDE 3 number of engines, integer
NPDES number of engine nacelles, integer
RMAXOES design radius of fuselage, ft
LLBDES
NCARDES
TUWDES design th.ust-to-iveight ratio
TPEDES design single engine thrust, ib
WOSDES design wing loading, psf

REFADES design wing reference area, ft^{2}
WGUES design gross weight, lb
RNGUES design range, n.mi.
ZMCRDES design cruise Mach number
The next six variables apply to subsonic aircraft.
ASPRDES design wing aspect ratio
EIDES design endurance, h
POWOES design shaft horsepower-io-weight ratio, hp/lb
SHPDES design shaft horsepower, hp
SQCUES design sweep of wing quarter chord line, deg
WTOCUES design thickress ratic of wing, percent
If RNGiJES is not input, the program solves for the range at input gross weight and passenger load. If RNGUES is input, the program so?ves for the gross weight that provides this range at input passenger load.

To find the passenger luad for a given range and gross weight, use the following integer variable.

IGRAWFP $=1$ (default is 0)
along with inputs for WGDES and RNGUES.
Each of the above variables, which defaults to its baseline value, is used to hold that design parameter constant through one or more sizing passes during program execution. If design parameters are to be changed in each sizing pass during execution, the following design variable arrays must de used. All arrays are onedimensional.

Design Variable Arrays.-
TUWTB(7) an array containing design thrust-to-weight ratios
TPETB (7) an array containing desigin thrusts for a single engine, ib
NTOW the number of values in either the TUWTB or TPETB arrays, (0)
WUSTB(7) an array containing design wing loadings, psf
REFATB(7) an array containing design wing reference areds, ft^{2}
NWOS the number of points in either the WOSTB or REFATB arrays, (0)
ARTB(10) an array containing design wing aspert ratios

NASPK the number of points in ARTB, (0)

POWTB(7) an array containing shaft horsepower-to-weight ratios
NPOW the number of values in POWTB, (0)

Restrictions on Use of Variables.- Not all of the design variables are independent parameters. The following restrictions, therefore, are placed on the use of several of these variables.

1. Since POWUES, TOWUES, TPEDES, POWTB, TOWTB, and TPETB all control engine sizing, use only one of these variables.
2. Similarly, WOSUES, REFAUES, WOSTB, and REFATB all affect wing sizing, therefore, use only one.
3. The ARTB array must not be used with any other design variable array.
4. The integer variable IGRAWFP may not be used with any design variable array.
\$TWINFUS
This input segment contains input for the geometry of twin-fuselage aircraft. The only component of this aircraft that can be sized is the propulsion system; therefore, only the design variables WGUES, TOWUES, TPEUES, and RNGUES are allowed. If changes in any other design variable, like wing size, pąssenger load, etc., are required, a new baseline aircraft (with its aerodynamics weights and propulsion) must be developed and input.

The only geometry inout necessary for twin-fuselage aircraft are the reference lengths and wetted areas of the components. These are required for skiri-friction calculations during the mission analysis. To prevent program aborts, however, a complete geometry input segment in either the wave-drag format or \$SACGE:M is also required but any available input segment will suffice because it will lot affect results.

ITWIAF $=0$ for conventional aircraft, (default)
$=1$ for twin-fuselage aircraft
FUKLiN fuselage reference length, ft
FUSWTIN fuselage wetted area, total of both fuselage, ft^{2}
TWFREFA wing reference area, ft^{2}
IWSEGIN number of wing segments
WRLIN(2U) a one-dimensional array containing the reference length of each wing segment, ft

WSWETIN(20) a one-dinensional array containing the wetted area of each wirig segment, ft^{2}

CRLIN canari reference length, ft
CSWETIN canard wetted area, ft^{2}
HRLIN horizontal tail reference length, ft
HSWETIN horizontal tail wetted area, ft^{2}
IFINS number of vertical fins
FRLIN(6) a one-dimensional array continuing the reference lengths of the vertical fins, ft

FSWETIN(6) a one-dimensional array containing the wetted areas of the vertical firis, ft ${ }^{2}$

PRLIN the reference length of one engine pod, ft
PSWETIN the wetted area of one engine pod, ft^{2}

\$MISSVB

This segment provides the inputs requirnd for the flight profile analysis. The inputs, again, have been se;parated into typical groups.

Overall Mission Input
IENOUR $=1$ mission profile for long endurancn airviaft, integer, (0)
IRADIUS $=1$ provides range to payload drop, integer (0)
DEW operating empty weight, 1 b , (if greater than U, this value will replace the calculated UEW)

PAYLUAD total payload weight, lb, (if greater than 0 ., this value will replace the calculated payload)

PULF payload factor, percent (100% gives full payload), (100.)
NPASOL number of passengers in off-loaded aircraft, integer (-1 , the default, gives no off-loading)

WCAROL cargo weight in off-loaded aircraft, lb
(-10 , the default, gives no off-loading)
ICALPRC = 1 provides data for the range-payload curve, integer, (0)
ULRTB(10) a one-dimensional array containing the ranges for fuel off-loading, n. niti.

NOLR the number of values in ULRTB, integer, (U)

RRTB(10) a one-dimensional array containing reduced ranges with no fuel off-loading, n.mi.

NRK the number of values in RRTB, integer, (0)
IRFSOC $=1$ start refueling at start of cruise, integer, (0)
IRFEOC $=1$ start refueling at end of cruise, integer, (0)
RNGSRF range to start of refuel, n.mi.
(refueling must occur sometime during cruise. If RNGSRF is set too low, refuel will begin at the start of cruise; if set too high, refuel will begin at the end of cruise. To activate refueling, the value of RNGSRF must be greater than 10.), (0)

RFRIGPM refuel flow rate, gal/min, (600.)
WGARF the aircraft gross weight after refueling, ib (-10, the default value, gives the design gross weight)

UELTCG standard day temperature increment during main mission, deg., C (0.)
EM Surface emissivity, (.8)
TDFLM thrust deflection during main mission, deg., (0)

Takeoff Input

NUTO $=1$ no takeoff calculations, (0)
FWOTO fuel weight used during takeoff, lb (may also be input as a fraction of gross weight), (0.)

ALFOUT aircraft rotational speed, dey/sec, (3.)
UELTCTO standard day temperature increment during takeoff, deg, C, (0.)
DTGRUP time for landing gear retraction, sec, (10.)
ILEOUT $=1$ one engine out during takeoff, integer, (0)
RFF rolling friction factor, (.02)
TXTME taxi time, min, (10.)
GRALFA angle of attack before start of rotation, deg (-4)
TJALFA angle of attack after rotation, deg, (5.5)
TODELF flap deflection during takeoff, deg, (30.)
TOFLTO thrust deflection during takeoif, deg, (0.)

TFACT factor for increasing or decreasing net thrust during takeoff, (l.)
WFFACT corresponding factor for fuel flow, (1.)
HOBS obstacle height, ft, (35.)
HNOGE altitude for disappearance of aerodynamic in-ground effect, ft, (wing span)

TOCLGR takeoff climb gradient, percent, (6.8)

Climb Input

HASNT(50) a one-dimensional array containing the altitudes in the climb profile
ZMASNT(50) a one-dimensional array containing the corresponding Mach numbers in the climb profile

ICLPR \quad the number of points in the climb profile
ZIMSTTH Mach number at which engine throtting may begin to conserve climb fuel, (.6)

LMMPCL Mach number above which maximum engine thrust is used, (1.)

Cruise Input

NCRP

ZMCR
ROCMIN
CRALTI
CRALT?
IGFCR
ICACR
ICLCR
ALFCR

CRTUTiA
the number of points at which cruise calculations are made, (4)
cruise Mach number
the minimum rate of climb during cruise, ft/min
altitude for start of cruise, ft (-1U)
altitude for second leg of two-step cruise (-10)
$=1$ gives cruise at best available 3reguet factor, integer, (U)
$=1$ gives cruise at constant altitude, integer, (0)
$=1$ gives cruise at constant lift coeffficient, integer, (U)
angle of attack for cruise, deg (Note: this input may be used only if CLAR or ALPHAT are input in NAMELIST segment \$AIN)

The following input is for subsonic cruise legs on a supersonic mission. Range or time for cruise may be input, but not both at the same time. Cruise on both legs may occur.

For subsonic cruise on the outbound leg:
ZMSBCOB cruise Mach number
HSBCUB cruise altitude, ft
SSRNGOB cruise range, n.mi.
TSBCOB cruise time, min
For subsonic cruise on the inbound leg:
ZMSBCIB cruise Mach number
HSBCIB cruise altitude, ft
SSRNGIB cruise range, n.mi.
TSBCIB cruise time, min
Input for Long-Endurance Cruise
CLMAX maximum lift coefficient, (2.2)
NENCR number of engines operating during cruise (-1)
DCFACT increment in dray coefficient for engines not operating, (0.)
VKCR1 velocity at start of cruise, k
ICONVCR $=1$ for constant cruise velocity, (U)

Descent Input
ICALUS $=1$ descent calculations are made $=0$ descent calculations are not made

NUSP the number of points at which descent calculations are mace, (4)
USFF the fraction of fuel flow at maximum power that is used during descent, (.067)

WFORCF an initial estimate of the fuel used during descent normalized by aircraft gross weight, (.005)

	Approach Input
APALFA	angle of attack during approach, deg, (-40)
APDELF	flap deflection during approach, deg, (30.)
IFXAFLP	```=1 uses input flap deflection =0 finds flap deflection for minimum drag, (default) (used only if VAPIN is input)```
VAPIN	```approach speed, k, (-10) (if defaulted, approach speed is calculated internally) Note: VAPIN is used only if derodynamic data for more than one flap deflection is input in $AIN.```
	\$RESRV
The input for the reserve fuel legs are placed in this segment.	
RFWT	reserve fuel weight, in either pounds or as fraction of gross weight. (use this input only if reserve fuel calculations are to the bypassed)
IRCRO	$=0$ calculates climb, cruise, and descent segments of reserve fuel legs $=1$ calculates only cruise segments of reserve fuel legs, (1)
	Trip Fuel Allowance
TPFATME	time at fuel flow at start of cruise, h or min (use for subsonic aircraft), (0.)
TPFA	```percent of trip fuel (use for supersonic aircraft), (u.)```
	Missed Approach
ICALMA	$\begin{aligned} & =0 \quad \text { uses RIIAFA to calculate fuel requirement } \\ & =1 \quad \text { calculates missed approach to find fuel requirement, (1) } \end{aligned}$
RMAFA	time at takeoff fuel flow, min, (2.0)
	Alternate Airport
AAU	distance to alternace airport n.mi., (0.)
For this leg, the program normally iterates through Mach number, altitude, and engine thottling during climb to find the conditions for least fuel. If any of the following variables are input, iteration on that condition will not be performed.	
halt	altitude for cruise to alternate airport

TUTMALT factor for engine throtting during climb to cruise, value between u and 1.

ZMALT Mach number for cruise to alternate airport

Hold
THLU time for hold, min
HHLD altitude for hold, ft
ZIMHLU Mach number for hold
Again, optimum conditions for least fuel are normally determined but inputs in HHLD and/or ZMHLD will eliminate the iteration on that condition.

\$TECHCHG

This segment contains the inputs for finding the effects of changes in the technology of the various aircraft systems.

TIML the luwest lach number at which changes apply, (-1)
TIMH the inghest Mach number at which changes apply, (10.)
TDCUT(15) a one-dimensional array of percentage changes in total drag coefficient, a function of Mach number; a positive value gives drag reductions

TMOCUT(15) the Mach numbers corresponding to the values in TOCUT
NOCDT the number of values in the TUCUT array, (U)
The following input is all in percentages. A positive value gives a technology improvement. Default values for all inputs are 0 .

USFC engine specific fuel consumption
DCDW wave drag
DCURUF roughness drag
DCUAC air-conditioning drag
DCDBL bleed dra's
DCDO zero-lift arag
DCDL drag due to lift
DCDT total drag

Friction Drag Change,

DCUFWNG	wing
DCUFCS	canards, norizontal tails, and vertical fins
dCuFbuy	fuselage
LCDFPOS	nacelles
DCUF	tetal friction drag
	Weight Changes
DWWING	wing
DWCHV	canard, horizontal tail, vertical fin
DWFUS	fuselage
DWLG	landing gear
UWNAC	nacelles
OWST	total structure weight
UWENG	engines
DWTR	thrust reversers
UWTPR	propellers
UWTGB	gear box
JWHIS	miscellaneous propulsion system werghts
DWPLM	plumbing system
DWF T	fuel tank for hydrogen or methane fuel
UWINS	fuel tank insulation for hydrogen or methane fuel
UWPPS	total propulsion system weight
DWSC	surface controls
DWAP	auxiliary power
DWINST	instruinents
OWHYD	hydraulics
OWELE	electrical

DWAVON	avionics
DWFEI	furnishings and equipment
DWACOND	air conditioning
UWANTICE	anti-icing
DWSEQ	total systems and equipment weight
DWEMP	empty weight
DWOEW	operating empty weight

Laininar Flow

The following inputs express the percentage of laminar flow on the surface. A value of 0 . gives all turbulent flow; a value of 100. gives all laminar flow. All default values are 0 .

PCLAMW wing
PCLAMF fuselage
PCLAMC canard
PCLAMH inorizontal tail
PCLAMBV body vertical fins
PCLAMWV wing vertical fins
PCLAMP nacelles

InPut for baseline hircraft geometry
The geonetry for the baseline aircraft can be input by one of two methods. The first method which applies only to supersonic aircraft uses the zero-lift wave-drag program format described in reference 7. This input is very detailed and unless it is already available from the analysis of wave drag, the effort required to assemble the information is not justified for this program. The alternate method available is the use of \$SACGEM.
\$SACGEM
Wing
REFA wing reference area, $f t^{2}$
WXO distance from fuselage apex to wing apex at wing centerline, ft

WRC root chord at wing centerline, ft
WTC tip chord, ft
WSPAN wing span, ft
WOXT longitudinal distance from wing apex to leading edge of tip chord, ft (positive rearward)
YWCREX spanwise distance from wing centerline to exposed root chord, ft
NWBP number of breakpoints in wing leading and trailing edges, an integer. Wing dpex and tip are not included. If leading edge and trailing edge break at the same spanwise station, count as one breakpoint.

WDXBP(12) a one-dimensional array of the longitudinal distances fron wing apex to leading edge at breakpoints, ft (positive rearward)

WYBP(12) a one-dinensional array of the spanwise distances to the breakpoints. ft
WBPC (12) a one-dimensional array of wing chords at the breakpoints, ft
WTOC average maximum wing thickness-chord ratio in percent

Fuselage
FLGTH length, ft
FUPTHMX maximum depth, ft
FWUTHMX maximuri width, ft
FRAD maximum radius, ft (Note: If FRAD is input, FUPTHMX and FWUTHMX inputs are not required)

FWETA total fuselage surface area, ft^{2}.
FVOLTUT total fuselage volume, ft^{3}

Horizontal Suriaces

The dimerisioris for norizontal surfaces are input in the folloiwng onedimensional arrays.

NH the number of horizontal surfaces, (2 maximum)
HDXT(2) the longitudinal distance from the apex of the surface to its leading edge at the tip, it

HRC (2) root chord, fit
HTC (2) tip chord, ft

HSPAN(2) span, ft
HTUC (2) average thickness-to-chord ratio, percent
HXO(?) longitudinal distance from fuselage apex to surface apex, ft

Vertical Surfaces

The dimensions for the vertical surfaces are input in the following onedimensional arrays. A spanwise mounted surface is assumed to be located syinmetrically about the fuselage centerline and is counted as one surface.

NV the number of vertical surfaces, (4 maximum)
$\operatorname{VOXT}(4)$ the longitudinal distance from the apex of the surface to its leading edge at the tip, ft

VRC(4) root chord, ft
VTC (4) tip chord, ft
VSPAN(4) span, ft
VTOC(4) average thickness-to-chord ratio, percent
VXO(4) longitudinal distance from fuselage apex to surface apex, ft
VYo(4) spanwise distance from fuselage centerline to surface, ft

Nacelles

xOP(9) a one-dimensional array containing the longitudinal distances from the fuselage apex to the nacelle, ft

YOP(9) a one-dinensional array containing the spanwise distances from the fuselage centerline to the nacelle centerline, ft

NPI the number of nacelles in the above arrays
Spanwise mounted nacelles are counted in the sane manner as the vertical surfaces.

\$AIN

The baseli'le aerodynamic input is located in this segment. Trimned angle of attack, lift, and drag data are preferred.

Takeoff Aerodynamic Input With Ground Effect
TALPTUG(15,4) a two-timensional array of angle of attack for various flap deflec.ions, deg
$\operatorname{TrLTOG}(15,4)$ a similar array for the lift coefficients, C_{L}
$\operatorname{TCUTUG}(15,4)$ a similar array for the drag coefficients, C_{D}
NTUG the number of values in each of the above arrays at each flap deflection, (15 maximum)
(If NTUG $=0$, an internal routine is used to calculate values in the above arrays when the following takeoff input is provided.)

Takeoff Aerodynamic Input Without Ground Effect
TALPHTO $(15,4)$ angle-of-attack array
$\operatorname{TCLTO}(15,4) \quad$ lift-coefficient array
TCUTO $(15,4)$ drag-coefficient array
NTUP the number of values in the above arrays at each flap deflection, (ls maximum), (U)

NFD the number of flap deflections, (4 maximum) (0)
TFSET(4) a one-dimensional array containing the flap deflections, deg
 landing gear as a function of lift coefficient

CLGRT(15) the corresponding array of lift coefficients
NLGU \quad the number points in the above arrays, (0)
JCULG increment in drag coefficient of landing gear
(independent of lift coefficient, use if WL (ill) $=U$

Nain Mission Aerodynamic Input
$\operatorname{CLT}(15,15)$ a two-dinensional array of lift coefficients for various Mach numbers

ALPHAT $(15,15)$ the rarresponding array for angles of attack, deg
$\operatorname{CUPT}(15,15)$ the corresponding array for the drag coefficients
NAI the number of values in each of the above arrays at each Mach number (the value of the first dimension; NAI points must be input at each iach number)

IPBOL	$=0$ aerodynamic input in CLT, ALPHAT, and CDPT will be used for aerodynamic data (the default value)
	$=1$ the parabolic polar inputs (CDOR, CLAR, OLFR, and CLOR defined below will be used for aerodynamic data
$\operatorname{CDOR}(15)$	a one-dimensional array containing the minimum drag coefficients at various Mach numbers
CLAR(15)	a similar array for the lift-curve slope, per deg
DLFR(15)	the array for drag-due-to-lift factors
CLOR(15)	the array for lift coefficients at minimum drag coefficient
NAJ	the number of Mach numbers for the lift and drag data (15 maximum)
MAEROT (15)	a one-dimensional array containing the Mach numbers for the lift and drag data
THARO(15)	a one-dimensional array containing the al titudes at each Mach number at which the skin friction contributions to drag were calculated
DELCO(15)	a one-dimensional array containing increments in zero-lift drag coefficient for the Mach numbers in MAEROT
CDW (15)	a one-dinensional array containing the wave-drag coefficients at each Mach number in MAEROT
CDRUF (15)	a similar array of roughness drag coefficients
CDAC (15)	a similar array of air-conditioning drag coefficients
CDBL (15)	a similar array of engine-bleed drag coefficients
Note: or CDOR.	for CDAC and CDBL is required only if values are included in CDPT

\$WTIN
This segment contains the weights and all other input for the baseline aircraft but not the engine data. Except where noted default values are 0 and input weights are in pounds.

Structural Weight Input

WWING wing

WHT horizontal tail

WVT verticai tails (sum of all)
WCAN canard
WFUS fuselage

WLG landing gear

> Weight Input for Cryogenic Tanks
(Hydrogen on Methane Fuel)

WFT	fuel tank, total
WINS	insulation, total WFTINS Combined weight of fuel tank and insulation (required only if WFT and WINS cannot be separated)
TSA	total surface area of fuel tank, f^{2}
WSC	surface controls and Equipment Weignt Input

Operating Weight Inputs
WFCR weight of flight crew
IFCR number of flight crew nembers, integer
WCCR weight of cabin crew
ICCR number of cabin crew members, integer
WUFUEL unusable fuel

WENO	engine oil
WPSER	passenger service
WCCONT	cargo containers
WOPIN	sum of all operating weights (use only if all individual weights cannot be supplied)

Payload Weight Input

WPAS	weight of passengers
IPASK	number of passengers, integer
WPB	passenger baggage
WCAR	weight of cargo

Miscellaneous Input

WGREF gross weigint of baseline aircraft
ULF design load factor, (3.5)
ZMDESBL design ilach number for baseline aircraft
STSABR number of seats abreast
LVLR number of passenger levels, (2 maximum)
XPASC length of passenger compartment, ft
VCARMX maximum volume for cargo, ft^{3}
BFCILBS maximum fuel capacity in fuselage, ib
WFCILBS maximum fuel capacity in wing, id
BFCIGAL fuel capacity in fuselasっ, gal
WFCIGAL fuel capacity in wing, gal
(Note: input for PFCIGAL and WFCIGAL is not required if BFCILBS and WFCILBS are used)

Data for the engine and nacelle are input in this segment.
NENR the number of engines, integer
NEW the number of engines mounted on the wing, integer
NEF the number of engines nounted on the fuselage, integer
NPODSR the number of engine nacelles, integer
PDAVG the average diameter of the nacelle, ft
PLGTH the length of the nacelle, ft
ESEXP nacelle length sizing exponent, (.438)
EWEXP engine weight sizing exponent, (1.085)
SLSTHR sea level static thrust for the engine having the following weight, ib
WENG weight of one engine, ib
WTR weight of one thrust reverser, ib
WNAC weight of one engine nacelle, lb
WhIS total miscellaneous propulsion system weight, ib
WPLA total propulsion pluinbing system weight, lb
The following three variables are provided for engine bieed and air-condition drag. These variables should be used only if the drag items are not included in gross thrust values or by entries in CIDAC and CDBL in SAIN.

DOUINT(15) a one-dimensional array containing the sum of engine bleed and aircondition drags divided by dynamic pressure for 2 range of Mach numbers, ft^{2}

UUOMT (15) the corresponding arrav of Mach nuinbers
NBDP \quad the number of Hach numibers in the above arrays
Note: These variables cannot be used for engines with two-dimensional inlets.

Input for Propeller-Engine Combinations

Propeller-driven aircraft require no additional input if: (l) propeller output data is not required, (2) the weight of the propeller and gear box are included in the engine weight, WENG, and (3) the design inputs TUWUES, TPEUES, TOWTB, Or TPETB, rather than PUWUES, SHPUES, or PUWTB are used to size the propulsion system. This analysis treats the aircraft as a jet-driven aircraft.
$\operatorname{mos}-6 x+2 x+2$

The propeller wili be treated in more detail, however, if TAPE3, described previously, is provided and the following data is input.

AUVRUES design advanced ratio
CPUES design power coefficient
CTDES design thrust coefficient
EPRUES propeller efficiency at design conditioning
EOVUES overall efficiency of the propeller-engine combination at design conditions

POU2OES shaft horsepower-propeller diameter squared ratio at design conditions, $\mathrm{hp} / \mathrm{ft}^{2}$

PTIPS propeller tips speea at design conditons, fps
DIAMPBL propeller diameter, ft (-10.)
SHPREF Shaft horsepower of the engine at sea level static conditions and having its weight entered in WENG

RPMEBL engine RPM
RPAPBL propeller RPM
PSEXP propeller weight sizing exponent (2.488)
WTGB weight of one uearbox, ib (-10.)
WTPK weight of one propeller, lo (-10.)
The propeller weight, WTPR, is used to test if a jet analysis the (default case) or a propeller analysis is to be made. When WTPK is input, all of the above propeller inputs and the P / \cup^{2} values, described below, are required.

Input for Engine with Two-Uimensional Inlets
INL20 $=1$ engine nacelles are two-dimensional
$=0$ engine nacelles are circular, (default)
PWIU2D width of the nacelle, ft
PHGT20 height of the nacelle, ft
PLiTH length of the nacelle, ft
PSWET2D wetted area of one nacelle, ft^{2}

BASELINE ENGINE CHARACTERISTICS

This final input segment contains four groups of data for the installed engine. These include the identification of the baseline engine, full-power data as a function of altitude and Mach number, part-power data, and for engines with twodimensional inlets, full-power data as a function of Mach number, angle of attack, and altitude. The engine identification, the first input of this segment, is one line of free-field input limited to 80 characters.

The next input provides the full-power characteristics of the engine as a function of Mach number and altitude. The data format is as follows:

Column	Type of Data
$1-5$	Mach number
$6-15$	altiture, ft
$21-30$	gross thrust, lb
$31-40$	ram drag, lb
$41-50$	inel $\mathrm{flow}, \mathrm{lb} / \mathrm{h}$
$51-60$	$\mathrm{P} / \mathrm{D}^{2}, \mathrm{hp} / \mathrm{ft}^{2}$

Where P / D^{2} is the shaft horsepower-propeller diameter squared ratio. P / D^{2} data is required only if the propeller data described above is input.

The data is arranged by increasing altitude at constant Mach number, then by increasing Mach number. Up to 15 separate values of altitude and 15 separate values of Mach number are allowed. On the last line of this data segment, the characters 9. located in columns 2 and 3 are required.

The next group of data pertains only to engines with two-dimensional inlets and is required only if the effects of angle of attack are to be included in the fullpower data. To indicate the presence of this data group, which is restricted to supersonic and higher Mach numbers, the first line of input must contain the three characters -9. in columns 2, 3, and 4. On succeeding lines thereafter, the data is input in the following format.

Column
$1-5$
$6-15$
$16-20$
$21-30$
$31-40$
$41-50$

Type ut :'ata
Mach number
altitude, ft
angle of attack, deg
gross thrust, ib
ram drag, lb
fuel flow, lb/h

The data is arranged by increasing altitude at constant angle of attack and constant Mach number, then by increasing angle of attack at constant Mach number, then hy increasing Mach number. Input is restricted to 15 values of Mach number, 3 values of angle of attack at each Mach number, and 3 values of altitude at each
angle of attack--Mach number combination. Sufficient data must be input to provide the same number of angles of attack at each Mach number and the same number of altitudes at each angle of attack--Mach number conbination. If this requirement is not met, the program will abort. To end this data group, the two characters 9. must be located in columns 2 and 3 on the last line of input.

The last input provides the part-power characteristics of the engine. The format for this data is:
$\frac{\text { Column }}{1-5}$
$21-30$
$31-40$
$41-50$

Type of Uata
Mach number gross thrust, lb
ram drag, lb
fuel flow, $1 \mathrm{~b} / \mathrm{h}$

Data is arranged by increasing thrust at constant Mach number, then by increasing Mach number. The last input of this group must contain the two characters 9 . located in columns 2 and 3.

SAMPLE INPUT LISTING
An input listing that illustrates the content of the previous section is given in Table B1. This input is for the design point of the supersonic transport (JP fuel) shown in figure 22 and the resulting output is discussed in Appendix C.

While the sizing "thumbprint" (fig. 22) provides fairly accurate values of w/S and T / W for the design point, the gross weight value is very approximate. To more accurately determine this value, the computer must be directed to find the gross weight that provides the design range at the design point conditions. This is done in input segment $\$ 0 E S G N V E$ by inputs for the required range (RNGDES $=4000$.), wing loading (WOSOES $=82$.), and thrust-weight ratio (TOWUES $=.32$). These and the other inpuis for the sized aircraft are shown in Table Bl.

The output from the program is contained on three mass storage files. Uniess cianged by the user at execution time, these files are labeled TAPE6, TAPE11, and TAPE14. TAPE 6 contains a listing of all the results providec by the program, TAPE1l contains selected data in a format suitable for input to a plotting program, and TAPE14 contains the basis for preparing sizing "thumbprints."

TAPE6
On this file, several types of output are available. These include the preliminary output, sized aircraft output, a short listing of selected output quantities, weight statement, and a mission profile output.

Preliminary Jutput.- This printout, which is optional and obtained with IPPRNT=1 in \$PRNTCON, contains a listing of the input values for all input segments. Because of its length, an example of this output is not given here.

Siceu Aircraft uutput.- This printout, which cannot be suppressed, contains the results for each sizing variation requested. A listing of the output that results from the input for the design-point aircraft given in Table B1 is given in Table C1. A short summary of this listing is also output and this is shown in Table C2. A listing of the weight statement, if selected by IPRWTSM=1, is given in Table C3. With IPRMPRF: $: 1$, mission profile results are output and these are listed in Table C4.

TAPE11

This file, produced for every computer cycle, contains the same parameters as the short output list (Table C2) located on TAPE6. The file is formatted to allow the sizing and performance resulis to be plotted during interactive plotting sessions where the abscissa and ordinate of the plots are identified by the indices of the chosen variables. The indices are the numbers of the variables on the short output list in Table C2. An illustration of the listing this file contains is shown in Table C5 and the different sections of data correspond to different computer cycles in which the sizing parameters are varied. The first section contains the same results as the short oucput list (Table C2) for the design point aircraft; the remaining sections contain the results for a systematic variation in thrust-toweight ratio at constant wing loading. The integer at the beginning of each section has a constant value for all sections of data that belong to the same curve (in this case, a constant value of wing loading).

TAPE14

This file contains the basis for preparing sizing "thumbprints" like that shown in figure 22. Unlike TAPE6 and TAPE11, this file is produced only when a matrix of wing and engine size vartations are to be computed. To produce the "thumbprint" for the supersonic transport, (fig. 22), inputs were required for the design range
(RNGDES = 4000.), an array of values for wing loading (WOSTB = 110., 100., 90., 80., 70., 60., 50.), an array of thrust-to-weight ratios (TOWTB $=.25, .30, .35, .40$, .45, .50, .55), along with NWOS -7 and NTOW $=7$. The values that resulted from one computer run are shown in iable C6. The listing contains the abscissa values of wing loading, the ordinate values of thrust-to-weight ratio, and the values of the parameters to be contoured that are functions of wing and engine size. The rows provide the change in data with W / S at constant T / W, whereas the columns give the data change with T / W at constant W / S. The large negative values (-1000000) are default values used where no solutions were obtained.

Table C6 identifies all the parameters that are available for contouring. To obtain the coordinates n the actual contours, the data on this file can be either cross-plotted by hand or TAPE14 can be used to prepare an input file for a contouring program.

APPENDIX U

JOB CUNTROL CARUS

The program executes on the Network Operating System (NOS) Version 1.4 currently in use at the Langley Research Center. The control cards required for execution are:

GET, ASP/UN $=273347 \mathrm{~N}$
ASP (F5, F6, F11, F14)
where
F5 is the file containing the baseline aircraft input and sizing options (TAPE5)

Fb is the output file (TAPE6)
Fll is the file containing plot data (TAPE11)
F14 is the file contailing the data for contour plots (TAPE14)

Note: Although the file containing the propeller design data (TAPE3) does not appear in the execution card ASP, it must be a local file during execution.

The storage requirement for proyram execution is about 210,000 (octal) words.

REFERENCES

1. Fetterman, David E., Jr.: Preliminary Sizing and Performance Evaluation of Supersonic Cruise Aircraft. NASA TM X-73936, 1976.
2. Staff of the Langley Research Center: Noise and Performance Calibration Study of a Mach 2.2 Supersonic Cruise Aircraft. NASA TM-80043, 1979.
3. Staff of the Langley Research Center: Jet Noise and Performance Comparison Study of a Mach 2.55 Supersonic Cruise Aircraft. NASA TM-80094, 1979.
4. Sears, W. R.: On Projectiles of Minimum Drag. Quart. Appl. Math, vol. 4, no. 4, 1947, pp. 361-366.
5. Morrison, W. D., Jr.: Advanced Airfoil Design Empirically Based Transonic Aircraft-Drag Ruildup Technique. NASA CR-137928, 1976.
6. Ashley, Holt; and Tandahl, Marten: Aerodynamics of Wings and Bodies. Addison-Wesley Publishing Company, Inc., 1965, pp. 1.1ô-181.
7. Harris, Roy V., Jr.: An Analysis and Correlation of Aircraft Wave Drag. NASA TM X-947, 1964.
8. Rubesin, M. W.; and Johnson, H. A.: A Critical Review of Skin Friction and Heat Transfer Solutions of the Laminar Boundary Layer of a Flat Plate. Trans. ASME, vol. 71, no. a, May 1049, pp. 383-388.
9. Monoghan, R. J.: On the Behavior of Boundary Layers at Supersonic Speeds. Fifth International Aeronautical Conference, Los Angeles, California, June 20-23, 1955, Institute Aeronautical Sciences, Inc., pp. 277-315.
10. Schlichting, H.: Boundary Layer Thenry. Pergamon Press, 1955.
11. Foss, Willard E., Jr.: A Computer Program for Detailed Analysis of the Takeoff and Approach Performance Capabilities of Transport Category Aircraft. NASA TM-80120, 1979.
12. Jackson, Charlie M., Jr.: Estimation of Flight Performance With ClosedForm Approximations to the Equations of Motion. NASA TR R-228, 1966.
13. Brewer, G. D.; and Morris, R. E.: Advanced Supersonic Technology Concept Study - Hydrogen Fueled Configuration, Summary Report. NASA CR-114717, 1974.
14. Johnson, Vicki S.: Comparison of Advanced Turborrop and Turbofan Airplanes. NASA TM-85692, 1983.
15. FORTRAN Extended Version 4 Reference Manual. Control Data Corp., 1980.

(a) Subsonic transport
Figure 1.- Baseline aircraft.

$$
\begin{aligned}
& \text { Gross weight, :' } \\
& \text { Length. ft } \\
& \text { Span, ft } \\
& \text { Wing aspect ratio } \\
& T / W \\
& W / S \text {, psf } \\
& \text { Paylaod, lb } \\
& M, \text { cruise } \\
& \text { Endurance, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Gross weight, ib } \\
& \text { Length. ft } \\
& \text { Soan, ft } \\
& T / w \\
& W / S \text {, pst } \\
& \text { Propulsion } \\
& \text { Possengers } \\
& M \text {, cruise } \\
& \text { Ronge, nm }
\end{aligned}
$$

$$
\begin{gathered}
574,736 \\
424 \\
138 \\
.45 \\
57.6 \\
\text { Turbojet } \\
292 \\
2.62 \\
4,557
\end{gathered}
$$

Figure 1.- Continued.

$$
\begin{aligned}
& \text { Gross weight lb } \\
& \text { Length, ft } \\
& \text { Span. ft } \\
& \text { T/W } \\
& \text { W/S, psf } \\
& \text { Propulsion } \\
& \text { Posãengers } \\
& \text { M, cruise } \\
& \text { Range, nm }
\end{aligned}
$$

(e) Hypersonic aircraft, Methane fuel.
Figure 1.- Concluded.

ORIGINAL PAGE'IS

 JF POOR QUALITK
(2i)

Figure 4.- Effect of sizing on lift-drag polors. Subsonic tronsport $M=.8, W_{G}=104,000 \mathrm{lb}$

Supersonic transport

Figure 8.- Typical takeoff flight profile.

(a) $w / s=75 \mathrm{psf}$

Figure 9.- Effect of velocity ot start of rotation on takeoff charocteristics. Supersonic transport JP fuei, $W_{G}=718.000 \mathrm{lb}$.

Figure 9. - Concluded.

Figure 12.- Effect of cruise options on altitude and range. supersonic transport, \mathbb{P} fuel, $T / W=.367$. $W_{G}=718.000 \mathrm{lb}$

72

Figure 15. - Effect of sizing on tokeoff chorocterisiics. Supersonic
tronsport p fuel, $a_{L O}=8$ deg. $\delta_{F}=20$ deg.
$W_{G}=718,000 \mathrm{lb}$.

Figure 16.- Excess thrusi during climb. Supersonic transport ip fivel, $W_{C}=718,000 \mathrm{lb}$

wи 'obuod 7490500

Figure 20.- Effect of sizing on approach conditions. Effect of sizing on $=20$ deg, Super so
$\alpha=9.5$ deg. $\delta_{F}=2,000$
transport. JP fuel $W_{G}=718,00 \mathrm{ib}$

Figure 21. - Effect of sizing on trip time and range. Supersonic transport, JP fuel. $W_{G}=718,000 \mathrm{lb}$

Figure 27.- Effect of sizing on mission radius. Supersonic tronsport. p fuel, $W_{G}=643,633 \mathrm{lo}$

$t i=$
Lood factor. $\%$

[^0]

Figure 31.- Effect of fuselage design variables on range. Supersonic transport liquid hydrogen fuel. $W_{G}=494.000 \mathrm{lo}$.

table bl. - input listing (tapes).
SUPERSONIC TRANSPORT: JP-FUEL
SPRTCCN
ITRUTSH-1, IPRMPRF-1.

ULF-3.75.
TABLE B1. - CONTINUED.

TAIL VOLUAE COEFFICIENTS...KTAIL

swolilanos zyoumi

TABLE C1. - CONTINUED.

CD．0PT
.01323
.01321
$.013: 8$
.01328
.81338
.81469
.01889
.01867
.81982
.01823
.01696
.01568
.01518
.01467
.01398

.01304 | CL．OPT |
| :--- |
| .17600 |
| .17600 |
| .17600 |
| .17700 |
| .17800 |
| .18400 |
| .19800 |
| .18867 |
| .18600 |
| .17200 |
| .16000 |
| .14800 |
| .14000 |
| .13200 |
| .12343 |
| .11460 |
| .08313 |

at altitudes along cline schedule

$\begin{aligned} & 8 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \mathbf{o} \\ & \mathbf{N} \\ & \mathbf{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \stackrel{\mathbf{O}}{\mathbf{8}} \end{aligned}$	$\begin{aligned} & \text { 잉 } \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\oplus}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \hline . \end{aligned}$		$$	$\begin{aligned} & \text { 「 } \\ & \stackrel{\circ}{\mathbf{O}} \\ & \stackrel{\circ}{\mathbf{\circ}} \end{aligned}$	$\begin{aligned} & \text { 「 } \\ & \stackrel{\oplus}{\Phi} \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathbf{I}} \\ & \stackrel{\rightharpoonup}{\mathbf{\circ}} \end{aligned}$	$\stackrel{\text { ® }}{\stackrel{\circ}{8}}$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { or } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$
谷	5_{0}	¢	告	$\begin{aligned} & \text { た } \\ & \text { © } \\ & \text { \& } \end{aligned}$	$\begin{aligned} & \text { ๗ } \\ & \stackrel{1}{\mathbf{O}} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{N}{N}}{\stackrel{\rightharpoonup}{\otimes}}$	$\begin{aligned} & \stackrel{\text { N }}{\sim} \\ & \mathbf{N} \\ & \hline \end{aligned}$		$\stackrel{\Gamma}{\infty}$	$\stackrel{\stackrel{\sim}{\sim}}{\stackrel{\sim}{\circ}}$	$\begin{aligned} & \mathbf{8} \\ & \stackrel{\circ}{\circ} \\ & \hline 8 \end{aligned}$		$\begin{aligned} & \mathbf{0} \\ & \mathbf{0} \\ & \mathbf{E} \end{aligned}$	$\begin{aligned} & \text { M } \\ & \stackrel{8}{\otimes} \\ & \stackrel{8}{\circ} \end{aligned}$	N	$\stackrel{+}{+}$
	$\begin{aligned} & \text { § } \\ & 8 \\ & \hline \end{aligned}$	\％	N ¢ ¢		$\begin{aligned} & \text { ヘ } \\ & \hline 0 \\ & \hline \\ & \hline \end{aligned}$	$\begin{aligned} & \text { § } \\ & \mathbf{O} \\ & \hline \mathbf{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\Gamma}{\mathbf{\omega}} \\ & \stackrel{8}{\mathbf{\circ}} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\otimes} \\ & \stackrel{\oplus}{\otimes} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\ddot{\circ}}{\circ} \\ & \stackrel{8}{\circ} \end{aligned}$	$\begin{aligned} & \mathbf{\Gamma} \\ & \stackrel{\Phi}{\mathbf{O}} \\ & \mathbf{\Phi} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \text { 厄 } \\ & \text { © } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	－	－	¢
$\begin{aligned} & \text { 5 } \\ & 0 \end{aligned}$	$\begin{gathered} \text { ! } \\ \stackrel{\circ}{\circ} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\Phi} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{0} \\ & \text { O. } \\ & \mathbf{8} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \text { O} \\ & \text { © } \end{aligned}$		$$	$\begin{aligned} & \text { \& } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { \& } \\ & \stackrel{8}{\circ} \\ & \stackrel{8}{\circ} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{aligned} & \text { 毋. } \\ & \stackrel{8}{\circ} \\ & \dot{\circ} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\circ} \\ & \stackrel{+}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\otimes}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \dot{8} \\ & \stackrel{8}{\otimes} \\ & \stackrel{8}{\otimes} \\ & \dot{\circ} \end{aligned}$

TABLE C1. - CONCLUDED.
TAKEOF DRAG COEFFICIENT
DELTA CD
BASIS FOR ABOU罟 INCREMENT
CFTTOB, GFETOR, TOCDACE, TOCDELE, TOCDRFE
TAKEOFF DRAG COEFFICIENT IMCREMENTS FROM BASELINE UALUES

*EE ENGIME SIZING IMFO EEE
ENGINE SIZING FACTOR, ESF.
max Thrust ualuesiengine, sea level static
T.SLS, DECK, DEG. DAY G5978.09000 T.SLS.RESIZE,
51490.64830
3: INPUTS FCR DOC-ROI PROGRAM tEz
RHGE 4012.C UGROSS 643633.0 FUELBL. 244434.6 UCJ. 2e5962.6 NSEATS. 293 UGROSS 643633.0
UTENG 39802.1 TCRUISE $\quad 2.173$
NCREJ- 3
UCARGO
HOS: 82.06 RNGE - 4012.2
BEUE 273221.1
TBLOCK = 3.300 NOPAS. 292 XMCR = 2.62
TOV = . 3200
F
つF Fご

8.68015
8.4925
1.37292
939.9
0.12
0.86808

31.24044
136.40195
26.35896
198.00135

DATA FOR PROP DRIUEN AIRCRAFT

tABLE C3. - WEIGHT STATEMENT (TAPEG).

				$\begin{aligned} & \text { U,L/S } \\ & \text { ition } \\ & \text { E, MROP } \end{aligned}$	4 SFC.LB/H/L FUEL, IEASEC	$\begin{aligned} & \text { RMMGE, IUF } \\ & \text { BF:N, } \end{aligned}$		FPA,DEG DRAG,L8S E, OUALL
$\begin{array}{r} .3567 \\ 1806 \\ 20002.1684 \\ 0.0000 \end{array}$	235.6495 20100.16884 0.8 .268	$\begin{array}{r} +40.4337 \\ \cdot 4366 \\ 2.3388 \\ e .8098 \end{array}$	$\begin{array}{r} 185.7028 \\ .0589 \\ 0.3388 \\ 0.0900 \end{array}$	$\begin{array}{r} 636921.1479 \\ 7.40 ¢ 2 \\ 1.0906 \\ 0 . \theta 000 \end{array}$	$\begin{array}{r} .9896 \\ 62.1174 \\ 68.3894 \end{array}$	$\begin{array}{r} 2.42150 \\ 1562.3976 \\ 0.3013 \mu \end{array}$	$\begin{array}{r} 60.3692 \\ 636774: 3568 \\ 6708.85 ? 4 \end{array}$	$\begin{array}{r} 3.3468 \\ 85943.2081 \\ 0.9008 \end{array}$
.3754 195327.1994 0.6908	$\therefore 97.7323$ 19932.1758 1.8908	$\begin{array}{r} 700.0009 \\ 2.5983 \\ 0.0000 \end{array}$	$\begin{array}{r} 203.5462 \\ .0489 \\ 2.5515 \\ 8.4009 \end{array}$	636454.8512 8.1451 1.8000 1.8800	.9889 6.1225 62.1522	$\begin{array}{r} 2.9211 \\ 1798: 0375 \\ 0.80808 \end{array}$	$\begin{array}{r} 67.7389 \\ 636299.4359 \\ 7168.1488 \end{array}$	$\begin{array}{r} 5.7951 \\ 78125.8285 \\ 3.80009 \end{array}$
	$\begin{array}{r} 263.5991 \\ 6.0980 \\ 197134.7709 \\ 0.0000 \end{array}$	$\begin{array}{r} 1094.3591 \\ .3555 \\ 2.8224 \\ 0.8080 \end{array}$	$\begin{array}{r} 227.7946 \\ 2.8391 \\ 0.8204 \\ 0.8080 \end{array}$	635910.3979 9.1015 1.8060 0.8008	$\begin{array}{r} .9880 \\ 1.1299 \\ 61.8357 \end{array}$	$\begin{array}{r} 3.55 .63 \\ 2125.2731 \\ 0.00 .30 \end{array}$	$\begin{array}{r} 76.6825 \\ 635723.2771 \\ 7722.6030 \end{array}$	$\begin{array}{r} 5.8553 \\ 69848.2286 \\ 0.00809 \end{array}$
$\begin{array}{r} .: 909 \\ .2 .27 \\ 192886.6183 \\ 0.8848 \end{array}$	327.6637 0.6090 19288.6 .83 0.2008	$\begin{array}{r} 2698.1197 \\ 3.2405 \\ 3.7315 \\ 0.0680 \end{array}$	$\begin{array}{r} 335.6338 \\ .8195 \\ 3.7315 \\ 8.8000 \end{array}$	633984.5581 12.2592 1.8000 0.0600	.8859 6.1519 61.7297	$\begin{array}{r} 6.1162 \\ 3488.6357 \\ 0.0030 \end{array}$	$\begin{array}{r} 187.8557 \\ 633696.3065 \\ 2648.4419 \end{array}$	$\begin{array}{r} 5.8981 \\ 51691.6363 \\ 0.8000 \end{array}$
.5580 $190875: 2851$ 0.28089	$\begin{array}{r} 359.4166 \\ 0.09 \theta 8 \\ 19087.2590 \\ 0.09 \theta \theta \end{array}$	$\begin{array}{r} 3500.0080 \\ 3.2845 \\ 3.9467 \\ 0.8808 \end{array}$	$\begin{array}{r} 394.2720 \\ 3.9156 \\ 3.9467 \\ 8.9898 \end{array}$	633144.3982 13.8842 1.0000 9.0808	$\begin{array}{r} .9857 \\ 1.1630 \\ 61.6626 \end{array}$	$\begin{array}{r} 7.4158 \\ 4045.8360 \\ 0.0000 \end{array}$	$\begin{array}{r} 121.4744 \\ 632798: .6323 \\ 10488.6818 \end{array}$	$\begin{array}{r} 5.8188 \\ 48363.5271 \\ 6.3000 \end{array}$
	$\begin{array}{r} 336.8235 \\ 60.0968 \\ 17586.9033 \\ 8.9208 \end{array}$	$\begin{array}{r} 7285.7143 \\ 2.9374 \\ 0.80808 \end{array}$	407.0992 .0150 3.6536 8.8888	$\begin{array}{r} 631142.7935 \\ 13.1972 \\ .8800 \\ .8080 \end{array}$.9306 1.9312 40.1171	$\begin{array}{r} 12.3821 \\ 4953.8483 \\ 0.0000 \end{array}$	$\begin{array}{r} 189.3905 \\ 630742.8459 \\ 1249.2965 \end{array}$	$\begin{array}{r} 7.1888 \\ 47793.5615 \\ 0.0090 \end{array}$
$\begin{array}{r} .7009 \\ .132774 .8572 \\ 6.8980 \end{array}$	$\begin{array}{r} 438,744.7 \\ 8 ., 0090 \\ 14752.7302 \\ 8.0000 \end{array}$	$\begin{array}{r} 14857.1429 \\ 2.18937 \\ 0.8600 \end{array}$	$\begin{array}{r} 412.1775 \\ .0147 \\ 3.1222 \\ 8.8808 \end{array}$	627238.8657 17.2214 9890 - 3080	$\begin{array}{r} .9745 \\ 1.1884 \\ 40.8787 \end{array}$	$\begin{array}{r} 22.4416 \\ 5238.2679 \\ 0.0080 \end{array}$	$\begin{array}{r} 257.1188 \\ 626527.4766 \\ 16394.1343 \end{array}$	$\begin{array}{r} 7.0989 \\ 4740{ }^{2} 3264 \\ 9.0000 \end{array}$
$\begin{array}{r} .800 \% \\ .1197 \\ 122 z 84 \\ .42088 \end{array}$	$\begin{array}{r} 486.7297 \\ 8.0099 \\ 12223094 \\ 0.8000 \end{array}$	$\begin{array}{r} 22423.5714 \\ .2016 \\ 2.5698 \\ 0.000 \theta \end{array}$	$\begin{array}{r} 393.5423 \\ .9154 \\ 2.5699 \\ 0.2908 \end{array}$	623377.0144θ 13.6908 1.9808 0.8080	$\begin{array}{r} .9685 \\ 4.1795 \\ 40.8408 \end{array}$	$\begin{array}{r} 33.7429 \\ 5407.4132 \\ 0.0880 \end{array}$	$\begin{array}{r} 344.7265 \\ 622751.5469 \\ .20255 .9460 \end{array}$	$\begin{array}{r} 6.3405 \\ 47571.6378 \\ 0.8000 \end{array}$
	$\begin{array}{r} 530.4990 \\ 0.8900 \\ 100704.8348 \\ 8.8008 \end{array}$	$\begin{array}{r} 30000.0200 \\ .2287 \\ 1.9965 \\ 9.8080 \end{array}$	$\begin{array}{r} 357.0251 \\ 1.8189 \\ 1.895 \\ 8.6898 \end{array}$	$\begin{array}{r} 619318.2880 \\ 12.2634 \\ 1.8090 \\ 0.6000 \end{array}$	$\begin{array}{r} .9622 \\ 1.1816 \\ 33.3543 \end{array}$	$\begin{array}{r} 49.3915 \\ 5512.2625 \\ 0.4608 \end{array}$	$\begin{array}{r} 455.7711 \\ 618590.1818 \\ 2+314.7120 \end{array}$	$\begin{array}{r} 4.5513 \\ 50441.0796 \\ 8.80 \theta 9 \end{array}$
$\begin{array}{r} 1.0090 \\ .00757 \\ 0.6246 \\ 0.0068 \end{array}$	$\begin{array}{r} 585.3295 \\ 0.8080 \\ 100756.6296 \\ 0.0090 \end{array}$	$\begin{array}{r} 31611.1211 \\ 1.1918 \\ 1.8657 \\ 8.8009 \end{array}$	$\begin{array}{r} 409.4874 \\ .9168 \\ 1.8657 \\ 0.8000 \end{array}$	617373.3690 11.4151 1.0068 0.0808	$\begin{array}{r} .9592 \\ 1.1919 \\ 33.3584 \end{array}$	$\begin{array}{r} 58.46 .88 \\ 5614.86 .83 \\ 6.0280 \end{array}$	$\begin{array}{r} 514.3429 \\ 616477.8228 \\ 26259.6318 \end{array}$	$\begin{array}{r} 1 . c 738 \\ 54005: 3470 \\ 0.8009 \end{array}$
1.1008 102335.0653 5.0068	$\begin{array}{r} 639.3059 \\ 0.0008 \\ 102359.0729 \\ 0.0008 \end{array}$	33222.2222 .1782 1.6632 0.8080	$\begin{array}{r} 459.8367 \\ .0178 \\ 1.6632 \\ 8.0089 \end{array}$	615285.5229 3.9825 1.0969 8.0060	$\begin{array}{r} .9560 \\ 1.1994 \\ 34.8937 \end{array}$	$\begin{array}{r} 58.95186 \\ 5330.2557 \\ 0.6108 \end{array}$	$\begin{gathered} 576.25 \\ 614222 \\ 25347.4771 \end{gathered}$	$\because \begin{array}{r} .4429 \\ 7134 \\ 90 e 0 \end{array}$

	$\begin{gathered} \text { U,Y } \\ \text { TMAX; DEG } \\ \text { TBES } \end{gathered}$	$\begin{gathered} A L T, F T \\ G / L^{\prime} \\ C D \\ C D \end{gathered}$		$\begin{aligned} & \text { E, L.Es } \\ & \text { T/TNAGX } \\ & \text { E. PROR } \end{aligned}$		$\begin{aligned} & \text { RAMGE, MM } \\ & \text { BLAF, DES } \end{aligned}$	$\begin{aligned} & \text { TIME, SEC } \\ & \text { LUE,i,S } \end{aligned}$	FPA, DEC DFAG,LES E, OUALL
$\begin{aligned} & 1.1200 \\ & .065 \% \end{aligned}$	649.9878	$\begin{array}{r}33544.4444 \\ .1665 \\ \hline 1837\end{array}$	$\begin{array}{r}469.5857 \\ .017 \\ \hline 0\end{array}$	$\begin{array}{r} 614839.5397 \\ 9.7907 \end{array}$	$\begin{array}{r} .0553 \\ 1.2307 \end{array}$	$\begin{array}{r} 72.3364 \\ 5399.565! \end{array}$	$\begin{array}{r} 599.3065 \\ 613739.4566 \end{array}$	62686. ${ }^{1.299889}$
102624.9970	102624.087\%	1.6371 e.8088	1.6371 8.0909	1.8080 8.9800	34.2287	-.8008	\$793.4682	
$\begin{array}{r} 1.1<00 \\ . e 635 \end{array}$	$\begin{array}{r} 66 e .6553 \\ 0.6000 \end{array}$	3.3866.6667	479.2151	$\begin{array}{r} 614385.5941 \\ 9.6094 \end{array}$	$\begin{array}{r} .9546 \\ 1.2920 \end{array}$	73.7481 5286.2958	602.5432 613249.9897	$\begin{array}{r} 1.2811 \\ 6387^{1}, 2399 \end{array}$
102903.3227	1*2903.3227	1.6118	1.611 e	1.6960	34.3594	-.88日	29247.4059	-6eer
8.886	8. 8800	0.8088	0.0088	\$.8008				
1.1600	671.2780	3-188.8389	488.7198	6139 i 8223	. 9538	76.2338	615.9871	1.2218
. 8628	-8.6888	. 15897		4.4124	1.2833	5260.8743	612751.2888	5108.2673
$\begin{aligned} & 22.3965 \\ & 0.0806 \end{aligned}$	$\begin{array}{r}103172.3865 \\ \hline .8988\end{array}$	1.5848	1.5848 0.0098	+.0008	34.9855	-.6808	29710.1777	9.8080
$\begin{array}{r} 1 . i 890 \\ .0605 \end{array}$	$\begin{array}{r} 681.8659 \\ 0.0020 \end{array}$	$\begin{aligned} & 34511.1111 \\ & .1566 \end{aligned}$	498.0953	$\begin{gathered} 613459.4172 \\ 9.2383 \end{gathered}$	$\begin{array}{r} .0531 \\ 1.2845 \end{array}$	78.8029	$\begin{array}{r} 629.66!? \\ 612242.5555 \end{array}$	$1,1824$
10343e.9817	103430.9817	1.5593	1.5593	1.0000	34.6970	¢29.90e日	381 12.5828	6 0.5000
0.2808	0.8908	0.8009	0.080e	e.0000				
1.2080	692.4190	34833.3333	507.3369	612967.5517	. 9524	81.4817	643.5910	¢.1429
. 8588	8.8008	+536	-6178	9.8516	1.2857	5288.8281	611783.8238	67581.5158
$\begin{array}{r} 1 * 3678.7593 \\ 0.0804 \end{array}$	143678.7593 8.80008	1.5. ${ }_{\text {a }}$	${ }_{8}^{1.5341}$	1.0800 0808	34.7237	0.0008	32565.4483	-.8000
2.3009	745.6549	444.4144	551.4028	610526.8378	. 9486	$9 \cdot 3826$	712.2890	1.091.4
144792.8535	4782.8809	-1487	. 8158	8.8995	1.2132	548E. 7033	609089.3119	441.2063
10479.9088	104792.93:	1.5290		-	35.3150	0.0983	33106.1522	e. 0090
1.4098	803.8120	38955.5558	592.0099	597153.4914	. 9446	111.078?	786.28	968
. 6.8569	-.8800	.1385	.8148	8.793\%	1.2244	5783.3067	606293.328?	946.0720
10353.8054 3.8080		1.5817	1.5017 8.8080	3.8000	35.2124	0.0088	35678.5086	0.0988
1.5098	860.3790	38665.8667	629.1437	605352.8681	. 9495	128,0547	859.7437	
. 9564	e.0e0e	-1222	. 8141	8.6768	1.2349	6064.1346	603455.2214	69548.3988
$\begin{array}{r} 10370: .2785 \\ 0.0000 \end{array}$	$\begin{array}{r} 10778: .2785 \\ 0.8096 \end{array}$	1.4911 8.86808	${ }_{9} .4911$	1.0908	35.5729	-. eefs	58230.1319	0.0800
+6008	917.7288	4:277.7778	662.6857	602745.8015	. 9365	146.0923	932.7831	. 8423
3272.8251	103272.8251	.1155 1.4797	-9134	8.6653	1. 3454	6363.6643	609593.1885	69793.8446
-8.8000	10327.8088	\%.9888	1.04?	1.89808	35.7281	-.0.6e	40883.9985	6.8988
1.7004	975.0860	42888.8889	682.5816	600135.2538		16.3 .3312	1005.9652	
2338.2544	102338.8438	. 1.1138	${ }^{.0128}$	8.5783	1. 25259	5686.9194	597718.8495	68677.72 .05
10238.840 8)	1m23s:090e	-.8888	1.4888	-1.8000	35.7932	-.oere	43497.7462	\%.08e
1.8000	1032.4440	44500088	714. 7343	597508.6486	. 92893	185.8959	79.7203	. 7388
108974.5695	!00374.5695		1.483	8.5922	1.2664	7036.5754	594811.4468	826.5741
-.8000	-.8000	®.eere	P.er 38	8.8er	35.521	8.0028	46124.35:4	6.8000

SFC． P ， FJEL．LB／SEC	RANGE，MA BF，NM 1 BAP，DEC	TIME，SEf L，LBS FUEL，ib	FPA，DEG DRAG．LBS E，ovalil
． 9272	208．1464	1155.2079	．6®28
1．2788	7262.2962	561： 3 36．8957	67833.8350
35.4897	8.0980	．8804．4585	0.0093
． 9298	232.6970	1233.9383	． 6211
1．2911	7495．4211	5818742．5069	1e：78．942：
35.3914	0.0800	5.1591 .0801	0.8090
． 9153	259．51－1	1316.3152	． 5647
1．3958	7726.4150	5E5519．0743	70380．195e
35．1309	0.00 en	§4434．1592	－． O
． $3: 96$	$289.137=$	1482.7953	． 5129
1． 31.39	79E1．3138	582155．1511	70435.5757
34.9244	0.0009	5． 25.5779	0 － 100
． 3057	321.3148	1494．2230	．4635
1.3330	8230.0755	578634，8743	70099．9：01
34.5503	0.0668	60791．8001	0.8080
， 5985	358.241	$1591.364 *$	． 4182
1． 3471	8516.8459	57495x．2053	69542．6832
34.0748	ว． 2880	64031．4745	0．əひもの
． 8958	398.9284	1695．4808	． 3735
1．354？	8798．4586	571663．1367	58156．515
33.5 こ己4	0.8080	67553．5269	0.0080
． 8892	444.9823	1898.8343	． 3299
＋．3823	9894．7439	566925.9456	67890．498：
32.8829	0．0000	71.316 .8287	0.0030
． 8889	454.8679	21832．6044	． 3674
1．3858	2155.6566	565070．1114	6i692．905
32.7499	9．4860	72096.8775	0.00 ；
$\begin{array}{r} .8860 \\ 1.3868 \end{array}$	472.3252 9380.9537	1874.4267 564799.9146	65868.8894
29.6559		73389.3351	0.0260
． 8869	472.3252	1874．4267	1.3594
1.3663	9522．2795	56.1798 .9146	65868．8374
24.9384	3．8き0\％	71389．3351	0.0406

0
0
0
0
\cdots
\cdots
\vdots
\vdots
0
0
0

Q．PSF
CD
YMAX $/ D_{D}$ yeen：
2IEr：
sestitha
760.5424
1.4928
1.4925
0.988 775.3935
.9115
1.2708 08.9324 798.3072
.8112
1.3311
8.2300 804.7824
 ∞
0
0
in
$\dot{8}$
0
0 0
0
0

 78.4190
1.8117
1.845
0.8048

 ©
$=0$
0
0
0
0
\vdots
0
0

3.6209
0.8829

[^0]: Figure 29.- Subsonic range-total range trade for supersonic transport P fuei, $W / S=82$ psf. $T / W=.32 . W_{G}=643.633 \mathrm{lb}$.
 $M_{\text {crinise }}=.9$ and 2.62 .

