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Summary

Although stringers are used primarily as stiffen-
ers, they also can make damaged structures fail-safe
or damage tolerant. Assessment of the damage toler-
ance of structures weakened by cracks is aided by
knowledge of stress-intensity factors. In this pa-
per, the stress-intensity factor is determined for a
cracked orthotropic sheet adhesively bonded to an
orthotropic stringer. Since the stringer is modeled as
a semi-infinite sheet, the solution is most appropriate
for a crack tip located near a stringer edge. Both ad-
herends are treated as homogeneous, orthotropic me-
dia which are representative of many fiber-reinforced
composite materials. It is assumed that the ad-
herends are in a state of plane stress and the adhesive
is in pure shear. By use of Green’s functions and the
complex variable theory of orthotropic elasticity de-
veloped by Lekhnitskii, a set of integral equations is
obtained. The integral equations are replaced by an
equivalent set of algebraic equations, which is solved
to obtain the shear-stress distribution in the adhesive
layer. From these adhesive stresses, equations for the
stress-intensity factors at both crack tips are found.

A parametric study is also conducted to deter-
mine the sensitivity of the system to material prop-
erties and specimen configuration. The parameter
having the greatest influence on the stress-intensity
factors is the distance from the near crack tip to the
edge of the stringer. Unless the crack tip is very close
to or under the stringer, the stress-intensity factor is
approximately that of an unstiffened sheet. How-
ever, as the crack propagates beneath the stringer,
the stress-intensity factor decreases significantly. In-
creasing the stringer stiffness or the adhesive stiff-
ness also results in a decrease in the stress-intensity
factor.

Introduction

Because of their high strength and light weight,
composite materials are finding increasing applica-
tion in aerospace structures. In general, the struc-
tural configurations used in composite airplanes have
been very similar to the sheet-stringer construction
currently used in metal airplanes. In metal airplanes,
stringers are effective in making damaged structures
fail-safe or damage tolerant. For this reason, the
interaction of a cracked sheet and a stringer is an
important problem which has been investigated by
many authors.

Romualdi, Frasier, and Irwin (ref. 1) considered
two problems: a crack centrally located under a riv-
eted stringer and a crack centrally located between
two riveted stringers. In their formulation of the
problem, only the two rivets nearest the crack were

considered effective. Sanders (ref. 2) considered the
problem of a crack positioned symmetrically beneath
a continuously attached stringer. He employed a
shear-lag line stringer and assumed the sheet to be in-
extensible in the direction parallel to the crack to ob-
tain the stringer stress-concentration factor and the
crack-tip stress-intensity factor. Greif and Sanders
(ref. 3) removed Sanders’ previous inextensionality
assumption and symmetry requirements. They con-
cluded that the stringer-induced reduction in the
stress-intensity factor was a localized effect and that
the stringer stress-concentration factor was largely
insensitive to sheet stiffness in the direction parallel
to the crack. Bloom and Sanders (ref. 4) reported
an analysis of a discretely attached stringer which
may be broken. Poe (ref. 5) examined the problem
of a cracked sheet stiffened by evenly spaced, riv-
eted longitudinal stringers. The crack was assumed
to originate at a rivet location and to grow beneath
intact stringers. An extension of that work (ref. 6)
considered the influence of broken stringers.

Arin (ref. 7) examined the effect of the debond-
ing of an infinitely long line stringer on the stress-
intensity factor at the crack tip. He assumed that
the stringer was adhesively bonded to an isotropic
sheet along a line perpendicular to the crack. He
concluded that the stringer exerts little influence on
the stress-intensity factors unless it is quite close to
the crack tip and the debond length is less than twice
the crack length.

Norris (ref. 8), using a complex-variable approach,
represented the finite-width stringer with an array of
line stiffeners. The stringer was divided into strips,
and each strip was represented by a line stiffener
attached to the sheet at discrete points, with no
coupling between adjacent line elements. Because the
analysis did not model debonding of the adhesive,
it predicted unrealistically high loads in the line
stiffener nearest the crack tip.

Experimental work has shown that as the crack
tip approaches the stringer, debonding can start and
propagate through the adhesive. Although Arin
(ref. 7) included adhesive debonding in his analysis,
he modeled the stringer as a line, and thus was
unable to account for partial debonding across the
width of the stringer. Anderson, Hsu, and McGee
(ref. 9) modeled partial debonding in their analysis
of a cracked sheet reinforced by a bonded doubler.
However, they were using a finite-element analysis,
which would be very cumbersome and expensive to
use when varying parameters such as crack length
and debond area.

A realistic analysis is needed that examines the
effect of growing debond area on crack propagation
in adhesively bonded structures. The purpose of this



paper is to formulate such an analysis and to use it
to study orthotropic sheets reinforced by orthotropic
stringers. To meet this objective, the problem has
been divided into two parts. In the first part, the
problem is formulated with the assumption of a linear
elastic adhesive with no debonding, and the stringer
is modeled as a semi-infinite sheet bonded to an
infinite sheet containing a crack. In the second part,
the effects of adhesive nonlinearity and debonding are
included. Although both parts have been solved, for
brevity only the first part of the problem is presented
here.

Nomenclature

a half-length of crack, m

+a right crack tip, m

—a left crack tip, m

A;,B;,Cy, Dy constant coefficients in layer j
stress functions, N/m®

b distance from edge of stringer
to center of crack, m

ik complex constants (j,k = 1,2)

D domain of integration

L. By Young’s moduli in the z- and

y-directions, respectively, Pa

Fplw, z,a) complex-variable function
used in displacement-potential

functions

Fp(w,a) complex-variable function used
in calculation of left crack-tip

stress-intensity factor

Fao(w,z,a) complex-variable function used
in displacement functions of

layer 2

Fr(z,w,a) complex-variable function used

in stress potentials

Fr{w,a) complex-variable function used
in calculation of right crack-tip
stress-intensity factor

for. fo2 stress functions, m3/N

Gy orthotropic shear modulus, Pa

(4 shear modulus of adhesive
layer, Pa

h,l- thickness of layer 7, m

i = V-1

k1
N
Dy, 4y
Qsk, Bk
Sjk
T,
Uy, Uy
b
u(l ),vgb)
ut, v°
u(lr),vl )
u’,v®
'
Ug, Uy
Wy
X5, Y;
X}
z,y
o, Y%0
oy
zj
<0
Azn, Ayn

normal (mode I) component of
stress-intensity factor, Pay/m

number of collocation points;
number of cells in the domain

complex constants for or-
thotropic sheet (j = 1,2),
1/Pa

complex kernels used in
displacement functions for
layers 1 and 2, respectively
(,k=1,2),1/Pa

complex kernels used in
integral equations (J, k = 1,2),
1/(Pa-m)

complex kernels used in stress-
intensity factors (7 = 1, 2, 3,
4)

z- and y-displacements of layer
J, m

displacements in layer 1 due to
crack-face pressure, m

displacements in layer 1 due to
concentrated forces, m
displacements in layer 1 due to

distributed body forces, m

displacements in layer 2 due to
a pair of concentrated forces,
m

displacements in layer 2 due to
distributed body forces, with
respect to rotated coordinate
system, m

complex variable (7 = 1, 2, 3,
4), m

body forces acting on layer j
(/= 1,2), N/m®

layer 2 body forces in rotated
coordinate system, N/m>
Cartesian coordinates, m
coordinates of load point, m
rotated coordinate system, m
complex variable (7 = 1, 2), m
location of load point, m

incremental distances

(n= 1,2,...,N),m



By roots of the characteristic ¢(12)(z), ¢(22)(z) displacement potentials due
equation (5 = 1, 2) to a pair of load points in a
half-plane, m

Viy, Vyz Poisson’s ratios
Superscripts:
og pressure applied to crack face,
Pa (7), (k) layer number (j,k = 1,2)
Tz, Ty shear stresses in adhesive
layer, Pa A bar over a symbol indicates a complex conju-
gate; thus, if 2z =z + 7y, then z =z — 7y. A prime
¢! (2), ¢5(2) stress potentials for or- on a symbol indicates reference to the rotated coor-
thotropic materials, Pa dinate system, except in the stress and displacement
potentials, for which a prime indicates differentia-
#5(2), 95(2) displacement potentials due tion.

to a pair of load points in the
cracked sheet, m

Formulation of the Problem

Consider the sheet-stringer configuration shown in figure 1. (Hereinafter, the semi-infinite sheet will be
referred to as a stringer.) The stringer and the sheet are bonded together by an adhesive layer of constant
thickness h3. Here the bond is assumed to be intact. The crack faces are subjected to a uniform pressure og

and the stress state at infinity is zero, as shown in part A of figure 2. The problem is solved with the following
assumptions:

1. The sheet (layer 1), the stringer (layer 2), and the adhesive (layer 3) are homogeneous and linearly
elastic.

2. The sheet and the stringer are dissimilar, orthotropic materials with principal directions of orthotropy
being oriented parallel and perpendicular to the crack in layer 1.

3. The thicknesses of the sheet and the stringer are small compared with the in-plane dimensions, so that
both layers are considered to be in a state of plane stress.

4. The surface shear transmitted through the adhesive is assumed to act as a body force on the adherends.

5. The thickness of the adhesive is small compared with the thicknesses of the sheet and the stringer; thus,
the adhesive layer is treated as a shear spring rather than as an elastic continuum.

Assumption 5 leads to the following continuity of displacement equations:

h3 h3
—up = —=7, V] — Vg = —T 1
UL U = o 1= =gy (1)
where uq,v1 and ug, vy are the z- and y-components of the in-plane displacement vectors in layers 1 and 2, 7,
and 7y are the components of the adhesive shear stress, and h3 and G3 are the adhesive thickness and shear
modulus, respectively. From assumption 3, the two sets of body forces (forces per unit volume) that act on

layers 1 and 2 can be written as follows:

Tz Ty Tx Ty
X =7 y-- x,=7 y=0 2
1 Iy 1 hy 2= 4, 2=, (2)
Figure 2 shows how the problem is broken into its component parts. The displacements in the sheet, shown
in part B of figure 2, and in the stringer, shown in part C of figure 2, are determined individually as follows.

Displacements in the Sheet (Layer 1)

The forces acting on the sheet (layer 1) are shown in figure 3. The cracked sheet is subjected to the body
forces Xy and Y; distributed over the domain D and to the crack-face pressure op. The problem shown in
part A of figure 3 is equivalent to the superposition of the problems shown in parts B and C of figure 3.




1 «® o and o(), o]

vy and y; ,’Ulc) denote the displacements in the sheet due to the loadings shown in parts B and
C, respectively, of figure 3, the total displacements in the sheet can be written as

uy = u(lb) + u(lc) vy = vgb) + vgc) {3)

If we follow Lekhnitskii (ref. 10) and ignore an arbitrary rigid-body displacement vector, the displacements

(6) (6)

uy’ and v)’ due to the crack-face pressure o, shown in part B of figure 3, can be found. The complete

(b) (6)

expressions for u; ~ and v)’ are given in appendix A.

(c) (

Determination of the displacements u;’ and vlc) due to the distributed body forces shown in part C of
figure 3 starts with the known displacements due to a concentrated force located at the point zg = x¢ + typ.
Since the body forces X and Y} are continuous functions of zj in the domain D, the displacements due to the

(c) (c)

concentrated forces can be used as Green’s functions to determine u; ' and »;’. Thus, these displacements
can be written as follows:

u(lp)(f,.?/) :// Qi1 (2,4, 70, 90) X1 (x0,y0) + Qi2 (=, ¥, x0, y0) Y1 (x0,y0)] dxo dyo
D

’l)gl:)(l-y) :// [Q21 (=, ¥, 70, y0) X1 (x0,%0) + Q22 (z, ¥, 20, ¥0) Y1 (20, ¥0)] dzo dyo
D

where (Q11, @12, @21, and 99 are derived in appendix A.

Displacements in the Stringer (Layer 2)

The only forces acting on the semi-infinite stringer (layer 2) are the distributed body forces Xpand Yy shown
in part C of figure 2. In a procedure similar to that used in reference 11, the displacements due to a single
pair of body forces \é and Y., located at point z(') = x() + 1y, (sec fig. 4), are used to form the displacements
w)y and vl due to the distributed loading. Since the body forces X} and Y, are continuous functions of %) in
the domain, the displacements due to the concentrated force can be used as Green’s functions for the total
displacements w), and vl Thus, these displacements can be written as follows:

(') = [ [ [Rux (20 0,96) X (,06) + Rua (&' 2 ) V3 (s ) ey iy
D

a'0') = [ [ (R (574 s ) X, (e ub) + Rz (o4 . ) V3 sty ) eyl
D

The expressions for Ry, Ry, Ry, and Ryy are derived in appendix B.
The displacements uy and vy, required for the loading shown in part C of figure 2, are calculated by shifting
and rotating the displacements u,é and v.é according to the following relations:

up(r,y) = —vih(d'y") ez, y) = uh(dy) (6)
where

!

=y Y b—zx

X, =Y, Yy = -X,
Complete details on the derivation of the displacements for the stringer are presented in appendix B.

Integral Equations for r, and 7,

Substituting equations (3) and (6) into equations (1) yields the following system of integral equations for
the unknown functions 7, and ry:

4




where

101 yO

Roy
z(z,y) (z,y,20,90) + —— P (=", v, 2, vp)

Q12 Ry
+ [ " (z,y,70,y0) — h—2( ¥, 20, 95) | 7y (20, %0) ¢ dzodyo = oo fo1(z,y)

Q2 Rya
y(z,v) (z,y, 70, y0) — T (=", v, 20, %0) | 7= (z0, yo)

Q22 Ry
+ [-,;I"(I,yvzo,yo)‘F T (=", ', 20, ¥p) | 7y (0, ¥0) ¢ dzo dyo = 0o foz(z,y)

1
foi(z,y) = Real {W [pgl)ugl) (zgl) _ z§1)’ _ 02)
H1" — Hg

0 ()

By " Ho
HONO <Z§1)_ oD a)]}
Ip = Yo
yo=b— o
x':y
y':b—z

The parenthetical numerical superscripts indicate layer number.

As in reference 7, the kernels Q;; and R (j,k = 1,2), which have logarithmic singularities, are known
and are integrable in the domain D. Thus, equations (7) can be treated as Fredholm’s integral equations of the
second kind and can be solved numerically by reducing them to a system of linear algebraic equations. If the
integral signs are replaced by summations and collocation is used, the following system of linear equations in
the unknowns 7.(z,y) and 7y(z,y) is obtained:

where

N

h
]7y] Z Sll ]aijz(]nvyOn)TT (Ion’yon)
n=1

+ 512 (25, Y5, T0,, Y0u ) Ty (204, Y0, )] AZnAyn = 0o fo1 (25, ;) (=1,N)

h N

G—zTy (z;,95) + Z [S21 (24, Y5, 20, Y0,) Tz (20, ¥0,,)

n=1

+ S22 (27,4, %0, Y0,) Ty (20> ¥0,)] AZnByn = 00 fo2 (25, ¥5) (7=1,N)

@11 | Rae
Sy = hy 4 hy
Q12 Ry
Si2 = ™ T

(10a)

(10b)



U= Ty (10c)
Q22 | By

Sog = =25 4 — 10d

22 hy + o (10d)

and N is the number of collocation points. The terms Qi and Ry (7,k = 1,2) are defined in appendixes A
and B, respectively.

The Stress-Intensity Factor

In the present problem, because of symmetries in geometry and loading, the shear component of the stress-
intensity factor is zero. The normal component is found by combining the effects of the crack-face pressure

and the distributed body forces Xi(z,y) and Yj(z,y) acting on layer 1. The stress-intensity factor may be
expressed in terms of the unknowns 7, and 7 as follows:

2aq . )
ky (ap) = ogva + adah; // [Ty (z,y, 20, y0) 72 (20, yo) + T2 (2, ¥, 20, ¥0) 7y (%0, ¥0)] dzo dyo (11)
D

where

71 (2,70, 30) = O [Fz (wﬁ”,a) +Fy (w:gl)7a>] + o) [Fz (wél)’a) + F (wﬁl),a)]
Ty (x,y, 70, y0) = CE [ (

Frlw,a) = —

and agq is replaced by +a for the right crack tip and by —a for the left crack tip. Complete details of the
derivation of the equation for stress-intensity factors are given in appendix C.

The solution of equations (9) gives the shear-stress distribution in the adhesive layer 74z, y) and 7y(z,y).

Using these adhesive shear stresses in equations (11), we can determine the stress-intensity factors at either
crack tip. The numerical solution to the problem is discussed in the next section.
Numerical Solution from the crack. A convergence study has been con-
ducted to ensure that restricting the domain does not
appreciably affect the accuracy of the results. Thus,
the size of the domain D is determined iteratively,
starting with a small, coarse-mesh domain and in-
creasing the domain extent and mesh refinement un-
til no significant changes occur in the quantities of
interest.

A key item in the analysis is the method of in-
tegration used for the system of integral equations
represented by equations (7). In theory, these equa-
tlons require integration over the infinite domain.
However, because of the complicated nature of these
equations, a closed-form integration is probably im-
possible. Consequently, the system of Fredholm’s in-
tegral equations is solved with standard numerical
techniques. This is done by dividing the domain into
cells, assuming the unknown functions 7, and 7y to
be uniform i each cell, and then using a numerical
scheme to evaluate integrals. In this way the sys-
tem of integral equations is reduced to the system of
algebraic equations given by equations (9). Two im-
portant aspects of the numerical integration are the
domain of integration and the logarithinic singulari-
ties in the kernels.

The second aspect of the integral equations re-
quiring special attention concerns the kernels Sjj
which appear in equations (9). These kernels con-
tain logarithmic singularities which must be evalu-
ated separately. This is done by performing an exact
integration of the singular portion of the kernels over
the segment Az,. In effect, this integration applies
the load over a finite length rather than at a single
point, thereby removing the singularity.

. ‘ Discussion of Results
In order to carry out the numerical analysis, the

size of the infinite domain must be restricted. This
restriction is possible because the disturbance caused
by the presence of the crack decays with distance

6

To gain insight into the behavior of the stringer
panel, the analysis was performed for numerous
combinations of material and geometric parameters.



Three different materials were assumed for the sheet.
Their properties are given in table I. Material 4, also
shown in table I, was used to model the stringer.
These materials span a wide range of properties and
are representative of frequently used graphite/epoxy
laminates (ref. 12).

Figure 5 shows the normalized stress-intensity
factor as a function of b/a, the ratio of the stringer
edge distance to the crack half-length. Here, the
crack half-length a is held constant and b is increased.
In this and all subsequent figures, the stress-intensity
factors have been normalized with ogy/a, the stress-
intensity factor for a cracked, infinite sheet with a
uniform pressure og applied to the crack face. As
shown in this figure, once the right crack tip is no
longer beneath the stringer, the reduction in kj is
minimal. Also, the effect of the stringer on the
left crack tip is much less than that on the right
crack tip. This is to be expected, since the left
crack tip is farther from the edge of the stringer.
For large values of b/a, both the right and the left
crack-tip stress intensities approach 1.00 (the value
when no stringer is present), again as expected.
Changing the material properties of the sheet does
not greatly affect the value of kq, although the lower
the longitudinal stiffness of the sheet material, the
greater the reduction in the stress intensity due to
the presence of the stringer.

Figure 6 presents data similar to those shown in
figure 5, but in a slightly different manner. In this
case, b is held constant while a is increased. The
stress-intensity factor is not affected by the presence
of the stringer until the crack tip is very close to
the edge of the stringer, and no significant reduction
in k1 occurs until the right crack tip is beneath the
stringer itself. As in the previous figure, the stress-
intensity factor at the left crack tip is not significantly
affected by the stringer, and changing the material of
the sheet does not have a large effect on kj.

In figures 7 and 8, the effects of varying the stiff-
nesses of the stringer and the adhesive are examined.
In these figures, material 1 is used for the sheet and
material 4 for the stringer; two ratios of b/a, 1.2 and
0.5, are used. In these figures, only results for the
right crack tip are shown, since any effects on the
left crack-tip stress-intensity factor are minimal.

The effect of varying the stringer stiffness E152)h2
is illustrated in figure 7. The normalized stress-
intensity factor for the right crack tip is plotted as
a function of the ratio of the stringer stiffness to
the sheet stiffness. This figure shows that as the
stringer stiffness approaches zero, the normalized k1
approaches 1.00, the solution for a cracked sheet with

no stringer. As the stringer stiffness increases, the
curves approach a lower bound on ky. This indicates
that past a certain point, no further reductions in k;
can be obtained by increasing the stringer stiffness.
The value of this lower bound on & is a function of
the adhesive stiffness and b/a. Changing the stringer
stiffness has much less effect on the stress-intensity
factor for the case of b/a = 1.2 than for b/a = 0.5.
The effect of varying the adhesive shear stiffness
G3/hs is illustrated in figure 8. The normalized
stress-intensity factor is plotted as a function of the
ratio of the adhesive shear stiffness to the shear
stiffness of the sheet. As the adhesive shear stiffness
approaches zero, the value of k; tends toward 1.00, as
expected. As the adhesive shear stiffness increases,
ki decreases. For b/a = 1.2 the decrease is small,
since the effect of the stringer is negligible. However,
for b/a = 0.5, the decrease in kj is substantial.
Although these points lie off the scale shown in
figure 8, for very large values of G3 (on the order
of 1019 MPa), the stress-intensity factor does not
approach zero (as might be expected) but rather
some nonzero minimum value. This lower bound is
a function of the stringer stiffness and b/a. Figure 8

also shows that for values of Gghl/G;(,;L)hg greater
than about 4.0, increasing the adhesive shear stiffness
has little effect on the stress-intensity factor.

Concluding Remarks

This report has presented the formulation of an
analysis for a cracked orthotropic sheet reinforced
with an adhesively bonded orthotropic semi-infinite
sheet. This configuration was assumed to represent a
bonded stringer panel when the crack is located close
to the edge of the stringer. The adhesive bond was
also assumed to be intact. A parametric study was
conducted to determine the sensitivity of the system
to material properties and specimen configuration.
The parameter having the greatest influence on the
stress-intensity factor was the distance from the near
crack tip to the edge of the stringer. Unless the crack
was very close to or under the stringer, the reduction
in k; was minimal, and the farther the crack was
under the stringer, the greater the reduction in kj.
Increasing the stiffness of the stringer or of the adhe-
sive also resulted in a reduction in the stress-intensity
factor.

NASA Langley Research Center
Hampton, VA 23665
April 11, 1985




Appendix A

Derivation of Displacement Functions for Infinite Cracked Orthotropic Sheet

This appendix presents the derivation of the displacement functions for the infinite cracked orthotropic
sheet (layer 1). If we follow Lekhnitskii (ref. 10) and ignore an arbitrary rigid-body displacement vector, the
displacements due to the crack-face pressure o( (shown in part B of figure 3) can be written as follows:

o = Real{“(l)go_ ™ [Pgl)ug) ( - Ve - 02> - uf" (Zél) -V - ‘12)]}
ui o

1 2

o = Real (1)00 - [qgl)ugl) <z§1) VAT a2> ENOMLY <z£1) B Zél)z ~ a2>]
yo =y

(A1)

where

a = crack half-length
JHD - (1

G =T tuy (=12
1 .
pgk) = E(T) (,u? - u&?) (7 = 1,2; (k) = Layer number)
1 1 .
qJ(.k) = W (W - ug(/];)ugk)) (7 = 1,2; (k) = Layer number)
y 7

(k) (k) (k) (k)

The terms p; ', py ', iy ', fy are the roots of the characteristic equation

-(k) (k)

Wy (Fr g ) Lk B (k)

7 + ( (k) 2uy ),u £® =0 (Im <uj ) > 0)
? y

where I, and Ey are the Young’s moduli, Gy is the shear modulus, and vy and vy, are the Poisson’s ratios
of the orthotropic sheet.
To determine the displacements for the distributed loading shown in part C of figure 3, start with the

displacements for a concentrated force located at the point zg = zg+1yg. The displacements for a concentrated
force can be written as

u(z,y) = 2 Real [p{g5 (2{") + P05 (4)]

(
1
v’(z,y) = 2 Real [q11)¢c <z§1)> +aVgs (zgl)” (A2)

where

) = L () 0.0) B (w0, 2, 0)
I

1 2
+ C\Fp (w, 2.a) + DiFp (wl), 2V, a)]
+ A l()g( >+(‘1 log( (1) u)gl)>

0
2 (4”) ‘ltgl)ulﬂg 1) [AIFI) ( ) zgl),(z> + DB Fp (w&”,:&”,a)

+ CFyy (w(‘l),zgl),a) + D Fp (wﬁ” ,,g ),aﬂ
1

+ Butog (8 — ") + Dylog () — w)




Fp{w,z,a) =log (\/w2—a2 z2~a2+wz——a2> —log( 22 —a2+z)

o) = 2+ Vg

ol = 25l
A =cWx 1 ey

c =cx —clly,

wél) =zt #él)yo

o2 = 20—
B = CS)XI + Cé;)yl

Dy =cx; - v

o W (89 (14 v2uf9) + ) + )]
() (- ) (- )

o W () + 7)) + w9 + o)
127 o (u({) B Mgn) (ﬂgj) - ﬁ(l“) (NSJ) B ﬂgj))

o) _ WY [ﬁg) (1+u§,§ W ﬁﬁj)) + a9 4 #gj)]
b () (- ) (- )

())() g)

UJ:y

g) ()}

(59 +
J

" 2mi (1) = u9) ()

9) (-4

Details on the derivation of ¢{ { 2 ( (l)) and ¢§ (z§1)> can be found in reference 13.

(A3)

Since the body forces X and Y; are continuous functions of zg in the domain D, the displacements u® and

v® may be used as Green’s functions to determine ugc) and UY). The displacements ugc) and vgc) due to the
body forces X and Y; distributed over the domain can be written as follows:

Ugc)(zvy) 2// u® (z,y, 20, Yo) dzo dyo
D

=/ (@11 (=, ¥, 20, yo) X1 (z0, ¥o) + @12 (2,4, Zo, yo) Y1 (z0, yo)] dzo dyo

D
Ugc)(z,y) :// v° (z,y, o, Yo) dzo dyo
D

2/ (Q21 (2,9, 20, o) X1 (0, %0) + Q22 (2,9, o, ¥o) Y1 (20, yo)] dzo dyo

(AS5)

where Q11,Q12, Q2;, and Qo are found by substituting equations (A2) into equations (A5) and then combining
terms and simplifying. These expressions are shown below.
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1 W
Q11 (2,9, 0. 90) = 2 Real{M—Q—[CS)FG (w20 ) + cf P (w8 " a)

H(l) *#(2)
+ C(l) e (wgl),zg ), ) +C§?FG (wil),zgl),aﬂ
(1) (1)
A el (0. el o0 0
1 2
b R (w140, 0) + P r (w0, a)]
2M( )p (n ( ) C( )
- 1(1)( 0 >[ <\/( 2*")>]
2”(11) (1 ) ((,( )+(vél)) - 0
) ()
2
+p 1)(‘(l) [log (zgl) — wi”) + log (zsl) — wé”)]
4D o (257 - ) + o (=) - wgw)]}
(1 (1
Qi2(r,y, 10, 90) = 2 R(\al{ﬂgll) .l/igl) {(%?F(: (w&l),z(ll),a) +(7§;)F (wgl), A ),a)
i (0. 0) AP (w0 a)]
(n
g)lz)flﬂim [C&L)FG (ws ),zgl),a —}—(lg;)F(; (u gl),z.gl),a>
1y D)
('%L)F( (w(,)l),z.gl), ) (JEIZ)F( w(({l),zgl),aﬂ

[(,‘gi)F(; (wgl), zgl), a) + (.lgll)F(,' (“"(zl)’ :(ll)’a>

(Equation continued on next page.)




(1) (1) { ~(1) (1)
By gy " (Cyy +Cy) N2 (1
a )( 0 ) [log (\/ (1) —a2+z2))]

/‘1 — Hy
+ q1 [IOg < ) + log

("
+ a0 [1og (28 — wf?) + log (" — w )]}

( ), (1)
Q22 (2, ¥, 0, y0) = 2 Real{ ) #2(1) [C§2)FG (wg )7251), ) +C§;)FG (wél),zgl),a)
2

—012 e (w3 ,z1 ,a) FG (w , )]
() ()
A )l 1)
- Ol Fo (w2 V)= e g (w2 Y.a)]
+q1 ;) [log( w1> log(z1 —w3 )]
+ 000 [og (57 - ul®) - tog (4 )]}

where

Fo(w,z,a) = log <\/w2 —a2V22 —a? f wz — a2>
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Appendix B

Derivation of Displacement Functions for Semi-Infinite Orthotropic Sheet

This appendix presents the derivation of the displacement functions for the semi-infinite orthotropic sheet
(layer 2). The only forces acting on the semi-infinite sheet are the distributed body forces Xoand Yy, as shown
in part C of figure 2. In a procedure similar to that used in reference 11, displacements due to a pair of body
forces Xé and Y2', located at point 26 = Ib + iy6 and oriented as shown in figure 4, can be written as follows:

u® (2,9, 2h, y}) = 2 Real [p(12)¢§2) (252)> ) (Zgz)ﬂ
v* (', 20, ¥p) = 2Real [q§2)¢(12) (zg'z)) n (Igz)d)gz) (zéz))] (B1)
where
d)gz) (zgz)) = Az log (2’52) - w§2)> + Cy log (2(12) - “’;(;2)>
e () [ (o7 i)
+ Cylog (zg‘z) _ «w:(f))] 4 (;2.(22) B N.(22)>
[ (4 o5 v (47 )
B2
d)gZ) (3'22)) = Bylog (Z.gz) - wgz)> + Dylog (zgz) - w§2)) (B2)
+ '(2)*1*(2)’ {(/1(12) - H(12)> [/iz log (zgz) — u’)&”)
Hy o T My
+ oo (49— o)) (47 %)
<[ 41 7) ot (4~ 7))
where

2 2
Oy =)
2 2 2 2
ol =+ uy wi? = oy + )y
2 2 2 2
w;(,. ) = —.1:6 + “(1 )y(’) wg ) = —16 + N«g )yf)
(2 (2 , ‘
Ay = 9x; + Py By =C9xy + vy
y +(2 2 2 W(2) -
¢y = x4+ oY) Dy = - x; + vy

V(2 W2 +(2) W2
and (/gl), (’52)* (él , and (ugz)

o) (4

SR ) > can be found in reference 13.

. . . . . . 2 2
are defined in equations (A4). Details on the derivation of (f)l( )<z$ )) and

As before, if the body forces \"2 and Y.Z’ are continuous functions of z(') in the domain, the displacements u®
. . : . ' '
and v¥, given by equations (B1), may be used as Green’s functions for the displacements w, and vy due to the
distributed forces. Thus, the displacements can be found as follows:

12




uf (:r',y') :// u® (z',y',za,y{)) dz{y dyj
D

= [ [ [Ra 4/ 5. 40) X5 (b uh) + Paz (5,5, 2y ub) Y4 (. 6)] iy
K (B3)
vh (z’,y') :// v® (z',y',x'o,ya) dzy dyj
D

= [ [ 1Ro1 (24" 55,6) X3 (5 3b) + Raa (+',5/, 7, ut) ¥4 (s 36)] ey iy
D

where Ryj, Rz, R21, and Rpp are found by substituting equations (B1) and (B2) into equations (B3) and
then combining terms. The complete expressions for Ry, Ry2, R21, and Rgy are given below.

Equations (B3) give the displacements of the semi-infinite sheet for the loading and the coordinate system
shown in figure B1(a). However, the displacements ug and vy required for the solution are defined with respect
to the coordinate system and are due to the forces X3 and Y7 shown in figure B1(b). Thus, from figure B1,

uz(:l:, y) = _UIZ (II? y,) UQ(I’ y) = UIZ (I’7 y,) (B4)

where

The displacements in the semi-infinite sheet (layer 2) are now found by combining equations (B1) and (B3)
and substituting into equations (B4). Note that the material properties of layer 2 are defined with respect to
the =,y coordinate system (fig. 4).

Shown below are the complete expressions for the functions Rjy, Riz, Rpi, and Rpg, which appear in
equations (B3). Further details on the formulation of these expressions can be found in reference 13.

Ry (:c', v, :136, y6) = 2Real (pgz)Cﬁ) [log <z§2) - w§2)> — log (zgz) — wéz))]
+ ng)Cg) [log (zg) - wéz)) — log (zéZ) - wgz))}
) 6 o () v (49 -0
2 M
51 (a1~ 1 (45
ot (o) [ (7o) -t (49 )

/‘32) )

o 1= 8 o (49 o) <o (47 )]

+

13




Ry (7,4, 20, 4p) = 2 Real (p(f)Cg) [log (zgz) (2)> + log ( (2) w§2))]
+p§2)02(3) [log (zy) — wé )) + log< §2) — 4(12))]

N {(52 — ) €2 g (7 ~ 0l +1og (=2 — a)]
) €33 g (7 i) e (o7 - 7))
s () O o (7 - 0i®) b (7 - 7))
( B uP) 2 g (zgz) o) +1og (4 - 0] })

) =28 7D o (£ ) 4 o)

(

A

MgQ) “(2)
(2) _ /12
2) #

+ gy [1og (2~ ) g (o2 - )]
g (7<) 4 [ (47 - 17) o (47 - o8]

<(2) W) 82 [og (2% - af) — tox (=2 — uf)]}
o L (B =Py o Jrog (7 - o) —10g (7 — 0]

(
) ) -

o) =10 (18D o (1) i (7))

#0105 [ow (457 = i) + 1o (47 i)
) O

(2)

(R MR )
Mo Nl

( [log (zEQ) u’)gz)) + log (2(2) — u’),(lz))] }

u) e 1
o {7 ) o o7 ) (9 - )

(
) 2
+ (ﬂgz) (1 )> (Z) [log (zy) w( )> + log ( 2 _ ﬁ)/(iz))} })

2
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(a) System definition used in solution.

y -

A Origin

[ X

ht——— ]

/

(b) System definition used in integral equations.

Figure B1. Shift and rotation of coordinate system for half-plane solution.
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Appendix C

Derivation of Stress-Intensity Factor Equations

This appendix presents the derivation of the stress-intensity factor equations. In the present problem,
because of symmetries in geometry and loading, the shear component of the stress-intensity factor is zero.
The normal component is found by combining the effects of the crack-face pressure og and the distributed

body forces Xj(z,y) and Y;(z,y) acting on layer 1. For an orthotropic material, the normal component of the
stress-intensity factor may be written as follows (ref. 14):

(1 )_ (1)
ky = 2\/'112 #1 (lli)m zgl) -a //qbl z dzo dyo (C1)

24 —a

The function ¢ <z(l)> , the stress potential due to the crack-face pressure oy, is given by the following:

1 1
uy g o

The function ¢>f’ (z&”), the stress potential (derived in ref. 13) due to the body forces X and Yy, is given by
the following:

(C2)

o) g e [ ()
2 2
+131F”< EI) wg , )+(‘1FH( (1),1051),11)
A Cq

+
51) —wsl) 251) Awél)

+ D Fy (zsl),wgl),aﬂ +

z
where

V22 —a? — Vw? —a? — (2 —w)
Fy(z,w,a) = —
(z — w)
and Ay, B;, C}, and Dy are defined in equations (A3). Substituting equations (C2) and (C3) into (C1), taking
the limit, and combining terms yield the following stress-intensity factor:

2 .
ki = opVa — —= [Ty (2,9, 20, y0) X1 (z0,¥0) + T2 (2,4, 70, y0) Y1 (Z0,%0)] dxo dyo (C4)
Va

where

Ty (x,y, 20, ¥0) = CS) [F, (wsl),a) + Fy (wé”,a)] + (7&11) [F, <wf,_l),a> + Fy (wgl),a)]

T2 (r,y, 0. y0) = (75;) [FI <w§]),a) + Fy (wél),aﬂ + (?gi) [FI (wé”,a) + I (wl(ll),aﬂ

2 2
we —a —w+a
Filwa)= ———m - — -

w—a

Through the use of equations (2), equation (C4) may be written in terms of the unknowns rrand 7y as follows:

ki = opva+ \/th // Ty (2, y, 70, Y0) 7z (20, y0) + T2 (%, ¥, T0,¥0) 7y (20, ¥0)] do dyo (C5)
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Since the loading on layer 1 (as shown in fig. 3) is not symmetric about the y-axis, equation (C5) is valid only
as z1 approaches g, that is, at the right crack tip. To find the stress-intensity factor at the left crack tip, the

function qSil <z§1)) must be found for the forces X and Y; located in the left half-plane (29 = —zp + 1yp) -
With the new form of qﬁfl (zgl) ) , the same procedure as above is used to find k; at the left crack tip. The
(1)

function d)'l (zl > does not change, since it does not depend on the location of the concentrated forces X and
Y;. The stress-intensity factor at the left crack tip is thus found to be

2
ki|,__, =oo0Va - Jil // (T3 (. ¥, 0, o) 7= (0, yo) + T4 (2, ¥, To, Yo) 7y (0, ¥o)| dzo dyo (Cs)
D

where
T5(z,y,T0, Yo) = Cg) [FF (wgl),a) + Ffp (wgl),a” + Cg}) [FF (wé”,a) + Fy (wgl),a)]
Ty (z,y,20,¥0) = Cg) [FF (w&l),a) + Fp (wél),aﬂ + Cé;) [FF (wél),a) + Fp (w‘gl),a)]

Vw? —a? — (w+ a)

Fp(w,a) = i a
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TABLE I. MATERIAL PROPERTIES

E;, Ey, Vzy Gzy, Graphite/epoxy
Material GPa GPa GPa laminate
1 51.40 51.40 0.3065 19.67 [0/ = 45/90],
2 19.75 19.75 7336 33.65 (£45]0,
3 129.40 10.86 3118 5.70 [90]
4 10.86 129.40 .0262 5.70 [0]
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Infinite sheet
(layer 1)

Semi-infinite stringer
(layer 2)

Adhesive j 3
(layer 3)

Figure 1. Sheet-stringer configuration considered n problem.
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+

Figure 2. In-plane and interlaminar stresses for perturbation problem.
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A . Total loading B. Crack pressure C. Distributed loading

Figure 3. Superposition for sheet (layer 1).

— X

Figure 4. Loading on semi-infinite sheet (layer 2).
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Figure 5. Normalized stress-intensity factor as function of edge distance. a = 10 mm; G3 = 460 MPa;
hz/hl = 0.5', hg/hl = 0.005.
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Figure 6. Normalized stress-intensity factor as function of crack length. b = 10 mm; Gz = 460 MPa;
h-z/h] = ().5; h;;/h] = 0.005.
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Figure 7. Normalized stress-intensity factor as function of stringer modulus.
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Figure 8. Normalized stress-intensity factor as function of adhesive shear modulus.
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