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Summary 
Although stringers are used primarily as stiffen- 

ers, they also can make damaged structures fail-safe 
or damage tolerant. Assessment of the damage toler- 
ance of structures weakened by cracks is aided by 
knowledge of stress-intensity factors. In this pa- 
per, the stress-intensity factor is determined for a 
cracked orthotropic sheet adhesively bonded to an 
orthotropic stringer. Since the stringer is modeled as 
a semi-infinite sheet, the solution is most appropriate 
for a crack tip located near a stringer edge. Both ad- 
herends are treated as homogeneous, orthotropic me- 
dia which are representative of many fiber-reinforced 
composite materials. It is assumed that the ad- 
herends are in a state of plane stress and the adhesive 
is in pure shear. By use of Green’s functions and the 
complex variable theory of orthotropic elasticity de- 
veloped by Lekhnitskii, a set of integral equations is 
obtained. The integral equations are replaced by an 
equivalent set of algebraic equations, which is solved 
to obtain the shear-stress distribution in the adhesive 
layer. From these adhesive stresses, equations for the 
stress-intensity factors at  both crack tips are found. 

A parametric study is also conducted to  deter- 
mine the sensitivity of the system to material prop- 
erties and specimen configuration. The parameter 
having the greatest influence on the stress-intensity 
factors is the distance from the near crack t ip to the 
edge of the stringer. Unless the crack tip is very close 
to or under the stringer, the stress-intensity factor is 
approximately that of an unstiffened sheet. How- 
ever, as the crack propagates beneath the stringer, 
the stress-intensity factor decreases significantly. In- 
crrasing the stringer stiffness or the adhesive stiff- 
ness also results in a decrease in the stress-intensity 
factor. 

Introduction 
Because of their high strength and light weight, 

composite materials are finding increasing applica- 
tion in aerospace structures. In general, the struc- 
tural configurations used in composite airplanes have 
been very similar to the sheet-stringer construction 
currently used in metal airplanes. In metal airplanes, 
stringers are effective in making damaged structures 
fail-safe or damage tolerant. For this reason, the 
interaction of a cracked sheet and a stringer is an 
important problem which has been investigated by 
many authors. 

Romualdi, Frasier, and Irwin (ref. 1) considered 
two problems: a crack centrally located under a riv- 
eted stringer and a crack centrally located between 
two riveted stringers. In their formulation of the 
problem, only the two rivets nearest the crack were 

considered effective. Sanders (ref. 2) considered the 
problem of a crack positioned symmetrically beneath 
a continuously attached stringer. He employed a 
shear-lag line stringer and assumed the sheet to be in- 
extensible in the direction parallel to the crack to  ob- 
tain the stringer stress-concentration factor and the 
crack-tip stress-intensity factor. Greif and Sanders 
(ref. 3) removed Sanders’ previous inextensionality 
assumption and symmetry requirements. They con- 
cluded that the stringer-induced reduction in the 
stress-intensity factor was a localized effect and that 
the stringer stress-concentration factor was largely 
insensitive to sheet stiffness in the direction parallel 
to the crack. Bloom and Sanders (ref. 4) reported 
an analysis of a discretely attached stringer which 
may be broken. Poe (ref. 5) examined the problem 
of a cracked sheet stiffened by evenly spaced, riv- 
eted longitudinal stringers. The crack was assumed 
to originate at  a rivet location and to grow beneath 
intact stringers. An extension of that  work (ref. 6 )  
considered the influence of broken stringers. 

Arin (ref. 7) examined the effect of the debond- 
ing of an infinitely long line stringer on the stress- 
intensity factor a t  the crack tip. He assumed that 
the stringer was adhesively bonded to an isotropic 
sheet along a line perpendicular to the crack. He 
concluded that the stringer exerts little influence on 
the stress-intensity factors unless it is quite close to  
the crack tip and the debond length is less than twice 
the crack length. 

Norris (ref. 8) , using a complex-variable approach, 
represented the finite-width stringer with an array of 
line stiffeners. The stringer was divided into strips, 
and each strip was represented by a line stiffener 
attached to the sheet at  discrete points, with no 
coupling between adjacent line elements. Because the 
analysis did not model debonding of the adhesive, 
it predicted unrealistically high loads in the line 
stiffener nearest the crack tip. 

Experimental work has shown that as the crack 
tip approaches the stringer, debonding can start and 
propagate through the adhesive. Although Arin 
(ref. 7) included adhesive debonding in his analysis, 
he modeled the stringer as a line, and thus was 
unable to  account for partial debonding across the 
width of the stringer. Anderson, Hsu, and McGee 
(ref. 9) modeled partial debonding in their analysis 
of a cracked sheet reinforced by a bonded doubler. 
However, they were using a finite-element analysis, 
which would be very cumbersome and expensive to  
use when varying parameters such as crack length 
and debond area. 

A realistic analysis is needed that examines the 
effect of growing debond area on crack propagation 
in adhesively bonded structures. The purpose of this 



paper is to formulate such an analysis and to use it 
to study orthotropic sheets reinforced by orthotropic 
stringers. To meet this objective, the problem has 
been divided into two parts. In the first part, the 
problem is formulated with the assumption of a linear 
elastic adhesive with no debonding, and the stringer 
is modeled as a semi-infinite sheet bonded to an 
infinite sheet containing a crack. In the second part, 
the effects of adhesive nonlinearity and debonding are 
included. Although both parts have been solved, for 
brcvity only the first, part of the problem is presented 
hrrc. 

Nomenclature 
(L 

+a 

-a 

A,  , BJ , ‘.J , D, 

1 

2 

half-length of crack, m 

right crack tip, m 

left crack tip, m 

constant coefficients in layer j 
stress functions, N / I I ~ ~  

distance from edge of stringer 
to center of crack, m 

coniplcx constants ( j ,  k = 1, 2)  

dornain o f  intcgrat>ion 

Young’s moduli in the J- arid 
y-dirc,ct.ions, rty)c.ctjivc,ly, 1% 

complex-varia blr function 
used in displacerncnt-pot,eIitial 
fiinct ions 

complex-variable function used 
in calculation of left crack-tip 
stress-intensity factor 

complex-variable function used 
in displacement functions of  
layer 2 

roniI)Iex-variable fiinct,ion used 
in stress potentials 

complex-variablc function used 
in calculation of right crack-tip 
stress-intrnsity factor 

st.rvss fiinctions, m“/N 

ort hot ropic shcar modulus, Pa 

stic.iir 11i0dii11i~ o f  adhwivc 
Iiiycr, I’a 

t ,hickwss o f  1ayc.r j ,  111 

= J - 1  

normal (mode I) component of 
stress-intensity factor, Pa@ 

number of collocation points; 
number of cells in the domain 

complex constants for or- 
thotropic sheet ( j  = l , 2 ) ,  
l /Pa 

complex kernels used in 
displacement, functions for 
layers 1 arid 2,  respectively 
( j ,  k = 1 , 2 ) ,  1/Pa 

complex kernels used in 
integral equations ( j ,  k = 1 , 2 ) ,  
I /  (Pa-m) 

complex kernels used in stress- 
intensity factors ( j  = I ,  2, 3, 
4)  
x- and y-displacenients o f  layer 
31 m 

displacements in layer 1 duc t,o 
crack-face pressure, m 

displacements in layer 1 due to 
concentrated forces, m 

displacernerits in laycr 1 due to 
distributed body forces, m 

displacerricnts in laycr 2 due to 
a pair of concrntratcd forces, 
m 

displacements in layer 2 due to 
distributed body forces, with 
respect to rotatctd coordinate 
system, r n  

complex variablr ( j  = I ,  2, 3, 

body forces acting on layer J’ 

( j  = 1, 2 ) ,  N/m:’ 

layer 2 body forces in rotated 
coordinate system, N/m“ 

(:artesian coordinat,cs, m 

coordinates of load point,, III 

rotated c.oordin;it,c syst,(’Ill, 111 

complex variablt. ( j  = I ,  2 ) ,  r n  

location o f  load poiiit, 111 

iIicreIncIital distariccs 

41, m 

( n  = 1 , 2 , .  . . , N ) ,  I n  

I 



pi roots of the characteristic $ y ’ ( z ) ,  4f)  ( z )  displacement potentials due 
to a pair of load points in a 
half-plane, m 

equation ( j  = I, 2) 

Vzy 7 uyz Poisson’s ratios 

(TO 
Superscripts: 

pressure applied to crack face, 
Pa  ( j ) ,  (k) layer number ( j ,  k = 1,2) 

72, ry shear stresses in adhesive 
layer, Pa  

stress potentials for or- 
thotropic materials, Pa  

A bar over a symbol indicates a complex conju- 
gate; thus, if z = z + i y ,  then = z - iy. A prime 
on a symbol indicates reference to the rotated coor- 
dinate system, except in the stress and displacement 
potentials, for which a prime indicates differentia- 

W ) ,  4 w  

4; (4  1 45 (4  displacement potentials due tion. 
to a pair of load points in the 
cracked sheet, m 

Formulation of the Problem 
Consider the sheet-stringer configuration shown in figure 1. (Hereinafter, the semi-infinite sheet will be 

referred to as a stringer.) The stringer and the sheet are bonded together by an adhesive layer of constant 
thickness h3.  Here the bond is assumed to be intact. The crack faces are subjected to a uniform pressure a0 
and the stress state a t  infinity is zero, as shown in part A of figure 2. The problem is solved with the following 
assumptions: 

1. The sheet (layer l), the stringer (layer 2) ,  and the adhesive (layer 3) are homogeneous and linearly 

2. The sheet and the stringer are dissimilar, orthotropic materials with principal directions of orthotropy 

3. The thicknesses of the sheet and the stringer are small compared with the in-plane dimensions, so that 

4. The surface shear transmitted through the adhesive is assumed to act as a body force on the adherends. 
5. The thickness of the adhesive is small compared with the thicknesses of the sheet and the stringer; thus, 

elastic. 

being oriented parallel and perpendicular to the crack in layer 1. 

both layers are considered to be in a state of plane stress. 

the adhesive layer is treated as a shear spring rather than as an elastic continuum. 

Assumption 5 leads to  the following continuity of displacement equations: 

where u1, v1 and 212, v2 are the x- and y-components of the in-plane displacement vectors in layers 1 and 2, rz 
and ry are the components of the adhesive shear stress, and h3 and G3 are the adhesive thickness and shear 
modulus, respectively. From assumption 3, the two sets of body forces (forces per unit volume) that act on 
layers 1 and 2 can be written as follows: 

(2) 

Figure 2 shows how the problem is broken into its component parts. The displacements in the sheet, shown 
in part B of figure 2, and in the stringer, shown in part C of figure 2, are determined individually as follows. 

Displacements in the Sheet (Layer 1) 

The forces acting on the sheet (layer 1) are shown in figure 3. The cracked sheet is subjected to the body 
forces X I  and Y1 distributed over the domain D and to the crack-face pressure 00. The problem shown in 
part A of figure 3 is equivalent to  the superposition of the problems shown in parts B and C of figure 3. 
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If uib) ,  vib) and u p ’ ,  vi“’ denote the displacements in the sheet due to the loadings shown in parts B and 
C,  respectively, of figure 3 ,  the total displacements in the sheet can be written as 

If we follow Lekhnitskii (ref. 10) and ignore an arbitrary rigid-body displacement vector, the displacements 
uib) and u [ b )  due to the crack-face pressure 00, shown in part B of figure 3, can be found. The complete 

expressions for uib) and .Ib’ are given in appendix A. 
Detrrmiiiatiori of the displacements u i r )  arid vi“) due to the distributed body forces shown in part <> of 

figurc 3 st,arts with t,hc known displacements due to a concentrated force located at  the point 20 = 20 + iyo. 
Sirice thc body forces *Y1 and Yi are continuous functions of 20 in t,he domairl D, the displaccmcnts duc to the 
coricc.rit,rat.c.(I forces c i t n  be used as Green’s functions to detcrrnino u:” and u[‘). Thus, these displaccmcnts 
can hc  writ.t,cw i ts follows: 

wherp Q11, (212, Q2, , and Q 2 2  are derived in appendix A .  

Displacements in the Stringer (Layer 2) 

Thc only forces act,irig o r 1  thc scwii-infinite stringw (layer 2 )  are the dist,ribut,ed body forccs X 2  and YJ shown 
it1 part. (: o f  figrirc. 2 .  I n  ;I proccdiirc, similar to that, used in refercmce 11, the displacemcnt,s due to a single 
pair o f  h l y  forces arid Vi ,  locat,cd at, point, z:, = 2;) + iyl, (sec fig. 4) ,  are usctd to form the displacements 
t , ;  and (1; dut .  t,o thv dist rit)ut.cd loading. Since the body forccis Xl and Yi are continuous funct,ions of 4 in 
t,lic’ do~riaiii, the. disi)lacc.rric.rit,s diic tlo the concentratled forcc: can be used as Grcen’s functions for the total 
tlisplaccrriciit s I L L  arid ob. Thus, thcsc displacement s can be writ,t,tw as follows: 

wherc 
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where 

xb = YO 

x1 = y 

yh = b - 20 

y ' = b - x  

~ The parenthetical numerical superscripts indicate layer number. 
-4s in reference 7, the kernels Q j k  and 8 j k  ( j ,  k = 1 , 2 ) ,  which have logarithmic singularities, are known 

and are integrable in the domain D. Thus, equations (7) can be treated as Fredholm's integral equations of the 
second kind and can be solved numerically by reducing them to a system of linear algebraic equations. If the 
integral signs are replaced by summations and collocation is used, the following system of linear equations in 
the unknowns ,rz(z, y)  and 7y(z, y)  is obtained: 

~ ' 

where 



and N is the number of collocation points. The terms Q;k and R;k ( j ,  k = 1 , 2 )  are defined in appendixes A 
arid B, respectively. 

The Stress-Intensity Factor 

In the present problem, because of symmetries in geometry and loading, the shear componerit of the stress- 
iriterisit,y factor is zero. The nornial component is found by combining the effects of the crack-face pressure 
and the tiistrit)utcd body forces X,(z,y) and Yl(zl y)  acting on layer 1. The stress-intensity factor may be 
cxpresscd in t,c\rrris of the unknowns r, and T~ as follows: 

whcre 

and a()  is replaced by +(L for t,lic. right, crack tip arid by -a for the left, crack tip. Complete details of the 
dcrivat,iori of t.hc cyuat,ion for st.ress-irit,c,risity factors are giver1 in appendix C. 

Thcx solrit ioii of cyiiat.iotis (9) givw the shear-st,rcss distribution in the adhesive layer rAxl y )  and ry(xl y ) .  
lJsiiig t l i c w  ;tdhc.sivc, shear st,rcsses in equat,ioris (1  I ) ,  we can deterniine the stress-intensity factors a t  either 
crack tip. The. nunicrical solution to the problrni is discusscd in the next section. 

Numerical Solution 
A key it,em in the analysis is the method of in- 

tvgrat ion u s c d  for the system of integral equations 
represcrited by eqiiat,ions (7). In theory, these cqua- 
t,ions require integration over the infinite domain. 
However, hcauso  of the complicated nature of these 
c~~uatioris,  a closed-form integration is probably im- 
possibk. <:onscqiic:ntly, the system of Fredholm’s in- 
t,cgral cyiiat,ioris is solved with standard numcq%al 
t.c>chiiiqiies. This is donc by dividing the domain into 
cells, assiiriiing thc unknown functions r, and ry to  
be uniform iii c:acli cell, and then using a nunicrical 
sc:hcwic. tlo cvitluatcl ititc.grals. In this way the sys- 
t , c w  of iritc,gral cquat,ions is rediiccd to the syst,eni of 
algebraic t’(lIiitt iotis given by equat,ioris (9). Two irn- 
port.ittit iisI)(’ct s o f  t hc nurric.rica1 intcgratiori arc’ the 
dotiiitiii of irit,c>grat.ioti i t t id t,lic. logarithmic sirigulari- 
t i c b s  i i i  t h c ,  k(wic,ls. 

I t 1  ortior 1.0 citrry out. tho tiiirticricitl :ttiitlysis, t,hc 
siav of t h o  iiifiiiifc doiiiitiii must) tw rc.st,rictd. This 
rvst rict ioii is possit)lv lwcitiisc t h c .  dist urt)aricci cai1sc.d 
t)y t , l i c  prcwricc’ of tlic crack dccays with distance 

from the crack. A convergence study has been con- 
ducted to ensure that restricting the domain does riot 
appreciably affect the accuracy of thc results. Thus, 
the size of the domain D is determined itcratively, 
starting with a small, coarse-mesh domain and in- 
creasing the domain extent and mesh refinement 1111- 

til  no significant changes occur in the quantities of 
interwt. 

The second aspect of the integral equations re- 
quiring special attention concerns the kernels s;, 
which appear in equations (9). These kerncls con- 
tain logarithmic singularities which must be evalu- 
ated separately. This is done by performing an exact 
integration of thc singular port.ion of the kcmcls over 
the segment AzT1. In effect, this iritcyyation applies 
the load over a finite length rat1ic.r than a t  it siriglc 
point, thereby rtmoving thr  singulitrit.y. 

Discussion of Results 
To gain insight into thc. bcxliavior o f  t tic. st ririgcr 

panel, the analysis was prrfornicd for niimmxis 
combinations of material and gc~oriiet ric paramctrrs. 



Three different materials were assumed for the sheet. 
Their properties are given in table I. Material 4, also 
shown in table I, was used to model the stringer. 
These materials span a wide range of properties and 
are representative of frequently used graphite/epoxy 
laminates (ref. 12). 

Figure 5 shows the normalized stress-intensity 
factor as a function of b/u, the ratio of the stringer 
edge distance to the crack half-length. Here, the 
crack half-length u is held constant and b is increased. 
In this and all subsequent figures, the stress-intensity 
factors have been normalized with qfi, the stress- 
intensity factor for a cracked, infinite sheet with a 
uniform pressure a0 applied to  the crack face. As 
shown in this figure, once the right crack tip is no 
longer beneath the stringer, the reduction in kl is 
minimal. Also, the effect of the stringer on the 
left crack tip is much less than that on the right 
crack tip. This is to be expected, since the left 
crack tip is farther from the edge of the stringer. 
For large values of b/u ,  both the right and the left 
crack-tip stress intensities approach 1.00 (the value 
when no stringer is present), again as expected. 
Changing the material properties of the sheet does 
not greatly affect the value of kl, although the lower 
the longitudinal stiffness of the sheet material, the 
greater the reduction in the stress intensity due to 
the presence of the stringer. 

Figure 6 presents data similar to those shown in 
figure 5, but in a slightly different manner. In this 
case, b is held constant while a is increased. The 
stress-intensity factor is not affected by the presence 
of the stringer until the crack t ip is very close to  
the edge of the stringer, and no significant reduction 
in kl occurs until the right crack tip is beneath the 
stringer itself. As in the previous figure, the stress- 
intensity factor a t  the left crack tip is not significantly 
affected by the stringer, and changing the material of 
the sheet does not have a large effect on kl. 

In figures 7 and 8, the effects of varying the stiff- 
nesses of the stringer and the adhesive are examined. 
In these figures, material 1 is used for the sheet and 
material 4 for the stringer; two ratios of b / a ,  1.2 and 
0.5, are used. In these figures, only results for the 
right crack t ip  are shown, since any effects on the 
left crack-tip stress-intensity factor are minimal. 

The effect of varying the stringer stiffness Ei2)h2 
is illustrated in figure 7. The normalized stress- 
intensity factor for the right crack tip is plotted as 
a function of the ratio of the stringer stiffness to 
the sheet stiffness. This figure shows that as the 
stringer stiffness approaches zero, the normalized kl 
approaches 1.00, the solution for a cracked sheet with 

no stringer. As the stringer stiffness increases, the 
curves approach a lower bound on kl. This indicates 
that past a certain point, no further reductions in kl 
can be obtained by increasing the stringer stiffness. 
The value of this lower bound on kl is a function of 
the adhesive stiffness and b/u. Changing the stringer 
stiffness has much less effect on the stress-intensity 
factor for the case of b/u  = 1.2 than for b/u = 0.5. 

The effect of varying the adhesive shear stiffness 
G3/h3 is illustrated in figure 8. The normalized 
stress-intensity factor is plotted as a function of the 
ratio of the adhesive shear stiffness to the shear 
stiffness of the sheet. As the adhesive shear stiffness 
approaches zero, the value of k l  tends toward 1.00, as 
expected. As the adhesive shear stiffness increases, 
k l  decreases. For b/u = 1.2 the decrease is small, 
since the effect of the stringer is negligible. However, 
for b/u = 0.5, the decrease in k l  is substantial. 
Although these points lie off the scale shown in 
figure 8, for very large values of G3 (on the order 
of lo1' MPa), the stress-intensity factor does not 
approach zero (as might be expected) but rather 
some nonzero minimum value. This lower bound is 
a function of the stringer stiffness and b/u.  Figure 8 
also shows that for values of G3hl/Gzy h3 greater 
than about 4.0, increasing the adhesive shear stiffness 
has little effect on the stress-intensity factor. 

I 

(1 )  

Concluding Remarks 
This report has presented the formulation of an 

analysis for a cracked orthotropic sheet reinforced 
with an adhesively bonded orthotropic semi-infinite 
sheet. This configuration was assumed to represent a 
bonded stringer panel when the crack is located close 
to the edge of the stringer. The adhesive bond was 
also assumed to be intact. A parametric study was 
conducted to determine the sensitivity of the system 
to material properties and specimen configuration. 
The parameter having the greatest influence on the 
stress-intensity factor was the distance from the near 
crack tip to the edge of the stringer. Unless the crack 
was very close to or under the stringer, the reduction 
in k l  was minimal, and the farther the crack was 
under the stringer, the greater the reduction in kl. 
Increasing the stiffness of the stringer or of the adhe- 
sive also resulted in a reduction in the stress-intensity 
factor. 

NASA Langley Research Center 
Hampton, VA 23665 
April 11, 1985 
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Appendix A 
Derivation of Displacement Functions for Infinite Cracked Orthotropic Sheet 

This appendix presents the derivation of the displacement functions for the infinite cracked orthotropic 
sheet (layer 1). If we follow Lekhnitskii (ref. 10) and ignore an arbitrary rigid-body displacement vector, the 
displacements due  t o  the crack-face pressure 00 (shown in part B of figure 3) can be written as follows: 

The terms p j k ) ,  p r ) ,  p i k ) ,  p p )  are the roots of the characteristic equation 

whtw Zd1 a r i d  E, arc t,hc Young's rrioduli, G,, is the shear modulus, and vZy and v,, are the Poisson's ratios 
of t,hc ort,hotropic shcct,. 

To drtcrrriine t . h c .  displaccmicnts for t,hr distributed loading shown in part C of figure 3, start with the 
displacrnirnts for a concentrated force l o c a t d  at the point z0 = 20 +iyo. The displacements for a concentrated 
force can be written as 

where 

8 



Details on the derivation of 4; (zi’)) and 4s (zi’)) can be found in reference 13. 

Since the body forces X1 and Y1 are continuous functions of zo in the domain D, the displacements uc and 
vc may be used as Green’s functions to determine ui“’ and vic’. The displacements up’ and vf’ due to the 
body forces X1 and Yl distributed over the domain can be written as follows: 

where Q11, Q12, QZ1, and Q22 are found by substituting equations (A2) into equations (A5) and then combining 
terms and simplifying. These expressions are shown below. 

9 
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Appendix B 

Derivation of Displacement Functions for Semi-Infinite Orthotropic Sheet 

This appendix presents the derivation of the displacement functions for the semi-infinite orthotropic sheet 
(layer 2) .  The only forces acting 011 the semi-infinite sheet are the distributed body forces X2 and Y2, as shown 
in part C of figure 2. In a procedure similar to that used in reference 11, displacements due to a pair of body 
forces Xh and Yi,  located a t  point 26 = xb + zyb and oriented as shown in figure 4 ,  can be written as follows: 

(I311 

w he r c x  

where 



where R11, R12, R21, and R22 are found by substituting equations (B l )  and (B2) into equations (B3) and 
then combining terms. The complete expressions for R11, R12, R21, and R22 are given below. 

Equations (B3) give the displacements of the semi-infinite sheet for the loading and the coordinate system 
shown in figure Bl(a) .  However, the displacements up and v2 required for the solution are defined with respect 
to the coordinate system and are due to the forces Xz and Y2 shown in figure B l (b ) .  Thus, from figure B1, 

where 

2' = y y ' = b - z  

x; =Y2 Y;=  -x2 

The displacements in the semi-infinite sheet (layer 2) are now found by combining equations ( B l )  and (B3) 
and substituting into equations (B4).  Note that the material properties of layer 2 are defined with respect to 
the x', y' coordinate system (fig. 4) .  

Shown below are the complete expressions for the functions R11, R12, R21, and R22, which appear in 
equations (B3). Further details on the formulation of these expressions can be found in reference 13. 

13 



14 



X' 

\ 
Origin 

Y' - Y; zIo 

(a) System definition used in solution. 

Origin 

I L L x  I 

(b) System definition used in integral equations. 

Figure B1. Shift and rotation of coordinate system for half-plane solution. 
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Appendix C 
Derivation of Stress-Intensity Factor Equations 

This appendix presents the derivation of the stress-intensity factor equations. In the present problem, 
because of symmetries in geometry and loading, the shear component of the stress-intensity factor is zero. 
The normal component is found by combining the effects of the crack-face pressure a0 and the distributed 
body forces X l ( s ,  y)  and Yi(s, y )  acting on layer 1. For an orthotropic material, the normal component of the 
stress-intensity factor may be written as follows (ref. 14): 

The funct,iorl 4: ( z ! ' ) )  , the stress potential due to the crack-face pressure 00, is given by the following: 

The function +f ( z ! ' ) ) ,  the stress potential (derived in ref. 13) due to the body forccs X1 and Y1, is given by 
the following: 

where 

d 7 G -  G-7- ( z  - W )  
F H ( Z r 7 U , a )  = ~ - _____ ~ - 

(z - 7u) 

and A , ,  B1, C1, and D1 are defined in equations (A3).  Substituting cyiiations (C2) and (C3) into (Cl ) ,  t 'akiw 
the limit, xit l  combining terms yield the following stress-intensity factor: 

( C 4 )  kl = Q& - - [TI (XI Y, TO1 Y O )  XI ( s o ,  YO) + T2 ( J 1  YI TO, YO) YI ( S O ?  Y 0 ) l  dTO dY0 J;; JI 1)  
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Since the loading on layer 1 (as shown in fig. 3) is not symmetric about the y-axis, equation (C5) is valid only 
as 21 approaches a, that  is, at the right crack tip. To find the stress-intensity factor at the left crack tip, the 
function q5f (.!I)) must be found for the forces X I  and Y1 located in the left half-plane (zo = -20 + iyo) . 

With the new form of df ( z ! ' ) )  , the same procedure as above is used to  find kl at the left crack tip. The 

function 4; ( z ! ' ) )  does not change, since it does not depend on the location of the concentrated forces Xi and 
Yl.  The stress-intensity factor at  the left crack t ip is thus found to  be 

where 
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TABLE I. MATERIAL PROPERTIES 

Material 
1 
2 

4 
3 

Ez > EY 1 "ZY Gz, > Graphite /epoxy 
GPa GPa GPa laminate 
51.40 51.40 0.3065 19.67 [O /  z t  45/90], 
19.75 19.75 .7336 33.65 [*45I 2s 

10.86 129.40 ,0262 5.70 I01 
129.40 10.86 .3118 5.70 1901 
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I n f i n i t e  sheet  S e m i - i n f i n i t e  s t r i n g e r  
( layer 1) 7 (layer 2 )  

Adhesive 
( layer  3) 

Figure 1 .  Shect-stringer corifigurat,ioIl corisidcred in problem. 

A .  Total system B . Sheet 
( layer 1) 

Y 

L 

C. S t r i n g e r  
( layer 2 )  

;I 
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A .  Total loading B.  C rack  p r e s s u r e  C. D is t r i bu ted  loading 

Figure 3. Superposition for sheet (layer 1) .  

Y' 

Figure 4. Loading on semi-infinite sheet (layer 2) .  
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Figure 7. Normalized stress-intensity factor as function of stringer modulus. 
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Figure 8. Normalized stress-intensity factor as function of adhesive shear modulus. 
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