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~ABSTRAC~ Entropy 
The entropy is defined as the amount of informa- 

tion that is emitted by a data source. The theoreti- 
cal basis of data compression depends on Shannon's 
first theorem on the noiseless coding of information. 
Given a zero memory source S emitting the sym- 
bols si (i = 1, 2, . . . ,  n) with the corresponding 
(independent) probabilities Pi, we can calculate the 
entropy of the source under the above conditions as 

A comprehensive study of data compression tech- 
lniques is presented in this paper. A description 
of these techniques is provided along with a per- 

1 formance evaluation. The complexity of the hard- 
ware resulting from their implementation is also ad- 
dressed. The compression effect on channel distor- 
tion and the applicability of these algorithms to real- 
time processing are presented. Also included is a 

l proposed new direction for an adaptive compression 
I technique for real-time processing. 

1 .  

INTRODUCTION 
The increase in resolution and in the number of 

spectral bands of modern multispectral imaging sys- 
1 tems creates a tremendous burden on the down-link 

channel and the bandwidth required to transmit data 
I to ground stations. In fact, the future imaging sys- 

tem will produce data at rates that  will exceed the 
capability of the down-link channel. Data compres- 
sion is one of the most powerful tools available to 
reduce the data volume to be transmitted. Even- 

I  tually, data compression will be an essential part of 
1 modern telemetry systems. 
I Since most users insist on reversible processes, 

this paper focuses only on reversible data  compres- 
1 sion techniques and explores the possibility of their 
' real-time implementation. Various reversible data 

compression techniques are described, and an eval- 
uation of these techniques in terms of performance, 

' implementation complexity, and immunity to chan- 
nel noise is presented. 

l INFORMATION THEORY AND DATA 
I COMPRESSION 
1 The coding of the numerical data  is accomplished 
1 by means of pulse code modulation (PCM) requiring, 
1 in general, a very large bandwidth. In fact, the 
~ number of pulses per second to be transmitted is a 

function both of the number of samples and of the , number of bits necessary to represent each sample. 
To reduce this large number of pulses per second 

I (and consequently the bandwidth), it is necessary to 
introduce data  transformation represented by data or 

l bandwidth compression. Such a transformation can 
be considered as one which operates on the data given 

i by an information source in such a way as to reduce 
I the amount of nonuseful or redundant data. Since 

compressed data  are, in general, more sensitive than 
noncompressed data  to  the channel noise, a channel 
encoding might be necessary for a noisy channel. An 
error in the compressed data  will generally introduce 
a considerable amount of distortion. 

n 1 

Each of the symbols sl, s2, . . .  , sn can be 
mapped into a fixed sequence of k symbols taken from 
a finite alphabet X = 21, 22 ,  . . . , xk. This proce- 
dure corresponds to encoding each symbol si into a 
code word xi belonging to  the set X I ,  x2, . . . , xn and 
having length li. We can define the average length of 
this code L as 

n 

L = Pala (2) 
i = l  

Such a code is said to  be compact for that  source if 
its average length is less than or equal to that of any 
uniquely decodable code. 

From equations (1) and (2),  the following prop- 
erty of H ( S )  can be proved: 

H ( S )  5 L (3) 

Hence, H ( S )  is a lower bound for code average 
length. The ratio 

is defined as the efficiency of the source code, and 
1 - q is the redundancy. The term H ( S )  can be used 
to evaluate an upper bound for the mean compression 
ratio - - 

(4) 
L C R = d  
L 

The symbols L,  and L represent the source and 
encoded mean word lengths, respectively. 

From equations (3) and (4) we can obtain the 
maximum compression ratio CR,, as 

(5) 

Equations (3) through (5) are true if the compression 
method is perfectly reversible. 



A higher value for CR than that given by equa- 
tion ( 5 )  can only be obtained by introducing a certain 
amount of distortion in the reconstructed signal. In 
the latter case, the process is said to be irreversible. 
In this paper, only reversible compression methods 
are considered. 

Channel Capacity 
The entropy (eq. (1)) can be considered as the 

average information associated with the emission of a 
soiircc synibol. Lct the output alphabet reproducing 
t,hc source be L3 with r symbols. Then B = {bj}  
where j = 1, 2, . . . , r ,  and P(6j)  is the probability of 
b,. Mutual information can be defined as a function 
of t!ic sciiircc symbols {Si} E S arid of the received 
syrrlhols { b j }  E B by 

and it represents the avcrage information obt,aint:d 
from the emission of a symbol s; when b j  is known. 
The mutua1 iiiforrriatioii Z(S, B )  is a rioiiriegative 
coIiv(3x fiinction of the probabilit,iw P (  s;) arid always 
admits ii rnaxiniiim. This niaxiriiurri, taken ovcr 
all t,hc possible c1ioicc.s of the. source probability 
distritmtion Z’(si ) ,  is c a l l d  t,hc chanric.1 capacit,y C ,  
wlicw 

( 7 )  

In fact, if H ( S )  < C ,  it is always possible to find a 
channel coding mrt  hod for transmission on a noisy 
channel, such that the error probability a t  the re- 
ceiver is lowcr than an arbitrary small quantity. How- 
ever, this could imply the use of a prohibitively long 
codr, which is riot of practical usefulness. 

Rate Distortion Function 
Let a vector X with n components of the source 

alphatwt, { X I ,  2.2, . . . , z,}, z; E S, be encoded in 
a vcct,or Y = {yl, y2, . . . , yn} with yi E B. We 
drriotc the word dist,ortion measure by D,(X, Y )  , 
which could br  expressed as the cost of sending xi 
anti rev-civing yl where i # j. 

Thcl functiori D,,(X, Y )  is dcfined by the user. An 
o f t  cwiisc .c l  IIic:isiir(> of  distortion is the single-lrtt,cr 
fic1olit.y c.rit.c.rioii, whcw Z>,,(X, Y )  is t,hc meaii o f  the 
singlv clist.ort,ioiis iIit,rotluccd by rcyr(w:nt,ing zi with 
y , ;  I . ( > . ,  

1 ,  
U,,(X. Y )  = n ~ D (  ~ z r  Y i )  (8) 

2 - 1  

For channels with memory, more complex definitions 
are needed to  measure distortion, and in general, 
these are very difficult to  deal with. 

In many cases, equation (8) is used as a first ap- 
proximation for systems with memory. From eqiia- 
tion (8), the overall average distortion D will depend 
on the conditional probability P(y,lz,) and is given 
by 

D = P ( ~ Z ) ~ ( Y Z l ~ 2 ) ~ ( ~ Z ~  Yz) (9) 
SIB I 

when D turns out to bc less than a preset quantity D ,  
P ( ~ , I x , )  is called D-admissible. Now we can drfine 
the rate distortion function R ( D )  as the minimum of 
the average mutual information 

, 

where the minimum is taken over all the possible 
P(y,lz,) values that are D-admissible. 

I 

REVERSIBLE DATA COMPRESSION 
TECHNIQUES I 

Reversible data  compression techniques include 
redundancy reduction, differential pulse code mod- 
ulat ioli (DPCM),  and linear transformation (refs. 1 
4). The various algorithms used in these techniques 
arc summarized in figure 1.  

Redundancy Reduction 
The redundancy reduction method is based on 

whether a data  point could be successfiilly deter- 
mined within a preset tolerance of the actual point. 
Predictions arid interpolations are carried out accord- 
ing to the following differcncc polynomial: 

Y[ = Yt-1 + AYt-1 + A‘Yt-1 + . . . + Any,-1 

whrw 

yt! 
yt-1 

predicted data  sample a t  time t 

sample one period prior to  t 

AYt-1 =Yt 1 -Yt-2 

A‘Yyt-1 = AYt-1 - AYt-2 

A”Yt- 1 = A7’-’Yt 1 - A’’ ‘1 ;  2 

The basic differc.ncc1 b,ctwc.c’ri prcdict orh ;ind i r i t  crpo- 
lators is that prcdictors usc orily past siiIIil)l(’s to prc- 
dict the present O I ~ C ,  whcwas irit c’rpolat ors iisc bot 11 

past and future samplrs. Comparisori of various de- 
grees of difference polynomials has shown that  abovc 

2 



I 
I a third-degree polynomial, there is little or no im- 

provement in performance (ref. 5). It is the author's 
opinion that the improvement from first degree to 

1 second or third degree does not justify the added 
complexity. (See fig. 2 . )  Hence, the evaluation in this 
paper is done on zero- and first-order polynomials. 

' Prediction Algorithms 

1 present sample by using a difference polynomial. If 
The following compression algorithms predict the 

I 

lyt - Ptl I K (11) 

where 

Yt actual sample value 

fi predicted value 

I K tolerance band 

, then the sample is not transmitted. The process 
1 continues until the condition in equation (11) fails, ' 

then the actual sample is transmitted with a code 
appended to inform the ground station of the num- 

~ ber of samples that were not transmitted. At the ' ground station, the decompressor fills in the samples 
that were not transmitted by using the same poly- 
nomial that  was used a t  the compressor. The com- 
pressor and decompressor can use one of the follow- 
ing polynomials: (1) zero-order predictor, (2) zero- 
order predictor with an  offset, (3) first-order predic- 
tor, (4) first-order predictor with a slope correction, 
or (5) optimum linear predictor. These polynomials 
are discussed in the sections which follow. 

I 1 

' 
1 

I ' Zero-order predictor. In the zero-order predictor 
(ZOP) algorithm, it is always assumed that  

( 1 2 )  
I Yt = Yt-1 

I 
1 where 

~ ?t sample to  be predicted a t  time t 

I successfully predicted sample 

I 

Y;-l actual transmitted sample or previous 

A graph illustrating this algorithm is shown in fig- 
ure 3. At time t ,  we can see that there will be 
no transmission, since the tolerance band (the two 
dashed lines) contains the previous sample point. 
Whereas, at t + 2 the  actual data  point is transmit- 
ted, since it falls outside the tolerance band placed 
on the predicted sample. 

Zero-order predictor with ofisset. The zero-order 
predictor with an offset is basically the same as the 

ZOP. The prediction polynomial is fi = Y;-l as long 
as a sample is not transmitted (redundant). Once 
a sample is transmitted, the first point in the next 
interval is offset as follows: 

where 

Yt-1 

Ytl-2 

sample at t - I 

sample at t - 2  (If the sample is transmitted, 
the actual sample is used. If not, the 
predicted value is used.) 

161 magnitude of offset 

These two algorithms are relatively simple to imple- 
ment; however, they perform best when the actual 
data vary very slowly. 

First-order predictor. The first-order predic- 
tor (FOP) algorithm is similar to  the above algo- 
rithms except that  the predictor uses a first-order 
polynomial 

A graph illustrating the FOP is shown in figure 4. 
The implementation complexity for this algorithm is 
still low, and it performs well with data that vary at 
a medium rate. 

First-order predictor with slope correction. The 
difference between the first-order predictor with a 
slope correction and the algorithms previously de- 
scribed is in the prediction polynomial. In this al- 
gorithm, as long as l < K (the tolerance band), 
then 

fi = Yt-1 + AY, (15) 

where 

AY, increment in Y ,  computed r sample periods 
prior to t - 1 

number of sample periods between t - 1 and 
time of prior transmission 

r 

If IC I 2 K ,  then 

where 
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and c = 2 if T > 1; c = 1 if T = 1. The implemen- 
tation complexity of this algorithm is medium. This 
algorithm can handle data  that are more active, and 
it follows the data slope faster than the previously 
discussed predictors. 

Optimum linear predictor. The optimum linear 
predictor algorithm predicts the present sample by 
using a linear combination of past samples 

N 

The coefficient,s a k  are chosen to  minimize the mean 
sqiiarc wror bctween the predicted and actual values. 
These cocfficicwts are found by solving N linear 
equations involving the autocorrelation function 

N 

wherr 

R,[(T - k)T] autocorrc.la 
for lag of (; 

h ) T ]  (T = 1 ,  2, _ _ . ,  N )  

ion t’urict,iori of signal 
- k)T 

h nu m bcr of sarn plc periods s irice 
last transtnittcd sample 

T timr between sampling 

The implementation complexity for this algorithm is 
quit (> high. 

Interpolation Algorithm 

The interpolation algorithm approximates the 
data  with a zero- or first-order polynomial curve. 
The best way to desrribe this method is by an ex- 
arnplc. First, transmit Yo and Y1, then approximate 
Yl by using equation (12) or (14).  Determine if Y2 
is within fK units of Yo and Yl. If true, then ap- 
proxiniatx~ Y? as above and determine if Y3 is within 
f K  of Yo, Y1, and Yi. Keep repeating this pro- 
cess iint,il t,he a h v c  rondit,ion fails; that, is, Y, is not 
wit,liiii I f K  of all t,he previous samples. When this 
lii~pp(ws, a start,ing point, arid an ending point of a 
l i i i v  scypicwt, arc t.r;LIisriiit,t,(~d. This linc. segment, rep- 
rcwnt.s t , l i v  I)oiiit.s li), Y1, . . . , UT,- 1 .  This process 
t.licw c.oiit.ii1uc.s wit,li Y,, corisidcrctti as y0 for the new 
l i i i v  sc~gincwt,. S w c d  Itic.t,hods cxist for rqxctsent- 
itig w ( l l i i i ( l i L i i t .  siii1ipl(%s by a st,raight.-linc, segment. 
To acliiwc~ t,hv largcst, coniprctssion, it is necessary 
t,o svlcct. a lint scyyricmt, within K units of as many 

samples as possible (where K is the desired toler- 
ance). This optimum algorithm requires freedom of 
both the starting and ending points of the line and 
results in four degrees of freedom. Since the four- 
degree-of-freedom algorit,hm is am ext,reme!y mmp!ex 
process to  implement, anchoring the starting point 
of the line segment to  an actual or computed sample 
greatly simplifies the implementation. One way is to  
anchor the starting point of a new line to  the end of 
the previous line. (This is called a joined-line seg- 
ment.) Another way is to  anchor the starting point 
of the line to thc actual out,-of-tolerance sample. 

Differential Pulse Code Modulation (DPCM) 
The general hlork diagram of a DPCM system 

is shown in figure 5. In this technique, a predicted 
sample Y, is evaluated by using any of the predic- 
tion algorithms. The difference e ,  between the ac- 
tual sample and the predicted one is quantized. In 
basic DPCM, the uniform quantization of the e,  val- 
ues may cause an edge degradation. However, if the 
correlation of the input signal is high and the pre- 
diction algorithm is efficicnt, DPCM gcncrally offers 
a higher efficiency than PCM. In general, wit,h an 
equal number of bits, the signal-to-noise ratio (SNR) 
is higher for DPCM than for PCM. With an equal 
SNR., DPCM requires a lower number of bits than 
PCM. The gain G in the SNR of DPCM with respect 
to PCM can be expressed by 

where E{Y:} and E { e i }  are the variances of Y, and 
e,, respect,ively. 

Minimizing the denominator of equation (18) will 
improve the gain. Basic DPCM docs offer a bet- 
t m  pcrformancr than PCM. Nevertheless, when non- 
stationary signals are proc(:sscd, there may be large 
peak crrors in thc rcconst,ructjed data. To avoid these 
errors, many adaptivc DPCM techniqucxs were stud- 
ied (refs. 6 9). In the adaptive DPCM, the step am- 
plitude of the quantization interval changes to  follow 
the signal evolution. The step value becomes small 
when the signal is quiescent and large when the signal 
is more act,ive. However, wit,h adaptive DPCM, the 
improvement obtained may becornc apparcntf only 
when large variations of thct sigrial follow quiosc:erit, 
periods. In t,his case, thc. s t q  arnplit,udc~ can assiimr 
a very low valuc., arid  1 ) c h - c .  it has ti1iic- to t ) c m ) r i i c  

comparable wit,li t,hc cliffvrcwcx. sigiial, large. orrors 
can arise. 

Linear Transformations 
The transform coding tcchniqiic iiscs a mathernat,- 
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ical operator to  transform the input image data  into 
another domain, where the closely correlated input 
data  are transformed, ideally, into uncorrelated data. 
The basic block diagram of a transform system is 
shown in figure 6. To reduce the data  throughput, 
the image is divided into blocks of data  for subse- 
quent processing. Any errors that  occur are averaged 
over a single block, and thus error propagation is re- 
duced. Until the codpr stage (see fig. 6), the process 
is completely reversible with no loss of information. 
The coder provides the data  compression by select- 
ing the various coefficients according to  their signif- 
icance until a preset threshold is met. Beyond this 
threshold, the remaining coefficients are discarded. 
This method uses a major property of the transform, 
by which the input image energy is compacted into 
a few coefficients. This enables the least important 
coefficients to be deleted without a large increase in 
the error of the reconstructed image. Ideally, the 
thresholding should be adaptive by sending more in- 
formation when there is higher activity in a block 
of data  (e.g., at an edge of an object). The inverse 
transformation uses the same information as the for- 
ward transformation to  reconstruct the image. The 
advantages of this method over other methods are 
less sensitivity to  variations between differing images 
and superior coding a t  the lower bit rates. The main 
disadvantages are some blurring at the edges and a 
certain loss of details in the image caused by the loss 
of high spatial frequencies. In addition, the hardware 
implementation of these transforms is complex, and 
the computations are time consuming. 

Mat hematically, the transform can be expressed 
as a summation over the dimensions considered. For 
an N x M image array f(z, y) ,  the two-dimensional 
transformed array P(u ,  u) is given by 

z=1 y=l 

where the operator kernel O(z,y : u , v )  represents a 
weighting constant, which is, in general, a function 
of both input and output image coordinates. 

Similarly, the inverse transformation is given by 

N M  

Fast algorithms do exist, and the implementation of 
these algorithms can greatly enhance the throughput 
of the compression system. Some of the most com- 
mon operators and their properties are discussed in 
the following sections. 

Karhunen-Loeve Transform 
In the Karhunen-Loeve transform (K-LT), the 

matrix is found by first evaluating the covariance ma- 
trix of the image, which is of N 2  x N 2  dimensionality 
for an N x N image. Then the eigenvectors of the 
covariance matrix are computed and used as the ba- 
sis for the transformation matrix. These bases are 
unique for each data  block. Because of the tremen- 
dous amount of computation, the K-LT is only used 
as a universal reference in the comparison of other 
transforms. 

Discrete Fourier Transform 
The main advantage of the discrete Fourier trans- 

form is the fast Fourier transform (FFT) introduced 
by Cooley and Tukey in 1965, which reduces the com- 
putation involved. Typically, the number of complex 
operations for an N x 1 FFT is N log2 N as compared 
with N 2  computations required in the conventional 
approach. The main disadvantage with this trans- 
form is that complex arithmetic is involved. The per- 
formance of this method is shown in figure 6 along 
with that  of the other transforms discussed. The 
discrete Fourier transform is not very efficient at the 
lower values of block size but does improve as the 
block size is increased. 

Discrete Cosine Transform (DCT) 
The discrete cosine transform (DCT) provides the 

most promising performance of all the techniques be- 
cause of its near-optimum mean-square-error perfor- 
mance. (See fig. 7.) The DCT is derived from the 
Fourier expression by taking the real parts of its ex- 
ponential form. The two-dimensional forward trans- 
formation F ( u ,  v) for an  N x N image f(j, I C )  is given 
by 

cos(2j + l ) U T  cos(2lc + l ) V T  
X 

2N 
( U , U  = 0, 1, . . . ,  N - I) (21) 

where G(u ,v)  = 1/2  for u = v = 0 and C ( u , v )  = 1 
for u,v  = 1, 2, . . . , N - 1. The DCT may be 
implemented by using a double-sized FFT or directly 
using a fast cosine transform devised recently by 
Chen et al. (ref. 10). As the block size increases 
to N 2 16, the basis vectors of the transformation 
matrix approach the eigenvectors of a first-order 
Markov process correlation matrix, and hence the 
performance of the DCT approaches that of the 
K-LT. 
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Hadamard Transform 

The basis vectors of the Hadamard transform are 
a series of rectangular waveforms taking the values 
of +1 or -1 only. This simplifies the hardware 
implementation, since the Hadamard transform dnes 
not require any multiplication. 

The two-dimensional Hadamard transform for an 
A\r x N f ( ~ ,  y)  array can be written in series form as 

where 

N - 1 

The ternis u,. vZ1  x,, and y, are the binary represen- 
tation of u, I ) ,  2 ,  and y l  respectively, for example 

where ui E (0, l}. Thc sunimation in t,he exponcwt, 
in cqiiat,iori ( 2 2 )  is performed modulo two. The 
main disadv;tIit,agc of t,his t,rarisforxri is that, it, is 
not as c.fficicwt. in c w q y  cornpact,iori as the previous 
t.riuisfornis; t,hus, thv coriiprcssiori ratio is dcgradrd. 

SOFTWARE EVALUATION OF COM- 

Thr  performance of each compression algorithm 

PRESSION ALGORITHMS 
I 

I 

was a s s c x i c d  from the following criteria: 

1. The scrne activity that gives the best results in 
trrrris of lowest, mean square error in reconstruction. 

2. Cornprcwion cfic%mcy. 
3. Irriplcnit.nt,at,iori complexit,y (the suitability for 

rml- t irno iInplrnicntat,ion). 
4 .  Inirnunity t,o channel noise. The comparison 

wits t l o ~ i t .  according to equation (9), and D(X, Y) 
was cvaluatcd by iisirig equat,ion (8). The channel 
was assiinicd to  be a binary symmetric channel. 

5. Encrgy corripaction property. 
6. Additional informat,ion required for linear 

t railsformat ion. 

Siricv t h c .  pc~rforrIiiiricc~ of most of the algorithms 
is scwitivc t o  thc  s c ( w ~  corrvlat ion, Gaussian white 
iioisct ( I t i t  ;I w ( w  p v i ( w t  ( ~ 1  a t i d  passcd t,hrough a filter 
to  i t i t  r o c l i i w  t t i c 1  tlcsirtd corrc.lat,iori t,o thc dat,a. The 
l i l t  c r  ('(lllitt i o11  is givcw Ly 

where 

Y, output of filter 

Y,-1 previous output of filter , 

X, input (Gaussian white noise data) 

parameter < 1 for stability criterion 

Hence 

where w is the radian frequcncy arid 

where H ( w )  is the Fourier transform of the transfer 
function of the filter. Then the power spectra of the 
filter output are given by 

I 

where S,(w) are the input power spectra. Since the 
input is white Gaussian, then 

2 Sz(w) = 0, 

whew o2 is the variance and 

Taking the inverse Fourier transform of equation (26) 
yields 

Evaluating equation (27) by contour integration 
viclds 

where R,(n) is the autocovariance of the filter out- 
put. Notice that Ry(n)  is a function of the filter 
parameter a .  In evaluatiIig the compression algo- 
rit,hms, we increased N from 0.1 to  0.9 in incrrmcrit,s 
of 0 . 1 ,  t ,hm from 0.9 to  0.99 in iricrcrricrit,s o f  0.01. 

The results of t,hr soft,warc simulation art' siimmit- 
rizcd in tablc I. The K-LT and t,hr IICT transfornis 
are h s t  in accoIrirnodatirig all t j y p s  of sc(~ic1 act,iv- 
it,y with the best, efficirricy in t,rmns of r r i ( ~ i  sqiiarc 
error and comprwsion ratio. Howwcr, thrir iniplc- 
rnerltation is complcx. The Hadarnard algorit,lini arid 
(if bursts are ignorrd, since t,hcy occur infrc:quently) 
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the adaptive DPCM algorithm can handle all types 
I of scene activity; however, their efficiencies are not 
I as good as those of the K-LT and the DCT. The pre- 

that  block. The algorithm-switching aproach offers a 
considerable improvement over the use of one simple 
compression algorithm for all types of image data. I 

' dictors and interpolators, which are simple to  imple- 
, ment, were best suited for a particular type of scene CONCLUDING REMARKS 

activity, as seen in table I. A survey of various compression algorithms and , 
I an  evaluation of their performance and implementa- 

SWITCHING DATA tion complexity were presented. It was shown that  
the more complex algorithms are able to  handle all COMPRESSION 

Because of the relatively low complexity associ- 
ated with the implementation of the predictors and 
interpolators, these algorithms are attractive alterna- 
tives for implementation in imaging systems. How- 
ever, the problem associated with them in terms of 
being able to handle only one type of data  activity 
must be overcome. The author considered combining 
several predictors and interpolators that could han- 
dle various types of data  activity with an activity- 
measuring scheme that  would select the best algo- 
rithm to compress the data  at hand. In order to 
implement this system, an analysis of the ZOP, the 
FOP, and the first-order interpolator (FOI) was per- 
formed to determine which range of data  activity is 
best handled by each algorithm. The test was per- 
formed on data that had a wide range of activity. 
To achieve that activity range, the data  were passed 
through the filter of equation (23), and Q was varied 
from 0.1 to  0.99. (The symbol Q represents the filter 
parameter which corresponds to  different values of 
02, as shown in equation (28), by letting n = 0.) ,4 
gain function was defined as a criterion to  determine 
a t  which value of Q the switching should occur for 
each algorithm. This gain function is defined as 

CR 
62 

G = -  

where CR is the compression ratio and t2 is the mean 
square error. Figures 8, 9, and 10 show plots of the 
gain as a function of the filter parameter Q for values 
of K = 2, 4, and 6, respectively. It can be seen 
from these plots that  the FOI has the highest gain for 
values of Q 5 0.91. For Q > 0.91, the ZOP provides 
the highest gain. 

According to  the above analysis, the compression 
system would include two compression algorithms: 
the ZOP and the FOI. The FOI would be used to  
compress data  for values of 0 5 0.91, then the system 
would switch to  the ZOP for values of Q > 0.91. 
A general block diagram of that  system is shown in 
figure 11. Notice tha t  in such a system, the image is 
divided into subimages or segments, and a decision 
is made for every segment. Overhead information 
is sent at the beginning of each block to inform the 
ground station of which compressor was used over 

- 
types of data, whereas algorithms which are simple 
to  implement are best suited for a specific type of 
data  activity. An approach has been presented and 
described which employs a measure of scene activ- 
ity as a criterion to  switch between various simplistic 
algorithms. This approach offered a considerable im- 
provement over the use of one simple compression 
algorithm for all types of image data. 

Further evaluation of other algorithms described 
in the survey (e.g., zero-order predictor with an off- 
set, first-order predictor with a slope correction, and 
zero-order interpolator) is necessary to  determine 
their applicability to the system and to optimize per- 
formance. Furthermore, other scene activity switch- 
ing mechanisms (e.g., entropy) warrant additional 
investigation. 
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Figure 1. Reversible data compression techniques. 
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