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Abstract (Contir: :d)

diodes which enabled us to use diamond heatsinks, realizing substantial reduction

in diode theimal resistance. The number of available diode chips from a same
size wafer also increased by a factor of approximately 10 compared with that
obtained in plated heatsink configuration.

The RF performance was evaluated through extensive circuit tuning in a
coaxially coupled reduced-height waveguide cavity. This cavity provided a
wide range of impedance at the device terminal. The diode RF performance
was very sensitive to both bias and circuit conditions. The maximum output
power appeared to be thermally limited.

The V-band GaAs IMPATTs failed over a wide temperature range in a step-stress
test. The diode failure appeared to be process-related. The majority of
diodes with Au-Zn metallization on the epi side failed around 350°C while
diodes with Pt-Ti-Pt-Au metallization mostly failed between 400 and 425°C.
The predominant failure mode was shorting.
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1.0 INTRODUCTION AND SUMMARY

The objectives of this program are to design, fabricate, test and deliver high
per.ormance, reliable 60 GHz GaAs IMPATT diodes suitable for communications
applications. The performance goal of the diodes is 1W CW output power with a
dc-to-RF conversion efficiency greater than 15 percent. The intended life-

time of the diodes is a minimum of ten years.

The program originally called for three iterations of diode design. fabrication,
test and delivery, with a technology assessment study near the end of the
program. During the course of the program, we submitted a proposal for the
program modification in response to RFP No. RFP-504014, and were granted
approval from the NASA-Lewis Research Center. The proposed program (with a
12-month add-on) is divided into nine major tasks, as required in the RFP.

The program's technical tasks are basically four iterations of 60 GHz GaAs
IMPATT design, fabrication, test and delivery in addition to a reliability

test (dc step-stress test) and a technical assessment study.

We selected double~drift (DD) structures for the high-performance 60 GHz GaAs
IMPATTs. ‘tiowever, we opted for a progressive approach to the diode design and
fabrication, from single—drift (SD) Read structures through DD flat, to DD
Read structures. DBecause of the uncertainties associated with material and
physical parameters, several iterations were required for the optimization of

the profile design and fabrication process.

At the beginning of the program, little information was available for the pro-
file design of 60 GHz GaAs IMPATTs. In spite of the superior performance of
GaAs IMPATT diodes in the microwave frequency range, development work in
millimeter-wave GaAs IMPATTs has been limited in the past becanse of the large
intrinsic vesponse time of electrons in GaAs material. The initial design was
basically based on the small-signal analysis and scaling of the design para-
meters for GaAs IMPATTs at lower frequencies. The large-signal analysis and
the experimental evaluation data of the previous designs later provided more

reliable information for the diode optimization.

1-1
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Molecular beam epitaxy (MBE) was chosen for the baseline material growth
approach to achieve the design profiles with submicrometer layer thicknesses.

Recognizing the limited suppliers of the MBE technology, we also used vapor
phase epitaxy (VPE) as a supplemenc. At the early stage, diode development

was hampered by difficulties in growing quality materials on large cubstrates.
However, operator experience, coupled with reactor modificatiocn and new-
generation MBE machines, has gradually alleviated this problem and now allows
growth of wafers as large as three inches in diameter with good profile
control. Control of complex doping profiles of 60 GHz GaAs IMPATT diodes was
difficult with the VPE technique. Because of the relatively fast growth rate
in VPE, the transition between layers was graded, especially in the p-n

junction ragion.

The doping profile has been evaluated routinely by capacitarce versus voltage
(C-V) measurement in step-etched GaAs wafers. Although we can obtain a
complete profile by compositing the measured data, this technique i.ils to
provide detailed information around the p-n junction because of the built-in
depletion width. We conducted the secondary ion mass spectrometry (SIMS)
analysis on some sample wafers to supplement the C-V measurement data.
According to these evaluation data, many MBE wafers indicated uniform doping

concentration in each layer, with abrupt transitions between layers.

To minimize diode series resistance, we thinned the GaAs wafer thickness below
10 um. We gained precise control of wafer thickness by developing a control
channel pattern. This thin wafer thickness also contributed to the fabrication
of well-defined mesa diodes. The early diodes were fabricated in integrated
(silver-plated) heatsink configuration with Ti-Au, Pt-Ti-Au o Au-Zn metalliza-
tion on *he epi axial side, and Au-Ge-Ni metallization on the substrate side.
nlthough we obtained reasonable RF performance from scme plated heatsink diodes,

their measured thermal resistance wa:z oo high to meet the program requirement.

The successful fabrication of pill-type diodes established a significant
contribution for high performance V-band GaAs IMPATT development. The number
of diode chips available from wafers of the same size increased by a factor of

approximately ten, through elimination of the large area required for plated

1-2



PR s BT R e

heatsin.. diodes. By thermocompression-bonding the diodes to metallized diamori
heatsinks, we reduced the thermal resistance of a pill diode by as much as

50 percent, compared to that of a plated heatsink diode. The pill diodes were
mostly metallized either Au-Zn or Pt-Ti-Pt-Au on the epi side of the wafer.

We mounted the diodes inside a miniature quartz-ring package using a one-mil

diameter gold wire in cross-strap configuration.

Single-drift diodes with a Schottky contact made directly on n-type material
often indicated poor breakdown and burned out prematurely in RF evaluation.
Although growing a p-layer prior to metallization resulted in sharp breakdown,

the RF performance of the SD diodes was limited to a couple hundred milliwatts.

We obtained about 500 mW output power in the frequency range between 45 and

55 GHz from the DD GaAs IMPATTs on plated heatsinks. Because of the high thermal
resistance, the input power was restricted to a bias current of 9 to 12 kA/cmz.
We were able to increase the bias current density of the pill -diodes on diamond
heatsinks to about twice that of the plated heatsink diodes, resulting in state-
of-the-art RF performances. We achieved IW output power at 52.75 GHz with

14.7 percent efficiency at a junction temperature of 228°C. The highest

output power measured at V-band was 1.12 W and the best efficiency was

15.3 percent from a DD hybrid diode.

The RF performance and noise characteristics of the V~band GaAs IMPATTs were
sensitive to bias and circuit conditions. When mismatched, the diode burned
out even at low bias current levels, often accompanied with significant noise
degradation. The maximum output power appeared to be thermally limited, with
the output power still increasing at the point of diode failure. The measured
AM and FM noises of the V~band GaAs IMPATTs were slightly better than those of

the silicon counterparts.

The step-stres: test results of V-band DD GaAs I[MPATTs seemed to indicate many
process-related diode failures. The GaAs IMPATTs failed over a wide tempera-
ture range. The maximum failure temperature of the diodes with Au-Zn
metallization on the epi side was 375°C, about 50° lower than that of the
diodes with Pt-Ti-Pt~Au metallization. This was the direct consequence of

higher thermal resistence of the diode with Pt-Ti-Pt-Au metallization.

1-3



According to the program schedule, a total of 40 V-band GaAs IMPATT diodes
were delivered to the contract office at the end of four different phases. On
each occasion, one diode was mounted inside the test circuit for the contract
office tn confirm the test data. The success of the program was manifested by
the delivery of 25 high performance V-band GaAs IMPAIT diodes at the end of
the program. Typical output power of the delivery diodes was 1 W with about

13 percent efficiency with an average junction temperature rise of 236°C.

The sections below describe the technical approaches and efforts that led to
successful completion of the program. Diode design of 60 GHz GaAs IMPATTs is
discussed in Section 2. The material growth and evaluation, and diode fabrica-
tion are covered in Sections 3 and 4, respectively. Diode evaluation, and

test circuits are described 1n Section 5 and the step-stress test and its
results are discussed in Section 6. Section 7 describes the deliverstles made
during the course of the program and includes the test data. In S :tion 8, we
draw a conclusion based on the work of this program and suggest some future

work required to further improve ‘the performance of GaAs IMPATT diod.s.



2.0 TIMPATT DIODE DESIGN

We have selected double-drift (DD) structures for tha 60 GHz GaAs IMPATT
development to meet the program goals of 1 W CW output power and 15 percent
conversion efficiency. We designed DD flat, DD hybrid, and DD Read profiles.
Both hi-lo and lo-hi-lo profiles were applied for DD hybrid and DD Read diodes.
In Read structures, the avalanche region is well confined around the junctiom
area and this provides better phase relationship between the voltage and current,

resulting in improved efficiency.

We initially designed diode doping profiles based on small-signal analysis.
During the course of the program, we developed a large-signal computer program
and used it for profile optimization and refinement of the 60 GHz GaAs IMPATTs.
The large-signal simulation data indicated that the program goals could be

achieved using DD hybrid or DD Read diodes in optimum conditions.

2.1 DOPING PROFILES

The IMPATT profile structures can be generally divided into three types: the
flat, the Read, and the hybrid. The flat and Read profiles can be subdivided
into single-drift (SD) and double-drift (DD) structures. The Read-type profiles
can be further divided into the true Read, the hi~lo and the lo-hi-lo structures
according to their doping configurations. The hybrid profile is a DD structure
with 8 flat profile in one side and a Read profile in the other side.
Double-drift structures were selected for 60 GHz GaAs IMPATTs to meet the high
power and high efficiency requirements. They have a single avalanche region

and two drift regions, one for electrons and one for holes. Since the DD diode
area can be twice as large as the SD diode for the same impedance, the RF output
power can be increased by about a factor cf 4. (More detailed calculationsl
indicate that this estimate is overly optimistic; the actual factor is

around 2.7.) The efficiency of the DD diode chows about 30 percent in:rease
over the SD case. Series action gives twice the RF output power per uait area

but the dc voltage increases by only about 50 percent.



The p-side doping profile of the double-drift IMPATT diodes was designed to be
slightly punchthrough at normal operating conditions. Because of the low hole
mobility in GaAs, any undepleted region in the p-side may result in high series
resistance. However, attention must be paid to the reported susceptibility of

non-punchthrough IMPATT diodes to subharmonic oscillations and parametric

instability.z

2.1.1 Double-Drift Flat Structure

The DD flat structure has flat profiles in both the n- and p-side of the device
as shown in Figure 1. The p-~side is designed to be slightly punchthrough to
minimize the series resistance. Although the negative resistance of the flat
structure diodes is lower than that of Read-type diodes, it is relatively flat
over a wide frequency range. Therefore, performance of these diodes is less

sensitive to operating frequency. In addition, fabrication of DD flat diodes

is easier than that of Read-type diodes.

2.1.2 Double-Drift Hybrid Structure

The DD hybrid structure is a combination of SD flat and SD Read structures.
The diode resembles a p-type SD flat structure in series with an n-type SD
Read structure. Figure 2 shows the general doping and electric field profiles
for a DD hybrid (hi-lo) structure. Since the electron mobility is much higher
the 1 the hole mobility in GaAs, the Read-type is always in the n-side, and the

flat p region is designed to be punchthrough at operating current to reduce

the series resistance.

While the lo-hi-lo structure can provide a more favorable electric field
profile for high-performance IMPATTs, the hi-lo structure is easier in
material growth. The advantage of easier gr-wth is very important for high
frequency devices in which the doping spikes for the Read profiles are so thin
that they become extremely difficult to fabricate. The hi-lo structure has
also shown lower power and frequency sensitivity over a wide temperature range

in X-band GaAs IMPATTs developed at Hughes.
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2.1.3 Double-Drift Read Structure

The DD Read structure has Read profiles in both the n- and p-sides of the device
as shown in Figure 3. Although the hi-lo profile is used both in n and p regions
in this figure, the lo-hi-lo profile can also be used in either side or both

sides of the structure, bearing in mind that the lo-hi-lo profile is more diffi-

cult to grow than the hi-lo profile.
The DD Read diode provides a more confined avalanche region than the DD hybrid
diode. However, attention must be paid to keep the avalanche region wide enough

for optimum IMPATT performance.

2.2 SMALL-SIGNAL ANALYSIS

Small-signal calculations3 proved to be useful in the analysis of IMPATT diode
operation. The basic equations governing the electron and hole currents and
the electric fields are the curreat continuity equations for electrons and

holes:

q 3n/3t = G + aJn/ax (1
q 5p/3t = G + aJP/Bx (2)
and Poisson's equation:
€3E/5x = q(p - n + Ny - NA) (3)
where
G = 2J + BJP (4)

t = time (S)
x = distarce (cm)

. -3
n = eler_ron density (cm )

p = uote density (cm-3)

~
1
wv
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J 4, J = electron and hole current densities (A cm-2

)

impact avalanche generation rate (cm-3 S-l)

1 O
L}

= electric field intensity (V en 1)

electronic charge (C)
1

m L
[ ]

= dielectric constant (F cm )
Np» N, = donor and acceptor impunity concentrations (cm-3)
Var Vp T electron and hole velocities (cm S-l)

ay, B8 = electron and hole ionization coefficients (A crn-3

)

The particle densities n and p are related to the current densities by:

J =qv n (5)

J =qv p (6)

We can linearize Equatioms (1), (2), and (3) by setting the electric field and

particle current densities each equal to a dc part plus a small ac part:

) (7
E=E +E, eJ""
o 1
J =3 +3_ et (8)
n no nl
J =3 +3 eIt (9)

E . . . .
Eo, 1’ Jno Jnl’ Jpo and Jpl are all independent of time
1f Equations (7), (8), and (9) are substituted into Equations (1), (2), and
(3), the latter equations separate into equations for the dc and ac solutions.
The time derivatives vanish for the dc equations and the resulting dc equations

are:

J

o 1 /1 1 q - _._o
9x s (;- * V_) Jno + € (ND NA) v (10)
n P P
aJno 1
-_'a-x— = (a - B) JnO + BJO ( ) v

2-7 .
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where Jo = Jno + Jpo is the total dc bias current density. The dc equations

can be solved numerically, subject to a set of boundary conditions.

The ac equations are obtained by retaining the terms linear in the ac parts.

Time derivatives with respect to t are replaced by juw.

The ac equations are:

JE
1 w 11 1 1
x v E1+E(‘6‘ ""'V‘)Jnl'e—v (12)
P o P p
SJnl
= ! ' -
™ ('3 + B'J jweB) E (13)
- g -3dw
+ (a B v Jnl + BJ1
nl
where J1 = Jnl + Jpl + jwE, is the total ac current density. The primes

indicate derivatives with respect to field. After obtaining the dc solutionms,

the ac equations can be solved for any desired frequency.

across the depletion region is then given by:

V1 =J/PE1 dx

where the integral is taken across the depletion region.

and admitcance Y are then found from:
Z=1/y = VI/JIA

where A is the device area.

The ac voltage V1

(14)

The ac impedance Z

(15)

The diode can be modeled by specifying the doping profile. This profile can

be any arbitrary function of x. The total bias current density must also be

specified. We developed a computer program based on the above equations that

calculates the small-signal IMPATT characteristics.

2-8



The initial design profiles of the 60 GHz GaAs IMPATT diodes were based on the
results of the small-signal analysis and the scaling of the design parameters

at lower frequencies. The accuracy of this analysis depends in large part on
the input data of the ionizstion rates as a function of electric field, but

the exact ionization rates in GaAs as a function of electric field and
temperature are not well established. The small-signal program calculates the
electric field profile and device admittance for a specified current density,
operating junction temperature, and doping concentration. The program also
determines the breakdown voltage, the operating voltage, and the required
thickness of the drift region. The design is assumed to be optimized when the
maximum negative conductance and the minimum negative Q occur near the desired

frequency.

Figure 4 shows the doping profile and the dc electric field profile for a DD
hybrid GaAs IMPATT diode that was produced by the small-signal analysis. The
device small-signal admittance per unit area as a function of frequency is
shown in Figure 5. The maximum negative conductance and the minimum negative
Q are located near 60 GHz, the desired operating frequency for the diode. In
this calculation we assumed an operating temperature of 250°C and an operating

current density of 8 kA/cmz.

We started our diode design with flat and hybrid profiles in both SD and DD
structures. The flat and hi-lo Read prcfiles were chosen mainly because of
their ease in material growth. The hi~lo structure, because of its slower
electric field gradient, may also be less sensitive to the doping concentration

of highly doped o’ layer.

"hen the RF performance was evaluated, the diodes designed by small-signal
analysis appeared to operate better at frequencies lower than the design
frequency. This observation agreed with some recent publication84’5 which
reported good RF performance of EHF GaAs IMPAIT diodes with active layer
thicknesses shorter than the values predicted by conventional analysis. A
‘possible reason is that the saturation velocity of electrons and holes in GaAs

. . 6,7
material, especially at high temperatures, is lower than previously thought.’

2-9
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In response to this new information, we modified the design profiles, reducing
the active layer thicknesses and incresasing doping concentrations in drift

regions accordingly. Figures 6 and 7 represent the modified design profiles
of the DD flat and DD hybrid structures. Our symmetric DD flat structure

design permits the electric field to punch thrcugh at the p++-p and n-n'"

interfaces under normal conditions.

The improved RF performance of these diodes indicated that our profile modifica-
tion efforts were headed in the right direction. However, optimum profiles
derived from these experimental data indicated some discrepancy when compared

to the large-signal IMPATT simulation results. Because the large~signal analysis
basically depends on assumed conditions and material parameters, some of which
are ill-defined for GaAs material, the results must bDe experimentally verified.
Applying a compromise approach for profile adjustment, we used existing profiles
to slightly modify the design. We also designed a symmetrical DD Read

atructure, as shown in Figure 8.
The design profiles have been modified several times using the information
obtained in RF evaluation of the aiodes. later, we also designed DD hybrid

and DD Read diodes using the lo-hi-lo profile instead of the hi-lo profile.

2.7 LARGE-SIGNAL ANALYSIS

Although the small-signal analysis was useful in the IMPATT analysis, it does
not provide an adequately detailed analysis of high performance IMPATT diodes.
The optimum performance can be achieved through proper interaction of the diode
with the external circuit. Sufficiently detailed informaticn can be provided
only by a large-signal analysis. We developed a numerical simulation program
for large-signal IMPATT a .alysis because of the nonlinearity of the equations
which describe the behavior of the particles in high electric fields,

particularly at high-frequency operation.
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2.3.1 Computer Simulatioa

In our large-signal analysis of an IMPATT diode, the following relationships
were used between the current densities and particle densities:

J, = anv - gD 3n/ 3x (16)

J = -
p = APV, - D, ap/ ax (17)

where Dn and DP are the diffusion coefficients (cm2 S-l) for electrons and
holes. The nonlinear partial differential equations for the current continuity
equations, Poisson's equation, and the current density equations can now be
approximated by a set of difference equations. These difference equations ar:
then solved for a given set of initial and boundary conditions. The material
parameters such as the velocities, diffusion coefficients, and ionization
coefficients of electrons and holes are functions of electric field intensity

and temperature and may be functionally approximated.

Although an implicit mechod8 could provide accurate, stable solutions for the

. P

equations, it is too costly for extensive IMPATT analysis. The explicit i ;

methodsg’10

may introduce some small errors in the calculation, but they are
economic and produce realistic results. We developed a large-signal simulation

program using the explicit method.

A computer can store only values of variables at discrete points in space and
time. These variables evolve by finite difference equations which relate the
value of a variable at a particular point to the values at the other points.
A time-space mesh (Figure 9) was chosen to derive the difference equations.
The one-dimensional semiconductor is divided into N partitions J = l,-==—- y N,
N+1). The hole density, electron density, electric field, and the

field-dependent material parameters are defined at these field points.

The difference equations for the particular current densities are:

3 il !
3 i, s ) (18)

o T Mg T b T

k k k

(4
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¢

b
and
h| i-1
- (i,
k k .
Jpj = q: Pi v+ qQ - D j"“K;““ 19)
k Py Pk
The generation term at the j point is approximated by:
Gijc = Aj' Jj +Aj . Jnj (20)
Pr Pk "k k
The continuity equations for electrons and holes and Poisson's equation can be
rewritten as:
(- ) - 57)
k+1 K/ Gj _ k k (21)
At k Ax
. . j j-l)
(J _ J) J- -J 22
Pr+1 ~ P _ Gj-(pk Py (22)
At k Ax
and
iooL gl SR I B (23)
Eerl = B * ¢ E(Pk+1 Mer FNp T Ny) T Ax
At the kth time step, the particle current densities JnJ and JPJ are
calculated from Equations (18) and (19), and the genera%ion ters Gi is
calculated from (20). Then, Equations (21) and (22) are used to calculate the
particle densities ni+l and pi*l at the advanced (k+l)th time step. The
electric field intensity Ek+1 is calculated from (23) with the proper boundary
conditions. This procedure can be repeated to advance the solution to k+2,
k+3, --—, etc. The time step .t was determined to satisfy certain numerical
stability conditions to ensure that the numerical model does not result in
oscillatory behavior and diverge.
To update the electric field at each time step, some relation between the
terminal voltage and current is necessary. A simple wav is to drive the diode
by applying a sinusoidal voltage through a coupling capacitor (Figure 10).
This method males it possible to control the frequency and ac voltage amplitude
2-18 g
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directly, economizing on the computer time. The coupling capacitor serves

only to isolate dc and ac portions of the circuit so that dc current density

can be controlled directly.

2.3.2 Material Parameters

Tte results of the IMPATT simulations depend strongly on the assumed material
parameters, such as the velocity, diffusion coefficient and ionization rate of
electrons and holes. These material parameters are functions of the electric
field and temperature, and, unfortunately, some of the parameter values are
uncertain, especially at the high electric fields and temperatures which are
often encountered in millimeter-wave IMPATT operations. For the velocities of
electrons and holes in GaAs, the following expressions were used in our

. . 11,12
simulation program:

v
v (E) = Iy (24)
1 + [‘E—]
v
splfl (25)
vi(E) = v 1l -exp |l - 2
P psat Vpsat

saturation velocities of electrons and holes (cm S )

v Y :
nsat’ psat 2 -1 -1
v s )

ip?  upt low-field mobilities of electrons and holes (cm
Ev is the electric field at which the peak electron velocity is obtained and
the commonly used value is QxlO3 V/cm. The assumed mobility expressions

13,14
were:

1.9
v om . 1300 26)
Jp 400 [ T ] \
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and

6
L e (2.25 x 107) (27)

n T

(o

where T is the absolute temperature ' K). Based on the recent measuremenl:s15
and the assumption of a linear dependence on the temperature, the following

relations are assumed for the saturation velocities for electrons and holes:

6 3
Visat 6.0 x 1070 - 5.0 x 10 (T-300) (28)
v - 6.8 x 10% - 8.0 x 10° + (7-300) (29)
psat : -
The hole diffusion coefficient in GaAs was assumed to be 15 cmZ/S 16 while the

electron diffusion coefficient was considered to be field-dependent and was

approximated bylzz

4
L2y o+ 15 x |~ ——E——s-]
q 5.8 x 10° ]
Dn(E) = (30)

4
1+ | —E—
5.8 x 10

where X is the Boltzmann constant (J/K). The ionization rates of electrons
12,17

and holes are assumed equal and is given by:
R ' 2
a(E) = :(E) = A exp [- (b/E) ] (31)

A linear dependence of the parameters A and b on temperature is assumed, and

the discrete values are represented by:

A= 1.616 x 10° x {1 + (T-300) x7.0 x 10“‘] (32)

2-21
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and

b =5.42 x 10° x[l + (T-300) x 9.69 x 10“‘] (33)

In this calculation, we have assumed perfect impedance match of the load to
the diode. The computer results do not take into account the substrate
resistance, contact resistance, and the circuit loss. The effect of these
resistances degrades the diode RF performance and becomes more pronounced as

the negative resistance decreases.

2.3.3 Computer Simulation

The diode operating characteristics were calculated for the diode imbedded in
the circuit shown schematically in Figure 10. For a specified doping profile,
current density, junction temperature, frequency and ac voltage, the program
calculates the operating current and voltage, diode admittance, RF output

power and efficiency.

The large-signal computer simulation was started with the values around the
previous design profiles. Table 1l represents the diode admittance and RF
performance for the DD flat structures. The RF performance was optimized by
varying the ouput voltage amplitude. An example of diode RF performance
versus output voltage amplitude is plotted in Figure 11. 1In all simulationms,
the diode was operated at 500°K with the current density of 18 kA/cmz. The

diode area was kept at 0.2 x 10-4 cmz. The optimum doping concentration of

symmetrical DD flat diodes was 8 x 1016 cm—3. However, the change in »
efficiency with a factor of two variation in doping concentration from 6.0 x
10 16 to 1.2 x 1017 was not significant, being less than 2 percent. The

simulation data of flat diodes with various thicknesses is shown in Table 2.

Table 3 summarizes the large-signal simulation data of DD hybrid diodes with
flat p and hi-lo n profiles. The diodes are again assumed to have an area of
0.2 x 10-14 cm3 and to be operated at 500°K. The doping concentration of the

<17

high n' region was varied from 1.25 x 107" to 2.25 x 1017/cm3. All the other

parameters were considered to be fixed. The effects of the doping concen-
tration of the flat p and low n regions are shown in Table 4. The epitaxisal

layer thicknesses were also changed slightly. According to these data, output

2-22
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power of 1.4 W can be achievable with 15.5 percent efficiency from a DD hybrid
diode.

The RF performance of the best efficiency DD hybrid diode (p: 9.7 x 1016 cm—3,

0.4 m; at: 1.95 x 1017 cm-3, 0.14 um; n: 3.5 x 1036 cm—3, 0.32 um) was
investigated as a function of operating frequency. The operating frequency

and current density were kept at 500°% and 17.7 kA/cmz, respectively, with a
diode area of 0.2 x 10_4 cmz. Figure 12 represents the normalized diode admit-~
tance (to the area) in the frequency range of 40 to 70 GHz. The variation of
the negative conductance is only about 2 percent between “C and 60 GHz. The

diode RF performance vs frequency is plotted in Figure 13. The output power

and efficiency peak at 60 GHz but are pretty much flat between 50 and 60 GHz.

Table 5 represents the RF performance of the hybrid dicde as a function of
operating current density. The operatiag voltage increases with the current
density from 24.5 V at 10 kA/'cm2 to 26.8 V at 25 kA/cmz. The optimum ac volt-
age changes slightly from 16.6 V to 17.6 V. Whiie the output power increases
with the operating current, the conversion efficiency peaks at the current
density of 17.7 kA/cmz. The diode RF performance was also simulated at differ-
ent junction temperatures, since the temperature increases with input power.

The results are shown in Table 6.

We have investigated the effect of the graded transitions on the diode RF per-
formance using the large-signal simulation program. The simulation profiles
were based on the present limitation of practical VPE-grown material; the com-
pensated region around the p-n junction is about 0.2 um and the transition
slope between n and a layers is 0.2 um per decade change in doping concen-
tration. According to simulation results, the RF performance of the diode

with graded transitions was inferior (about 3 percent in conversion efficiency)

to that of the diode with sharp transitions.

We also conducted the large-signal computer simulation for DD Read IMPATTs.
We started the simulation with lo-hi-lo profiles in both p and n regions to
compare the simulation results with the published data.16 Table 7 represents

the simulated profiles and computer output results. The total active layer of

e
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these diodes was fixed at 0.84 ,m. While the doping concentrations were kept
to be constant, the distance between the p+ and n+ spikes was varied from 0.08
to 0.16 um. Again, the diodes were assumed toc have an area of 0.2 x 10-“ cm2
and were operated at 500°Kk junction temperature. The best RF performance was

obtained with a distance of 0.08 .m between the spikes.

Then, we performed large-signal simulation on the DD Read diodes with hi-lo
profiles. The simulated profiles and computer output results are summarized

in Table 8. The epitaxial layer thickness was kept constant ( i{_ = 0.32 .m,

ip* =0.] um, tat = 0.1 um, ‘n =0.32 .m) with a total thickness of
0.84 _.m. The diode size and operating junction temperature were assumed to
be same as the previous cases with a current density of 15 kA/cmz. The best
RF performance that could be achieved from a DD Read diode in the given

conditions was about 1.3 W output power with 16.3 percent efficiency.

We studied the punch-through characteristic of the 60 GHz DD GaAs IMPATT
diodes using a dc¢ computer program. The electric fields at p*+p and nn' "
interfaces are important parameters in designing the high efficiency IMPATTs.
High performance IMPATTs require large RF voltage across the diodes. During
the negative portion of the RF cycle, IMPATT diodes are usually driven under-
punch-through, and some undepleted material is left adjacent to the substrate
contributing a series resistance. A heavy punch-through structure would be
desirable to minimize the series resistance. However, this leads to a
dispersed avalanche zone or causes partial breakdown and generation of
minority current in the drift region, thus limiting the efficiency. The
electric field at the interfaces should be designed to sustain high field
modulation so that the gain due to the large signal offsets the loss due to

the undepleted material.

Table 9 shows the electric fields at p++p and nn'' interfaces and the
punch-through factors of some 60 GHz DD flat GaAs IMPATTs, along with the
large-signal RF performances. The layer thicknesses were kept at 0.35 .m for
both p and n regions. The electric fields at the interfaces and the
punch-through factors of the DD hybrid and DD Read diodes are summarized in

Tables 10 and ll. The total layer thickness of the DD hybrid diodes is

2-35
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0.86 um (lp = 0.4 um, 2n+ = 0.14 um, Zn = 0.32 um) and that of the DD

Read diodes is 0.8 um (lp = 0,32 um, Ep+ = 0.1 ym, 2n+ =01 uwm

' ™ 0.32 um), respectively. According to these data, the optimum RF
performance was achieved from the diodes with the electric field between

1.5 and 2.5 x 105 V/em at the p++p and nn'? interfaces. The corresponding
ptnch-through factor was around 1.5 for flat profiles and 2.0 to 2.5 for Read

profiles.

2.4 THERMAL CONSIDERATION

Careful attenticn to the thermal properties is critical in the development of
hign performance Gais IMPATT diodes. When a maximum safe junction tempera-
ture, which determines the average lifetime of the device, is specified for
the operating conditions of an IMPATT diode, the maximum RF power output
attainable from the device ’s determined by the efficiency and the thermal

resistance of the device according to the expression:

8 l-n

'I‘M is the specified maximum temperature, T

for most applications is around 25° C, 8

A is the ambient temperature, which r

T is the device thermal resistance,
and n is the device efficiency which here is assumed constant for a given
device. Therefore, maximum device output power is achieved by maximizing the
diode efficiency and minimizing its thermal resistance, although it must be
realized that the two parameters are not completely independent. It should be
noted that the ouput power of an IMPATT can be increased by increasing its
area up to some point because the thermal resistance decreases. But beyond

that point the efficiency will drop because of difiiculty in impedance

matching and eventuzlly the output power itself will decrease.

The thermal resistance of an IMPATT depends upon a number of factors, and each
should be given consideration in the cverall d-sign of the IMPATT. These
factors are: The device area and geometry, the type and quality of the
metallization of the diode and its bonding to the heatsink, the heatsink
material and its metallization, and the doping profile of the epitaxial

material, particulariy the thickness of the GaAs material between the junction
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central plane and the metallized surface which lies against the heatsink. For
CW devices this thickness is c¢specially significant and should be kept to a

minimun because GaAs is a relatively poor conductor of heat.

A calculation of the steady-state thermal resistance can be performed using a
model shown in Figure 14. This model consists of a diode disc of radius R
mounted on a two—layer heatsink consisting of a gold bonding layer followed by
a semi~infinite heatsink. This disc geometry is the simplest and mcst commonly
used one for IMPATTs. The semi-~infinite heatsink consists of a layer of gold
metallization which acts as a bonding layer. The total thermal resistance,

S is the series combination of the contribution for the GaAs, ED, and the
contribution due to two-layer heatsink, 3 HS* Since the thickness of the
deposited metallization layers is small compared to the diode radius, the
contribution of these layers on diode thermal resistance has been qeglected.

The electrical analog for the total thermal resistance is shown in Figure 14(b).

The generation of heat within the actual IMPATT is distributed throughout the
junction of the GaAs material according to the joule heating term-ir . ijhere
T is the local electric field and J is the local current density. However, in
this model the heat source is confined to a disc of zero thickness located at
the junction center ia order to simplify the analysis. Also, this heat source
is caken as one of uniform downward heat flux. In the actual case, because

the temperature profile is radially dependent, the nonuniform temperature
distribution within the junction brings about a nonuniform current density
distribution. These nonuniformities in junction temperature and current density
result in nonuniform heat flux. These effects have been included in published
analyses of heat flow in IMPATT diodes.ls’19 However, these effects are small
and are neglected in the present analysis. With tlis assumption, a solution
of a one-dimensional linear heat flow equation in .he GaAs leads simply to:

5D = Z/kD A (35)

where £ is the distance from the junction to the heatsink, A is the device

area and kD 1s the thermal conductivity of GaAs.
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Figure 14 Thermal modzl of IMPATT diode.
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The solution for the thermal spreading resistance for a two-layer heatsink has
been obtained where the thermal conductivity of the material in each layer is

essentially independent of temperature.zo The result is:

o
-2UH
- 1 l + pe du
9HS "RK, { 1 —2UH Jl(U)'TT (36)
‘0 - pe

where H = t/R, R is the diode radius and t is the thickness of heatsink top
layer, p = (k1 - kz)/(k1 + kz), and where k1 and k2 are respectively, the
thermal conductivities or the gold layer and of the semi-infinite heatsink
which is generally either copper or diamond. The actual thermal conductivity
of diamond has a significant inverse temperature dependence. However, a
conservative estimate of thermal impedance can be obtained by assuming a

constant conductivity of 9.0 watts/cm K.

The expression in equation (36) has been evaluated numerically and the addition
of the thermal impedances of the GaAs and gold layers between the junction and
the heatsink has been made for the thicknesses shown in Figure 4 which apply

to the initial design of the 60 GHz IMPATT device. The layers of metallization
on the IMPATT have been neglected because they are so thin. The results of
this calculation are plotted in Figure 15 for the thermal resistance versus

diode radius for copper, silver, and diamond heatsinks.
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3.0 MATwRIAL GROWTH AND EVALUATION

The design of 60 GHz GaAs IMPATTs requires complex doping profiles with extremely
small dimensions. The performance of the IMPATT diodes depends on how well

the profile parameters are controlled. Material growth of these doping configur-
ations is a challenging task even with the most advanced equipment. We used
molecular beam epitaxy (MBE) as the primary material growth approach, with

vapor phase epitaxy (VPE) as a supplement.

Accurate material evaluation is as imponrtant as material growth in diode optimiza-
tion. We routinely used the capacitance versus voltage (C-V) measurement on
step-etched wafers for material evaluation. The secondary ion mass spectrometry

(SIMS) analysis has also been utilized on selected wafers.

3.1 EPITAXIAL MATERIAL GROWTH

In the fabrication of high performance 60 GHz GaAs IMPATT diodes, precise dop—
ing profile control is essential. This imposes a stringent requirement in
controlling the uniformity of doping concentration and layer thickness during
the growth of the specific epitaxial layer structure. In order to meet this
stringent material requirement, we selected MBE as the primary approach for
the GaAs material growth. We have contacted three outside suppliers for MBE
material growth; Perkin-Elmer (Physical Electromics Division), University of
Southern California (MBE Laboratory) and Cornell University. Several MBE
wafers were also grown at Hughes Research Laboratory (HRL) at Malibu, Califorunia.
Although Hughes Microwave Products Division (MPD) in Torrance, California
installed an MBE machine at the later stage of the program, no materials were

grown for this program due to lengthy calibration required for the machine.
Because the MBE wafers were grown by outside suppliers, turnaround time for

material growth was very slow. To overcome this limitation, GaAs materials

also were grown using VPE at Hughes MPD.
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3.1.1 Molecular Beam Epitaxial Growth

Molecular beam epitaxy provides the means for GaAs material growth, allowing
excellent control over both the carrier concentration and the layer thickness.
MBE material growth is performed in an ultra-high-vacuum environment, where
the growth rate can be controlled accurately by regulating the temperature of
the effusion cells. Also, the ultra-high-vacuum environment makes the MBE
system ideal for the study of epitaxial growth and in-situ monitoring of film
quality during growth, using such methods as quadrupole mass spectrometry,
reflection electron diffraction, Auger electron spectrosocpy and secondary ion

mass spectrometry.

Under an equilibirum condition, the beam flux from an effusion cell in an MBE
system can be written as:

1/2

F=CP (MT) molecule/cm—-sec (37,

where

C = constant
P = equilibrium vapor pressure (Torr)
M = molecular weight of the vapor comstituents

T = absolute temperatu-e (OK)

In actual film growth, the condensation of the vapor at the substrate is a
function of the directivity of the source emission, the geometry factor deter-
mining the fraction of emission intercepted by the substrate and the condensa-
tion coefficient of the species. Oven temperatures must be carefully regulated
if reproducible growth rates are to be obtained. Other important deposition
parameters for achieving reproducible controlled growth are the substrate tem-
perature, the vacuum quality, and tne outgassing of the system hardware.
Typically, the deposition rates of MBE range from 0.003 to 5 .m/hr for good

quality film growth.

K
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The MBE system at both Perkin-Elmer and USC is a Perkin-Elmer model. As shown
schematically in Figure 16, this system consists of three chambers; a load
chamber, an analytical chamber and a growth chamber, pumped respectively by a
turbomolecular pump, a combination of ion pump - titanium sublimation pump
with cryopanels, and a closed cycle helium cryopump. The analytical chamber
and the growth chamber normally need not be exposed to atmospheric pressure
when samples are introduced or removed. Base working pressures in these two
chambers are better than 10-10 Torr. The substrate is held on a mclybdenum
block by a film of indium. The block, containing a substrate heater capable
of reaching 900°C and a thermocouple, is mounted on the end of a support rod
for insertion into the analytical and growth chambers. Eight boron nitride
(BN) effusion crucibles (four 2 cc, four 20 cc capacities) are mounted inside
individual resistive wound tantalum furnaces capable of reaching 1200°c. Each
circuit 1s radiatively shielded and surrounded by a liquid nitrogen cryoshroud.
The cells are arranged concentrically about a center line at an angle to the
horizontal and pointing towards the substrate. The fluxes are controlled by
pneumatically operated shutters, one for each cell. In the growth position,
the sample is partly surrounded by a large liquid nitrogen cooled cryoshroud.
A quadrupole mass spectrometer is positioned just above che sample, serving as
a residual gas analyzer as well as a beam flux monitor. Below the sample, a ’
nude ion gauge is installed as an absolute flux gauge. Here the flux from
each cell can be measured individually both before and after growth. A high
energy (10 kV) grazing incidence electron beam and phosphor screen complete
the basic instrumentation in the growth chamber. The analytic chamber
contains a scanning Auger microprobe and an argon ion gun for Auger depth

profiling.

The proposed Cornell University system is a Varian Generation II MBE machine.
This machine provides substrate rotation during growth for wafer uniformity.
Both Hughes' machines are Riber systems. The HRL machine is a Riber 1000 MBE
system and the MPD machine is a Riber 2300P MBE system. The Riber 2300P
machine is a modular system which allows batch handlinj of up to ten 2-inch
diameter wafers. The system has provision for substate rotation during

growth.
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Perkin-Elmer has been the most consistent MBE wafer supplier for us. The dop-
ing profiles of Perkin-Elmer grown MBE wafers were reasonably close to the
design values. Yet, only a few iterations of material growth were made during
the course of the program, partly due to reactor modifications, installation
of a new machine and some personnel reorganization at Perkin-Elmer. The old
MBE reactor was modified to ~row wafers as large as three inches in diameter.

However, all of the materia were grown on l.5-inch substrates.

The epitaxial layers were grown on [100] n' GaAs substrates doped with Si at
’b2x1018 cm-3. After cleaning, the substrates were mounted with indium on
molybdenum sample holders and outgassed at 400°C for onme hour in the MBE sys-

tems analysis/preparation chamber.

In the MBE growth chamber, the surface oxides were desorbed thermally in an
arseaic flux, and the epitaxial layers were grown at a substrate temperature
of 600°C with a growth rate of 1 um/hour. The double-drift structures were
grown using Si and Be as the n- and p-type dopants, respectively. The dopant
temperature and sputter changes were controlled audtomatically by a prepro-
grammed, microprocessor-based MBE oven controller. During growth, each sub-
strate was rotated continuously at ap}roximately 10 rpm. After growth, the
substrate and mounting block were cooled at 250°C in an arsenic flux and then
returned to the analysis/preparation chamber for further cooling to enable

removal from the MBE system.

The first three batches of Perkin-Elmer MBE wafers consisted of five DD hybrid
structures with flat p and hi-lo n profiles. Then, five MBE wafers were grown
according to the first design modification in May and fourteen wafers according
to the second design modification in November 1983. The May wafers consisted
of three DD flat and two DD hybrid (hi-~lo) structures and the November wafers
included three DD flat, eight DD hybrid, and three DD Read structures. Two of
the DD hybrid structures had lo-hi-lo profiles while all other Read structures
had hi-lo profiles. Seven more MBE wafers were grown at Perkin-Elmer in

July 1984, based on the final design profiles. These wafers comprised two DD
flat, three DD hybrid and two DD Read structures. All Read structures were

hi-lo profiles.

T e
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Only a few MBE wafers were received from USC. Some of these were SD hi-lo

Read and the others were DD flat structures. Except for several wafers, USC
was unable to provide qualified GaAs MBE wafers due to continuing problems
with the MBE reactor and personnel change. The contract with USC for the MBE
wafer growth was discontinued after one year. A new contract was made with
Cornell University, Electrical Engineering department to grow GaAs MBE material,
After a long calibration periocd, they were able to provide six qualified wafers
in late April 1984. Since that time no more MBE wafers have been grown at
Cornell University. Availability of the MBE machine at HRL also has been
limited because of commitment of the machine to other projects. Attempts were
made to grow some materials whenever the machine was available, and several SD
hi-lo an”® DD flat structures were grown at HRL. Hughes MPD installed a Riber
2300 P MBE system in late 1983. However, because of lengthy, time-consuming
check-up and calibration procedures for the machine, no materials were grown

for this program.

3.1.2 Vapor Phase Epitaxial Growth

To supplement the MBE wafers grown by outside suppliers, GaAs wafers were also
grown in house using VPE. The VPE method has been used at Hughes MPD for grow-
ing epitaxial GaAs material for microwave and millimeter-wave IMPATT fabrica-

tion. This system produces high quality epitaxial layers, ranging in thickness

from 0.2 to 20 um and dopant concentrations from 1014 to 1018

epilayers and 1015 to 1018 cm~3 for p-type epilayers. One of the VPE reactors ?

cm_3 for n-type
is capable of in-situ growth of n-type and p-type epitaxial layers.

Figure 17 illustrates a schematic diagram of our VPE system. Hydrogen gas and
A3C13 vapor are introduced into the reactor tube from the upstream side of the
Ga source boat which is held at 850°C. As the gas mixture passes over the

Ga melt, the Ga source is being saturated with As to form GaAs crust. When

the Ga melt is fully saturated (about 8 percent As at SSOOC), additional AsCl

3
passing over the melt starts the following reactions:
500°¢
4 AsCly + 6 H) —-12 HCL + As, (38)
3-6 5 1
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o [o]
12 HCL + 12 Gaas 2298 12 Gacl + 6 H. » 3 As

9 4 (39)

This vapor, consisting of GaCl and Asa, proceeds to the deposition zone which

is held between 730° to 760°C. Epitaxial layers of GaAs are then deposited on
the substrate through the disproportionation reaction:

o
6 GaCl + As, T40°C 4 Gaas + 2 GaC1, (40)

These reactions are dependent on the AsCl3 mole ratio (moles AsCla/moles HZ)'

3 and 10-2. This mole

For normal operation, a mole ratio is kept between 10
ratio is controlled by introducing additional AsCl3 vapor to the reactor tube
at the downstream side of the Ga melt thus bypassing the Ga boat. This is

shown in Figure 17 as the AsCl3 bypass line. This line is also used to change

the reactor condition from growth to etching by modifying the AsCl, mole ratio

3
for in-situ etching.

Doping is introduced to the reactor tube at two different locations. The p-type
dopant is injected further downstream from the n—type dopant to minimjze cross
contamination of the dopants. The GaAs substrate carrier is placed on the
upstream side of the p~type doping line during the n-type epitaxial layer growth.
At the completion of n-type layer growth, the operator moves the substrate
holder by retracting the push rod to the downstream side of the p-type doping

line for in-situ growth of p-type epitaxial layers.

A microprocessor based controller is coupled with solenoid valves and automatic
mass flow controllers for all gas handling in our VPE system. Figure 18 is a
photograph of the VPE reactor and control system. This arrangement allows us
to preprogram the epitaxial growth conditions for the whole growth cycle and
enables the VPE reactor to repeat exactly the same gas flow conditions from

run to run.

The reactor is capable of growing both n-type, Si-doped and p-type, Cd-doped
+ .

layers in situ. The n-type layers were grown on n <vhstrate prior to the

p-type layers. P-doping is accomplished by passing hydrogen through dimethyl

. , 0 .
cadmium contained in a bubbler held at a constant temperature of 20 C. This
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gas is further diluted with hydrogen in a mixing chamber and then metered into
the reactor vapor stream. All flows are controlled by mass flow controllers.
The doping densities are varied from run to run by varying the flows of the
hydrogen dilution gas and final mixture entering the reactor. The only excep-
tion to this proceuure is when the p++ contact layer is grown. In this
instance the dilution gas is shut off and the flows through the bubbler and
into the reactor are increased. We have been able to vary doping densities

from 2x10‘5 cm—3 te 1017 cm-3 in p~type layers.

We had assigned a VPE reactor ior :this program. The growth rate of the reactor
was initially about 0.2 pm/min. We started VPE material growth with the n-type
SD flat structure. The target doping profile was same as that in the n-type
portion of the DD flat structure to investigate the validity of our initial
IMPATT design. Due to the scarcity of GaAs IMPATT data o.vond 40 GHz and the
uncertainty of material parameters at high temperatures and at high electric
fields, the initial design parameters might be different from the optimum values.
Any information obtained from the SD structures could be utilized for DD IMPATT

optimization.

Several n-type SD flat structures were grown using VPE. For thicker epitaxial
layers than the design value, the extra thickness was removed by etching. The
surface of these wafers was slightly hazy, and a large leakage current was

observed in the initial evaluation.

Following the growth of flat structureg, SD hi-~lo scructures were grown.
Because of the relatively high growth rate of VPE, the transitions between
layers were somewhat graded. A sharp transition between the substrate and the
epitaxial layer was achi=ved by etching back the buffer layer before growing
the low-density n layer. However, a hump was observed clcse to the transition

and was eliminated by introducing a purging step after etching the buffer layer.

Contrnl of double-drift doping profiles was difficult in VPE growth. Nonuniform-
ity in doping density within & layer also was observed, especially in the p-layer.
The most prominent problem associated with VPE growth appeared to be the poorly

defined p-n junction. The compensated region around the p-n junction was

AP



estimated to be 0.2 to 0.3 ym in ‘hickness, too wide for 60 GHz GaAs IMPATTs.
The p-n junction area of the DD structures could not be evaluated accurately

by C-V measurement because of the built-in depletion width. The p-dopant (Cd)
of our VPE wafers could not be evaluated by SIMS analysis, because the

0
background level of Cd was comparable to profile doping concentration. The
problem associated with the poorly defined p—n junction appeared more acute

with DD hybrid structures, which require z narrow, high-concentration n-layer

at the p-n junction.

The many parameters which can affect the sharpness of the p-n junction interface
include: (1) the flow pattern of the gases in the reactor; (2) the technique

of dopant gas introduction into the reactor; and (3) the procedure of switching
from n-type to p-type epitaxial layer growth. Modifying the flow pattern of

the gas in the VPE reactor or changing tne technique of dopant gas introd:ction
into the reactor requires costly, time-consuming major modifications of the
design and construction of the VPE reactor system, which is beyond the scope

of this program. Therefore, we decided to improve the p-n junction sharpness

by modifying the procedure of switching between u- and p-type layer growth.

We made a series of epitaxial growth runs to form a p-n junction. While the
doping levels of the n- and p-layer remained constant, we experimented with
various procedures for switching the dopant gases, e.g.: (1) we continued
n-dopant gas flow after the completion of n-layer growth; (2) we introduced
p~dopant gas before the n-dopant gas was turned off; (3) we introduced
p-dopant gas before p-type layer growth started, etc. No significant improve-
ment in the p-n junction transition was observed from these dopant pur;ing
steps, compared to the standard growth procedure of switching directly from n-
to p-type dopant gases. We concluded that it is impracrical to sharpen the

p-n junction by changing the growth procedure using our existing VPE reactor.
We tried to fabricate DD flat structures by implanting p-dopant on the VPE-

++
grown n-type wafers. First, the n-layer was grown on the n substrate for

the specified doping specification and was followed by an undnped epitaxial
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layer. Beryllium ions were then implanted on this undoped layer to ‘orm the
p-drift region. After implantacion, these wafers were annealed at 800°C for

30 minutes.

Our effort to fabricate DD IMPATTs by an epitaxial growth and ion implantation
combination achieved limited success. To obtain a well defined p-n junction,
thickness control and evaluation of the undoped and implanted layer must be
precise, because the n- and p-layer doping concentrations of the DD flat
diodes are about the same. This was a difficult task; we cften encountered

either undoped or compensated regions near the p-n junction.

We conducted a similar experiment to obtain a sharp buffer/n-layer interface.
We achieved the best transition by etching back the buffer layer and growing

the n~-layer without purge.

Based on above experiments, we concluded that the complex doping profiles of
the 60 GHz GaAs IMPATT diodes taxed the limit of our present VPE reactor. The
material growth using VPE was, therefore, discontinued around the end of the

second year and emphasis has been placed on MBE growth.

3.2 MATERIAL EVALUATION

In the fabrication of high performance IMPATT diodes, the most important
factor is the contro! of doping profiles and material qvality of a specific
diode structure. It is therefore of paramount importance that the epitaxial
materials must be thoroughly -~valuated prior to device fabricatior. The key
parameters to be evaluated are the thickness and doping concentration of each
individual layer, uniformity across each layer, and the transitions between

layers.

3.2.1 Capacitance Versus Voltage (C-V) Measurement

The capacitance per unit area at zero bias is a function of the background
impurity concentration; as the reverse bias 1s increased, the depletion layer

width increases while the capacitance decreases. The doping concentration



N(x), as a function of distance x from a junction or a Schottky barrier

contact, can be expressed as follows:

C3 -1
qeA
and
c = A (42)
X
where

C = depletion layer capacitance
q = electron charge

€ = permittivity of the semicunductor material

A4 = the diode junction area

An automatic profiler provides a direct plot of N versus x by slowly sweeping

capacitance versus voltage.

For DD profile measurement, the resulting profile plot gives information on

the effective doping density (Neff) and an effective depletion width (xeff)'

1 = Ly L (43)
h N P
eff
and
Xoeg - Xt xp (44)
where

P = p-type doping concentration
N = n-type doping concentration
x_ = depletion width on the n-type side

x_ = depletien width on the p-type side.



For measuring the doping profiles of a DD IMPATT diode, it is necessary to
perform the C-V measurements on both mesa and Schottky barrier diodes on a
precisely step-etched wafer. Because the avalanche breakdown voltage is a
strong function of carrier concentration, the penetration depth to which the
depletion layer can be extended into the epi layer is limited. The step-etch
procedure extends the range of profiling to cover the total layer thickness.
Although Schottky barrier diodes can be made on p-type GaAs, the information
proevided by the Schottky barrier data is erroneous near the p-n junction.
This is because near the junction, the re erse-biased Schottky barrier diode
is in series with a forward-biased p-n junction. Minority carriers are
therefore injected into the junction, causing the diffusion capacitance to
dominate the true capacitance measurement. Therefore, the Schottky barrier
data can only be used to check the p-side reconstruction data. It cannot be

used for direct profiling.

C-V measurement was routinely conducted for every wafer. A section of each
wafer was precisely step-etched with different step thicknesses, and the mesa
and Schottky barrier diodes were delineated on the surface. The mesa diodes
were used to measure the effective doping concentration versus total depletion
width, whilc 3chottky barrier diodes were used to evaluate the n-side doping
profile. By reconstructing the p-side profile using the known n-side profile,
a composite profile of a DD structure can be obtained. The step-etching also
was used, even for SD wafers to extead the range of profiling ror the total

layer thickness.

We have often observed poor surface morphology on early VPE wafers. This
problem later disappear.d while experimenting with modifications of growth
process. Figure 19 illustrates the C-V profile of an SD hi-lo structure grown
by VPE. inis wafer, which is one of the better-looking VPE wafers, shows good
uniformity in doping concentration with reasonably sharp transitions. However,
it was very difficult to control the doping profile using VPE to the degree
required for 60 GHz GaAs IMPATTs. Significant nonuniformity was also observed

within a wafer.
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Although MBE technology has a potential of precise doping control, the actual
profile of many MBE wafers indicated deviation from the design profiles. Some

of the USC and HRL-grown MBE wafers showed poor surface morphology, while most
of the MBE wafers grown at Perkin-Elmer and Cornell University indicated good

surface morphology. The doping profile of a USC-grown MBE wafer is shown in
Figure 20. Each line indicates the doping profile of different diode chips
within a wafer. A slight nonuniformity of the doping concentration within a

wafer can be seen in this figure.

Figure 21 represents a composite profile of an MBE DD flat structure grown at
Perkin-Elmer. Each discontinued line indicates the C-V profile data taken at
the surface and each different step. A composite doping profile of a MBE DD
hybrid structure is shown in Figure 22. A cluster of lines in the hi-lo

region indicates the profile data obtained from different diode chips at the

same step.

The C-V measurement has a limitation in providing accurate information near
the junction. The actual doping profile within the depletion width cannot be
evaluated. This problem becomes more acute for DD structures (especiaily for
DD hybrid and DD Read profiles) which possess a p-n junction. Evaluation of
nonuniform p-doping concentration of a DD structure is also difficult with the

C-V profiling technique, since it measures the cffective doping concentration.

3.2.2 The Secondary Ion Mass Spectrometry (SIMS) Analysis

In SIMS analysis, a section of the semiconductor wafer is mounted in a sample
holder which is placed in the SIMS sample vacuum chamber. An incident iomn

beam of either cesium or oxygen impinges on the semiconductor target in a

20 x 20 mil square raster which bombards a square hole slowly and at a constaat
rate into the sample wafer. The secondary ions which are driven off from the
central region of this square crater are analyzed by a computer controlled

mass spectrometer system. ThLis equipment can produce relative concentration

profiles of the dopant elements, as well as of almost any other desired

S

elements such as possible contaminants within the sample. Absolute doping

concentration profiles can be obtained by calibrating the system with a sample
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containing the desired element of known concentration. The absolute accuracy
of the result then depends upon the accuracy to which the concentrations of

the elements are known in the calibration sample.

SIMS analysis was conducted at Charles Evans & Associates, San Mateo, California.
Beryllium and cadmium were monitored by a 02/SIMS machine and silicon was
monitored by a Cs/SIMS machine. The doping concentration was calibrated by
using ion-implanted standards. This was done by setting the integrated counts
under the implant curve equal to the implant fluence, after corrections were
made for spurious surface and background counts. The uncertainty in the measure
of the implanted species is estimated to be a factor of two. The depth scales
were calibrated by measuring the depth of each analytical sputter-crater. The
error in the depth scale is estimated to be about 10 percent. In Figures 23

and 24, the SIMS profiles of the MBE DD structures grown at Perkin Elmer are
compared with the design profiles (represented by the dotted lines). The C-V
profiles of the same structures were shown previously in Figures 21 and 22,

Note that the SIMS profiles provide more detailed information than the C-V
profiles. The doping concentrations evaluated by the two different methods

show a slight discrepancy, probably because of the uncertainties associated
with each evaluat..n technique. However, SIMS data indicate that the MBE

wafers have excellent doping uniformity in each layer, with sharp transitions

between layers.

SIMS profiles of a DD hybrid structure with a lo-hi-lo profile in n side and a
DD Read structure with hi-lo profiles in both p and n sides are shown in Fig-
ures 25 and 26. An 2t spike between the GaAs substrate and the first epi-
taxial layer can be seen in these figures. This spike was also noticed on

some other wafers grown at the same time. These spikes appeared real since
they were observed in both cesium and oxygen analyses. The cause and possible
effect on diode performa~ce of these spikes were unknown. However, many diodes
fabricated frum these wafers indicated a poor breakdown characteristic and

burned out at low bias levels.

The SIMS profile of a DD flat MBE sample grown at Cornell University is shown

in Figure 27. For this particular wafer, the doping concentrations in active
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layers are lower than target values. The high Si counts on the left-uand side
appeared to be 'ue to surface contamination of the wafer. A spike at the tran-
sition between » and p++ layers also was observed in other Cornell-grown
samples. Figure 28 shows the n-side doping profil.. of a VPE wafer grown at
Hughes MPD. The p-side profile of the Hughes VPE wafers could not be evaluated
because the detect_.on limit of cadmium, which was used as p-dopant, was as
high as the accual doping concentrations. An n++ spike was observed at the
transition between the substrate and first epitaxial layer in many Hughes-
grown VPE wafers. The SIMS profi.e of an n-doped VPE wafer followed by
p-impl.intation is shown in Figure 29. As expected, the implanted p-region
indicates Gaussian distribution, resulting in a more graded p-n junction.
Doping density uniformit and transition sharpness of the VFE wafers were not

so good as those of MBE wafers.
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4.0 DIODE FABRICATION

During the course of the program, we have successfully fabricated pill-type
diodes. By applying this technique, we were able to increase the number of
available dicde chips from a wafer by a factor of approximately ren. By
thermocompression (TC)-bonding the pill diodes on diamond heatsinks, we reduced
thermal resistance as much as 50 percent. Until the successful development of
pill diode processing, the V-band GaAs IMPATT diodes had been fabricated in

plated heatsink configuration.

The diode was mounted inside a miniature quartz-ring package. In most cases,

a one-mil diameter gold wire was used for electrical connection in cross-strap

configuratio .

4.1 WAFER PROCESSING

Many of the MBE wafers were small in size. The wafer size for diode fabrica-
tion was further reduced, since sections of the wafer were used for profile
evaluation. Because of the large area required for a plated heatsink diode,
the number of diode chips processed using this teclinique was often not enough
for sufficient diode evaluation. Considering the difficulty encountered in
attaining adequate uniformity within a wafer and repeatability among wafers,
this problem imposed a serious limitation on diode optimization that was based

on the evaluation data.

High fiequancy GaAs IMPATT diodes require a high level of current denmsity which
in turn requires small dimensional geometries; therefore, good thermal conduc-
tion is essential for optimum diode performance. The V-band GaAs IMPATTs clearly
indicated a thermal "~ .mitation, with output power still increasing at the p»int
of diode failure. Diamond is known to have the best heat comduction character—
istic. Utilization of a diamond as a heatsink will, therefore, reduce thermal
resistance and, consequently, imprcve diode performance. To overcome these
limitations, we developed a processing technique for pill-diode fabrication.

In this diode configuration, the plated heatsink was eliminated, increasing



,umwwmi.'

the number of diode chips significantly. The diodes were then bonded directly

to diamonds, thus reducing the thermal resistance.

The height of the GaAs mesa (i.e., the thickness of the wafer) must be minimized
to reduce series resistance resulting from skin-effect loss for diodes operating
at high frequencies. Thinner wafers also produce better defined mesa configura-

tion with minimum area differential between a diode's top and bottom surfaces.

Hughes used a unique process procedure to control the mesa height of the
finished diode. This was accomplished using a thickness ccatrol channel
pattern to manipulate the wafer thickness (hence the GaAs mesa height) during
the wafer thinning process. The process procedure is illustrated in the
schematic drawing shown in Figure 30. Figure 30(a) shows that photoresist is
used to define the control channel patterns. The GaAs material is etched away
from those exposed channel patterns to the channel depth that is equal to the
desired mesa height of the finished diode. The photoresist layer is then
removed and a metallization layer is placed on the wafer, as shown in

Figure 30(b). It is important to note that the bottoms of the channel patterns
are covered with metal. The wafer is thinned from the substrate side and the
etch action is stopped when the bottom of the control channel pattern is
exposed, as shown in Figure 30(c). At this stage, the wafer thickness is
equal to the desired mesa height of the finished IMPATT diodes. Using this
processing technique, we reduced wafer thickness from about 15 mils down to
1.0 to 1.5 mils. Later, this thickness was further reduced to less than half

a mil.

The quality of the metallization has a direct bearing on diode performance,
failure and reliability. A proper metallization provides a minimum electrical
contact resistance for the metal contacts to GaAds. These metal contacts
should also have lower thermal resistance and must be stable for high diode
reliability. We have used several different metallization systems on the epi
side of the wafer. Ti-Au or Pt-Ti-Au metallizatioa was used for Schottky
contact on n-type SD structures. For SD structures with a p-n junction and DD
structures, Ti-Au, Pt-Ti-Au, Pt-Ti-Pt-Au, or Au-Zn metallization was used. We

++ . . . . .
controlled the p layer thicikness somewhat using different metallization
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systems. Ti-Au metallization forms a contact right at the surface, while
Pt-Ti-Au penetrates 500 to 1000 K. About 2000 & extra thickness is required
for Au-Zn metallization to account for the metal penetration into the wafer.
For good ohmic contact, Ti-Au metallization requires high p++ concentratior,
while Au-Zn is not sensitive to p concentration. The Pt-Ti-Au metallizaticn
stands somewhere between these two metallizations. We used Ti-Au, Pt-Ti-Au or
Au-Zn metallization for plated heatsink diodes and Pt-Ti-Pt-Au or Au-Zn

metallization for pill diodes.

An Au-Ge-Ni metallization system has been used on the n substrate side of the
wafer. Most Au-Te-Ni based ohmic metaiiization systems require a subsequent
450°: alloying step tc forwm a good lower resistance contact. At Hughes, we
have applied a proprietary Au-Ge-Ni based ohmic contact metallization alloying
step which requires only 350°C for one minute to form a low resistance
contact. The lower alloying temperature subjects the wafer to less thermal
shock duriug the ohmic contact alloying process. The reduced thermal shock to
the wafer eliminates thermally induced damage found in a high temperature

procedure.

4.1.1 Integrated Heatsink Diodes

The silver-plated heatsink technique is well established at Hughes and has
been widely used for pulsed GaAs IMPATT diodes at microwave frequencies.
Although the detailed processing procedure is slightly different fcr each
metallization system on th- epi side of the wafer, the general procedure for

plated heatsink diodes can be outlined as follows:
1. Clean wafer. The cleaning procedure includes solvent clean plus
diJuted HCl1 and buffered HF etching to remove oxides from wafer
surface.

2. Define metallized pattern on epi side.

3. Sinter metal contact (this step is omitted for Ti-Au metallization).

b-4

""’*‘““vr@.wm«-- .



10.

11.

12.

13.

14.

15.

Etch channel grid from the epi surface into the substrate to define

GaAs mesa height in final device configuration.
Electrical check: measure breakdown voltage (VB) and diode
capacitance as a function of voltage (C-V) to screen wafers for

futher processing.

Sputter gold and then electroplate silver on epi side to form

heatsink.

Thin wafer from substrate side by chemical etching until channels

prepared in step 4 are exposed.

Evaporate Au-Ge-Ni based ohmic contact metal layers onto substrate

side of wafer.
Electroplate gold over ohmic contact metallization.

Define photoresist dot patterns on gold metal surface by using photo-

lithography.

Etch excess gold away outside the photoresist patterns defined ir

last step.

Etch the exposed GaAs surface to Lorm a mesa under each photoresist

dot pattern.

Strip photoresist; clean wafer.

Alloy Au-Ge~Ni ohmic contact.

NDefine photoresis: circle patterns on the heatsink side of the wafer.

These circle patterns are lined up with the mesa formation or the

other cside of the wafer.
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16. Etch away excess metal layers outside the photoresist circle patterns

defined in last step to separate the dinde heatsinks.
17. Strip photoresist and solvent clean.
18. Sort diode chips.

4.1.2 Pill-Type Diodes

Pill diode fabrication is important for V-band GaAs IMPATT development to
utilize the diamond heatsink and to increasr available diode chips from a
wafer. Our principzl approach to pill diodz fabrication was the modification
of the established processing procedure fcr the plated heatsink diodes. We
replaced the thick metal (silver) layer with a thin gold layer, and we
fabricated mesa diodes using photolithography and chemical etching. We have
experienced several problems associsted with JaAs material in diode bonding to
diamond. One hindrance was the brittleness of GaAs. Only a small amount of
pressure could be applied to diode bonding to diamond without causing
fractures. We needed a soft metal, such as pure gold, at the interface
surfaces of the diode and diamond to secure a strong bond using minimal
pressure. A small amount of impurities could harden the gold significantly.

We relied on evaporation from a very pure source to produce the soft gold.

Another stumbling block was the required high temperature for metal alloying
or sintering. For good ohkmic contact, properly deposited gold must be alloyed
or sintered to both p— and n-type GaAs. The high temperature caused the gold
to harden, and it became difficult to bond. This hardening could be overcome
by depositing scft gold over the contact after the alloy. This was performed
readily on one surface of a wafer (p-side). The skin depth on GaAs at 60 GHz
is about 15 um, and diode thickness should be thinner. Since GaAs is brittle
and cracks easily, we needed a thick metal backing for handling the GaAs
during wafer thiuning. This metal backing on the p-side inhibited deposition
of fresh gold over this surface after thinnirg the wafer, alloying the ohmic

contact, and depositing the soft gold on the other surface of the wafer.
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We developed a process to overcome these limitations. After high-temperature
sintering of Au-Zn metallization on the p-side surface of the wafer, tungsten
was sputtered over the gold. To aid wafer handling, we plated a thick silver
layer over the tungsien. The wafer was thinned, and we evaporated and alloyed
ohmic contact metals on the n-substrate side of the diode. Next, pure gold
was evaporated over the alloyed ohmic contact. The tungsten-gold interface is
relatively inert at the second alloy temperature, and the underlying pure gold
surface should not become excessively hardened. We etched circular diodes
from the n-side. The silver backing metal and the tungsten layer were removed

to expose gold. We subjected the gold to a cleanup etch in preparation fot

bonding.

The fabrication procedure for the pill structure is outlined below:
1. Cjiean wafer.
2. Deposit Au-Zn layers on epi side of the wafer and alloy.

3. Form pill thickness control channel patterns and etch to the

specified depth. (Figure 31)
4. Sputter and evaporate gold.
5. Sputter tungsten and gold.
6. Plate silver.

7. Thin wafer from substrate side by chemical etching until channel

patterns prepared in Step 3 appear. (Figure 31)
8. Evaporate Au-Ge-Ni~Au on substrate side of the wafer and alloy.
9., Sputter and evaporate gold.

10. Define dot patterns.
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(a} FROM EP! SIDE (PILL DIODE PROCESS STEP 3)

FROM SUBSTRATE SIDE (PILL DIODE PROCZESS STEP 7)

Figure 31 Channel patterns.



11. Etch excess metal off.

12. Etch through the exposed GaAs to form mesa. (Figure 32)
13. Define another photo-resist pattern.

14, Etch metal layers to expose tungsten.

15. Mount the wafer in wax with silver side up.

16. Etch silver and tungsten layers.

17. Clean-up etch. (Figure 33)

18. Sort pill diode chips.

Figure 33 shows pill diode chips after the clean-up etch. The final pill
configuration has a different diameter of gold on each side, making it

possible to discern the top and bottom surfaces of the wafer.

At the early stages of pill diode development, we observed considerable
cracking when the pills were TC-bonded to diamond heatsinks. We identified
two possible causes for this cracking problem. The first was the relatively
lerge area difference between the diode's top and bottom surfaces. We reduced
this difference by minimizing the wafer thickness. The second possible cause
was the plated gold we used initially. It might have been too hard to apply
adequate pressure on brittle GaAs material. The plated gold was later

replaced by evaporated gold to produce soft gold.

We sputtered a tungsten layer between the evaporated gold and thick plated
silver introduced for wafer handling. The tungsten—-silver interface would be
relatively inert during the Au-Ge-Ni metal ailoying on the substrate side,
keeping the underlaying gold layer soft. However, tungsten formed .ensive
stresses in films when subjected to high temperature and caused the wafer to
bow. On large wafers, this bowing caused cracking in the GaAs; thus, omly a

portion of the wafers has been processed in pill diode fabrication.
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We experimented with diode bonding to a diamond heatsink at different bonding
pressures. Because of the brittleness of GaAs material, the bonding pressure
of GaAs pill diodes on diamond heatsinks, without surface damage, was lower

than that of silicone diodes. Figure 34 shows a GaAs pill diode successfully

bonded to a diamond heatsink.

We had also attempted to fabricate GaAs pill diodes by cutting a GaAs wafer
with a diamond saw. Experiments on dummy GaAs wafers, using different thick-
nesses of blades with different speeds, resulted in considerable saw damage.
The damage was severe enough to be noticeable even after a clean etch. Con-

sequently, this approach was abandoned.

4.1.3 Diamond Heatsink

Diamond heatsink was essential for the development of high performance V-band
GaAs IMPATTs. We have performed a considerable amount of development work on
diamond heatsink in recent years and have established optimum metallization
and diode bonding. We obtained a factor of nearly two improvement with a

diamond heatsink compared with a copper heatsink.

The key to achieving low thermal resistance with diamond heatsinks lies in the
diamond metallization. With considerable effort, we have developed a metalliza-
tion system compatible with diamond. A high temperature sputtering process

has also been developed using a Cr-Pt—Au metallization. This involves the use
of a high temperature sputtering procedure prior to heating the diamond in a
vacuum. A sputter cleaning process is then done, and is followed immediately
by a sputtered Cr-Pt-Au metallization in the same vacuum system. The Cr is
used as a contact metal due to its good match in lattice constant with diamond.
The close match in lattice constant results in a metallic interface layer with
optimal thermal transfer properties. With the high temperature Cr-Pt-Au
metallization technique, consistently low thermal resistances have been

measured.

We have developed procedures for checking the integrity of the metallization

process that is critical to the thermal resistance of diamond heatsink diodes. ]
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We used sample metallized diamonds in packaging a set of IMPATT diodes from a

previous test lot specifically set aside for this purpose. The IMPATTs were

accurately trim-etched to a given zero-bias capacitance to ensure that all the
diodes were of the same area. We then measured the thermal resistances. For

the diamond lot to be qualified, the measured value must be lower than an
established value from a previous measurement on similar diodes. All the data

were then stored in a data bank for future reference.

4.2 DIODE PACKAGING

The device package must be designed to meet both the elec:rical and thermal
requirements. It should also provide reliable operation and easy handling for
the device. Miniature quartz-ring packages have been used at liughes for

millimeter—wave IMPATT diodes operating up to 150 GHz.

4.2.1 Package Design Considerations

The package associated with a millimeter-wave diode is a critical element to
the overall diode performance. An empirically designed diode package can
degrade the performance of a diode by: 1) introducing high RF loss from the !
packaging materials, 2) having high parasitic capacitances and inductances z
that essentially force the diode to operate at lower than the optimum design
frequency, and 3) having a high thermal resistance that leads to a high
junction temperature resulting in poor device reliability. Therefore, the

features necessary in a good millimeter-wave device package are:
l. Low RF loss from the packaging material.
2., Low electrical parasitics or controlled parasitics which are
beneficial to the impedance matching of the diode to the external

circuit.

3. Low thermal resistance between the diode chip and the remainder of

the circuit.




In addition, other desirable physical features for the package are:

1. Mechanical ruggedness
2. Hermetic sealability

3. Reproducibility

Minimum package parasitics do not always yield the optimum package design. 1t
is desirable to minimize resistive loss associated with the chip and its
mounting connections. It is also desirable to minimize capacitance that
shunts the chip in order to reduce circulating RF currents that are dissipatad
in the resistive parasitics. However, the inductance of the connecting lead
often has an optimum non-minimum value. A package, or mount, should he
designed to have a shunt capacitance value that is a small fraction of the
operating diode capacitance and to have means for varying the inductance of

the connecting leads.

The parasitics associated with the packagse can be used to provide part of the
required impedance transformation from the low impedance level of the device

to high circuit impedance level. A qualitative understanding of this impedance
transformation can be obtained using a simplified equivalent circuit shown in

Figure 35. It can be shown that act the frequency determined by:
2 c Cd
R 2 N =
- C, ¥ Cd) L, (45)

the transformed impedance at the package terminal is:

2
R wLcC, ~1
z, = - -y —2d
In (WC RH2 T (wC R.)ZuC
pd pd

(46)
d

For Cde <l, the negative resistance of the device is transformed to a higher

value.

A qualitative illustration of the transformed impedance as a function of
frequency is shown in Figure 36. To transform the low negative cesistance of

the diode chip to a higher value, it will be necessary to operate the diode
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Figure 35  Equivalent circuit of IMPATT
diode and package.
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close to the package resonant frequency. For this reason, the element value

LP from the ribbon and CP from the insulator must be properly designed as will

be discussed below.

4.2.2 Quartz-Ring Package Fabrication

We have used miniature quartz-ring packages for 60 GHz GeAs IMPATT diodes.
The low package parasitics realized by these packages are necessary for
operation at millimeter-wave frequencies. The fabrication procedure of a

quartz-ring package around a plated heatsink diode is as follows:

1. A single crystai quartz ring metallized top and bottom is soldered to the

integrated heatsink base concentric to the diode diameter.

2. A gold ribbon is thermosonic-bonded from the top of the diode to the top

of the quartz insulator ring.
3. The diode is chemically trimetched to a preselected junction area. This
process is monitored by measuring the zerc-bias capacitance of the diode

which is a function of the diode cross-sectional area.

4. The assembly is baked and a gold-plated copper lid is soldered onto the

top of the quartz insulator ring.

The fabrication procedure of a quartz-ring packaged vpill diode on a diamond

heatsink is illustrated in Figure 37 and is outlined below:

1. A metallized diamond is hot-pressed into a gold-plated copper heatsink.

2. A GaAs pill diode is TC-bonded to the diamond.

3. A single crystal quartz ring metallized on top and bottom is soldered to

the heatsink base concentric to the diode diameter.

4-18 AR
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4. A gold ribbon is TC-bonded from the top of the diode to the top of the

quartz ring.

5. The diode is chemically trim-etched te a prz-selected junction capacitance.
This process is monitored by measuring *he zero~bias capacitance, which

is a function of the diode cross—-sectional area.

6. The assembly is baked and a gold-plated copper lid is soldered onto the

top of the quartz ring.

The predominant element for package inductance is the connecting ribbon(s)
between tlhie diode chip and the surrounding quartz ring. The package inductance
was varied by changing the ribbon configuration, as shown in Figure 38. The
package capacitance was changed by using different sizes of quartz rings.

Figure 39 illustrates the mini- and micro-pill quartz-ring packages used for
V-band GaAs IMPATT diodes. 3ince the 60 GHz GaAs IMPATT diodes in twc different
packages did not indicate any significant difference in RF evaluation, we
extensively used the mini-pill quartz-ring packages in a cross~strap ribbon

configuration. i

4.2.3 Ribbon Configuration

At early stages of the program, we packaged GaAs sample diodes using preformed

ribbons of three-mil width and sne-mil thickness. The preformed ribbons are

well defined and have uniform inductance values. When these diodes were

tested, howvever, we experienced many premature diode failures. Subsequent
investigation revealed sjgnificant undercuts in the mesa configuration of

these diodes. The small diode size of 40 to 50 ym in diameter, required for
millimeter-wave GaAs IMPATTs, could not be adequately trim—etched under the

three-mil width ribbon(s). To minimize the undercut, we have used a one-mil

diameter gold wire instead of the preformed ribbons. In most cases, the wire z
was used in cross-strap configuration. Figure 40 represents the mini-pill

quartz-ring packages with one-mil diameter gold wire and with preformed ribbons.
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5.0 DIODE EVALUATION AND TEST

Electrical evaluation has been conducted at various stages of diode fabrication
to characterize the diode. The dc evaluation data at each stage provided
valuable information on diode RF performance and was used to determine whether
to continue the processing. Then, rcutine RF evaluation was performed on sample
diodes of each diode lot. More elaborate RF test and thermal resistance
measurement were conducted on samples from the diode lots which indicated good
RF performance in the preliminary test. All evaluation data were then

implemented as inputs for next diode designs.

To realize the full potential of an IMPATT diode, an oscillator cavity mnst
have low loss and provide a proper impedance matching. A less than optimum
test circuit could give misleading information on the quality of the IMPATT by
yielding less than maximum diode output power. Impedance mismatch could also
lead to easy device burnout. The coaxially coupled reduced-height waveguide
cavity was used 2xtensively for diode RF test. The full-height waveguide

resonator cavity was used only occasionally for further circuit optimizationm.

5.1 DC CHARACTERIZATION

The most important dc parameters of IMPATT diodes regarding diode RF performance
are the doping profile, reverse breakdown voltage, forward voltage, reverse
leakage current, and the junction capacitance. As discussed in Section 2.0,
the doping profile basically establishes diode RF performance. The breakdown
voltage is directly related to the doping profile. A sharp reverse breakdown
free from microplasma and excess leakage current is important for reliable
operation of an IMPATT diode. From the data on breakdown vcltage and the
junction capacitance, the diode junction diameter and area can be determined.
The differential resistance from the forward I-V characteristic reveals the
quality of metallizatic: (ohmic contact) of the diode. Excessive voltage drop
or resistance indicates poor ohmic contacts which, in turn, yield short device

life.
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The doping profile was measured three times during GaAs IMPATT fabrication;
first after material growth, next after formation of channel grid on the epi
side of a wafer, and finally at the completion of mesa diodes. Breakdown
voltage and leakage current were also checked during these profile
measurements. The latter two measurements were used to investigate the quality
of wafer metallization as well as to confirm the previously measured doping
profile. Upon formation of the mesa diode, breakdown voltage and junction

capacitance were often mapped to investigate wafer uniformity.

As discussed before, the doping profile was obtained by capacitance-voltage
(C-V) measurement. Measurement of other dc parameters is straightfo—ward.
The junction capacitance was measured using a capacitance meter norm lly at
zero-bias voltage. The C-V characteristic cf the diode was measured 1sing
digital meters or a curve tracer. Breakdown voltages and reverse leaxage

currents were measured at several different points.

The first profile evaluation was conducted on a step-etched wafer. Ti-Au
metallization was used to prevent any metal penetration into the wafer. However,
doping concentrations of the double-drift structures (measured ac the surface

and at the first step) often indicated different values, because the contact
quality depended on the p-concentration. The Ti-Au metallization requires

high p-doping concentration for good ohmic contact. The diode breakdown
characteristics depend not only on the GaAs epi material, but also on the wafer

metallization.

Most of the SD GaAs IMPAIT diodes with a Schottky contact directly on an n-type
epitaxial material showed poor breakdown characteristic with wide variation in
breakdown voltage. This was true for both VPE and MBE grown diodes. The soft
breakdown characteristic of a Schottky contact IMPATT diode, which has also

been reported in other labora:ories,u’22

bec ame more acute for Read-type
diodes in which the Schottky contact was made on high concentration n-type
material. The breakdown characteristic was improved when a p—layer was
introduced over the n-layer(s) prior to metallization. In general, MBE-~grown
DD diodes indicated sharp breakdown but sample diodes from some MBE wafers

still showed poor breakdown. In Figure 41, the breakdown characteristic of a

gy o ot el
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VPE-grown SD GaAs IMPATT diode is compared with that of a MBE-grown DD diode.
The breakdown characteristic was a good indication for diode RF performance

and was often used for diode screening.

5.2 THERMAL RESISTANCE MEASUREMENT

At Hughes MPD, thermal resistance of millimeter-wave silicon IMPATT diodes has
been measured routinely using a technique similar to that described by Haitz,
et a1.23  The measurement technique is based on the current-voltage (I-V)
characteristic of an IMPATT diode in avalanche breakdown and on the
temperature dependence of the reverse breakdown voltage. Measured thermal
characteristics of the V-band GaAs IMPATTs were similar to those of silicon
diodes; hence, the same technique was applied to measuring thermal resistance

of GaAs IMPATTs without any modifications.

One major difference between our measurement technique and that of Haitz is a
negative pulse of several voits amplitude, rather than a small perturbation
signal, was used to determine the slope of I-V characteristic (i.e., the
space-charge resistance) of the diode under isothermal conditions. Based on
the temperature depeniczce of the diode reverse breakdown voltage, the I-V
characteristic in avalanche breakdown at two different junction temperatures

can be written #8:
v, = Vl[l + 8 (T, - Tl)] + (1, - I,) R [1 +Y (T, - Tl)] (47)
Here the subscripts 1 and 2 represent two points on the I-V curve, and
Vl, V2 = Diode voltage at Points ! and 2,
1? 12 = Diode currents at Points 1 and 2,
T, = Diode junction temperature at Points 1 and 2,
R, = Diode electrical resistance at point 1, which consists

primarily of the depletion region space-change resistance as

well as any additional series resistance,

54




e AR O

B = l/V1 3V/ 3T = Temperature coefficient of reverse voltage,
and i

Y = l/R1 3R/ 3T = Temperatue coefficient of electrical resistance.

For convenience we let:

AV = V2 -V
AT = T2 -T
AL = IZ -1

=
AVP R Al

1
1
1

Then, solving Equation (47) for the temperature rise T gives:

AV - AV

Vlﬂ + Y(AVp)

The thermal resistance RT is then given by the temperature rise divided by the

power increment;

AT AV - AVP

RT-—- (49)
AP [VIB +'Y(AVP)] (VZIZ - vlll)

Thus, the determination of R.r involves the evaluation of the quantities
appearing on the right side of Equation (49). Two points on the I-V
characteristic were selected first. Typically, the values 5 mA and 55 mA w:re
chosen for L and Iz, respectively. The quantities Iy Iy Vl, V2 and AV
were determined with digital meters. AV, is the electrical contribution to
the voltage rise (i.e., that part of the rise not due to heating). To
determine the magnitude of this rise, a fast pulse measurement was used to
minimize diode heating. The diode current was pulsed between I, and I, and

the voltage rise was noted on an oscilloscope. The pulse applied was 100 nsec
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in length and the voltage was read as early in the pulse as possible (20 to 50
nsec). The temperature coefficients B8 and Y were determined for each diode

from voltage and resistance measurements with the diode mounted on a hot plate
80 that known temperatures could b established.

Special care must be taken for the measurement of tﬁvp. Even for a pulse

length as short as 20 nsec there was still aoticeable diode heating during the
pulse. Thus, the thermal resistance determined from Equation (49) tends to
underestimate the true value. If CVP could be measured directly at t = 0 of
the applied pulse, then no correction due to heating would be necessary.

Since this was difficult to accomplish, the AV, at t = 0 was determined by

P
extrapolation. The voltages were measured at three points on the voltage-

pulse curve spaced equally from t = 0. Typically, the points were taken at
20, 40 and 60 nsec. With these three measured values and the application of

the LaGrange Three Point Interpolation Formula, the AV, value at t = 0 was

P
determined. The corrected value of thermal resistance, RT’ was then calculated
by inserting the AV, at ¢ = 0 into Equation (49). The block diagram of the
equipment setup, used for the measurement of pulse paramters, is shown in

Figure 42.

The thermal resistance was measured only for selected sample diodes. Table 12

represents the measured thermal resistance of early V-band GaAs DD IMPATT diodes.
The diodes were fabricated from the same wafers for different heatsink

configurations. Because of the narrower depletion width, the size of the DD

L m———————

hybrid diodes is slightly smaller than that of the DD flal diodes for the same
junction capacitance. Zero-bias capacitance of 1.25 pF corresponds to the §

> cm2 for DD hybrid diodes and 1.7814:10-5 cm2 for DD

junction area of 1.45x10°
flat diodes, respectively. Obviously, the thermal resistance of the silver-

plated heatsink diodes was too high to meet the program requirement at a ;
reasonable junction temperature of 250°C. Thermal resistance of the pill
diodes was about 30 percent lower than that of the plated heatsink diodes. 1In
our early measurements of diode thermal resistance we had neglected the term,
Y (L Vp), in Equation (49). However, we later realized that when this term
was included, the thermal resistance reduced by about 10 percent. In

Figure 43, the measured thermal resistances of the pill diodes from three
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TABLE 12

MEASURED THERMAL RESISTANCE OF
V-BAND DD IMPATT DIODES ON DIFFERENT HEATSINKS

Zerc-Bias Thermal
Capacitance Resistance
Doping Profile Heatsink (pF) (°c/w)
Silver-Plated 1.24 79.0
1.29 74.5
DD Flat

Diamond 1.25 55.7
1.40 48.6
Silver-Plated 1.12 91.6
1.24 84.9

DD Hybrid
Diamond 1.12 66.2
1.27 60.3
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Figure 43 Measured thermal resistance of V-band GaAs IMPATTs.
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different lots are plotied as a function of zero-bias capacitance. The GDDP-6
diodes are DD flat structures and the GDDP-8 diodes are DD hybrid structures.
Both diode lots were fabricated from MBE wafers grown at Perkin-Elmer and
metallized by Au-Zn on the p side and by Au-Ge-Ni on the n side. The GDDP-25
diodes were fabricated from a DD hybrid MBE wafer grown at Cornell University
with Pt-Ti-Pt-Au metallization on the p side and Au-Ge-Ni on the n side. The
measured thermal resistance of GDDP-25 diodes is clearly higher than those of

other diodes.

The measured thermal resistances of V-band GaAs IMPATT diodes with different
metallizations are compared in Table 13. The three diode lots were fabricated
from the same DD hybrid (flat p and lo-hi-lo n regions) MBE wafers grown at
Perkin-Elmer. The GDDP-12 diodes were metallized by Au-Zn on the p side and
Au-Ge-Ni on the n side, the GDDP-23A diudes by Pt-Ti-Pt-Au on the p side and
Au-Ge-Ni on the n side, and the GDDP-23B diodes by Pt-Ti-Pt-Au on both p and n
sides. The breakdown voltages of all three lot diodes were similar: from
14,5 V to 15.3 V. However, the measured thermal resistance of the diodes with
Au-Zn metallization on the p side was lower than those of the two remaining

lots.

5.3 TEST CIRCUIT AND RF EVALUATION

We have routinely conducted the RF test of an IMPATT diode in a coaxially
coupled reduced-height waveguide cavity. We used full-height waveguide
resonator cavities only in limited cases. We expected higher output power in
the resonator cavities because of the high Q nature. However, the diode RF
performance achieved in these cavities was comparable to that measured in
reduced-height waveguide cavity. We often used a current regulator in the

bias circuit to minimize the transient effect of the power supply.

5.3.1 Oscillator Cavities

The oscillator performance of an IMPATT diode depends not only on the device

itself but also on the circuit conditicns. In order tou obtzin optimum RF




TABLE 13

MEASURED THERMAL RESISTANCES OF V-BAND DD GaAs IMPATTS
WITH DIFFERENT METALLIZATIONS

Lot No. GDDP-12 GDDP-23A GDDP-23B
Diode Co VR 67 Co VR ot Co VBR O
No. (pF) | (V) (°c/w) | (pF) | (V) (oc/w) | (eF) | (V) (oc/w)
1 1.48 | 14.8 34.0 1.54 | 14.4 51.8 1.50 | 15.1 46.6
2 1.53 | 14.8 31.7 1.56 | 14.4 41.9 1.54 | 15.2 43.4
3 1.54 | 14.6 37.6 1.56 | 15.0 42.9 1.55 | 15.3 53.1
) 4 1.54 | 14.7 3l.4 1.57 | 14.2 45.0 1.56 | 15.3 42.3
| 5 1.55 | 14.6 35.3 1.57 | 14.6 42.0 1.57 | 15.3 40.0
6 1.57 | 14.7 33.0 1.57 | 14.3 45.9 1.58 | 15.3 47.9
7 1.59 | 14.8 31.9 1.60 | 14.4 42.4 1.58 | 15.2 41.6
8 1.59 | 14.8 27.5 1.60 | 14.5 44.7 1.59 | 15.1 39.1
Co : Zero-bias capacitance
Vpr; Breakdown voltage
81 ; Thermal resistance
5-11
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performance consistent with high reliability from an IMPATT diode, the

oscillator cavity must provide the following characteristics.

1. Low circuit loss to minimize power loss in the cavity.

2. Proper RF impedance matching to both real and imaginary parts of the
diode impedance to efficiently extract power output at the desired
frequency.

3. Low thermal resistance to remove the heat generated in the diode.

5.3.1.1 Coaxially Coupled Reduced-Height Waveguide Cavity - A rectangular

waveguide cavity cross-coupled by a short coaxial section of which one end is
terminated by an IMPATT diode has been used for IMPATT oscillators. This
configuration has great versatility in impedance matching. The waveguide
height is reduced to lower the characteristic impedance of the waveguide and
the reduced-height waveguide is coupled to the full-height waveguide through a
step transformer. Figure 44 shows a V-band coaxially coupled reduced-height

waveguide cavity.

The diode is contacted by a bias pin which also serves as a coupling post in
the waveguide as well as the center conductor of the coaxial line. The bias
line is introduced through the top wall of the waveguide and is insulated from
the cavity. The two coaxial sections at the top and bottom of the waveguide
provide a wide range of impedance matching. Final tuning of the cavity is

obtained by the sliding short in the waveguide.

This circuit has a great deal of flexibility because it is readily disassemdled
and parts can be interchanged with others of varied dimensions to vary the
impedance presented to the IMPATT. For example, the coaxial line sectiocn around
the bias pin at the IMPATT diode end can be varied in outer diameter and length
merely by replacing a shim with another of different hole diameter and thickness,

respectively. Multiple coaxial sections were realized by stacking such shims.

5-12
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Another important feature of this IMPATT test fixture is the means for
ingserting &and removing the IMPATT diodes. A packaged IMPATT diode is mounted
on a gold-plated copper cylinder, shown in Figure 44(b), which can be readily
inserted into the test fixture and removed without disturbing the overall
circuit assembly. This is important because slight changes in mechanical
positioning can present a large electrical change at millimeter-wave
frequencies. The diode mount cylinder is held firmly in position by means of
a threaded plug which is easily inserted and removed with a screwdriver. This
method minimizes changes in the RF circuit load seen by an IMPATT which may be

brought about by inserting or removing a diode from the test fixture.

We made extensive investigation for the coaxially coupled waveguide circuit.
The equivalent circuit shown in Figure 45 is based on the analysis of Lewin14
with some modifications. Zo is the characteristic impedance of the waveguide

and Z01 and 202 are those of rhe coaxial lines. Z° i? an inductive component

due to the post in waveguide excited by TE n0 modes. Y and Yl ’ sz account

for the effects of waveguide-coaxial junctions and Xb is due to the phase
variation of the field across the post which has been neglected in Lewin's

analysis. ZINl is the input impedance looking into the circuit at the coaxial ,
end with the other three ports terminated by ZZ’ Z3, and 24' ZINZ’ ZIN3 and
zINh are defined in a similar way. R1 and R3 are the real parts of the
impedances looking into the port 1-1 and port 3-3, as shown in Figure 45.

The equivalent circuit model precvides useful information on the design of an
IMPATT cavity. In oscillator design, the two coaxial sections at the :op and
bottom of the waveguide provide the most effective impedance matching to the
diode. The top coaxial section was adjusted by simply moving the bias filter
position while the bottom secticn is adjusted by mounting the diode in a
recessed position from the waveguide wall uelng spacers of different thick-
nesses and hole sizes. For optimum performaice, the circuit must be designed

to minimize the power flow to the bias port, thus directing most of the power

ot .

to the waveguide load. !

5.3.1.2 Full-Height Waveguide Resonator Cavity - An alternative approach to

the coaxially coupled waveguide circuit is the radial line waveguide circuit

5-14
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schematically shown in Figure 46. In a cap resonator circuit, a metal "cap",
through which dc bias is supplied is brought down to make pressure contact to
the diode, forming a localized cavity around the diode. The required high
impedance transformation between the circuit and the device is provided by a
radial line formed by the cap directly above the diode. The height of the
radial line between the cap and the waveguide floor has predominant influence
on the matching of the real part of the impedauce while the diameter of the
cap affects the matching of the imaginary part, "hus determining the center
frequency of the IMPATT oscillator. The cap thickness and the post diameter
has secondary effect on overall impedance matching because of the reflected
wave from the sliding short. Increase of the cap thickness reduces the trans-

formation ratio of impedance.

A tapered cap as shown in Figure 46(a) is often used for smooth impedance
transformation instead of a flat cap. In the former case, impedance matching
can also be controlled by varying the taper angle. The final tuning of the
cavity is usually conducted by the sliding short. To obtain optimum RF
performance, a proper combination of circuit parameters must be found.
Although better oscillator performance has been reported in this cavity, the

cap resonator circuit is known to have narrower bandwidth than that of the

i g W

coaxially coupled reduced-height waveguide circuit. i

A radial line can also be realized by extending the pedestal into the waveguide
as shown in Figure 46(b). The height of the radial line can be controlled
continuocusly by moving the threaded pedestal up and down parallel to the E-
plane of the waveguide for tuning purposes. This continuous adjustment

simpli fies circuit tuning for optimum diode performance.

5.3.2 Current Regulator

The oscillator characteristics of an IMPATT diode are strongly influenced by
the bias current. Therefore, an adjustable current regulator has been utilized i
to stabilize the bias current applied to the diode. Figure 47 represents the '

schematic diagram of the adjustable current regulator. The LM 117 is an |

.

adjustable 3-terminal positive voltage regulator capable of supplying in
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excess of 1.5 A over 1.2 to 37 V output voltage range with excellent line and
load regulation. It also offers full overload protection under most conditions.

The dropout voltage is less than 2.5 V over the temperature range from -55%
to 150°C .

In operation the LM 117 develops a nominal 1.25 V reference voltage between

the output and adjustable terminals. By connecting a resistor between those
terminals, the LM 117 is used as a precision current regulator. The adjustable
current range is determined by the value of the resistor, which is actually a
combination of three resistors. The fine control of the current level is

provided by a potentiometer, which is represented by a variable resistor R, in

the figure.

In general, resistor R, determines the minimum current level. The maximum
current can be obtained by proper combination of R1 and RZ' The selection of
R2 depends on the availability of a potentiometer as long as the corresponding
Ry values fall in the range which yields the current flow within the program
current between 1 and 10 mA. R3 must be a high-power resistor since most of
the current flows through it. In Figure 48, design curves are plotted for

different combination of these resistors.
5.3.3 RF Test

5.3.3.1 RF Test Setup - A block diagram of a general millimeter-wave CW

oscillator measurement setup is shown in Figure 49. 7The setup is for the
output power, frequency, efficiency and tuning characteristics. Since
oscillator performance of an IMPATT diode is sensitive to load VSWR, it is
important that the output port of the oscillator under test is terminated
properly. It should be pointed out that high VSWR outside the band of
specific interest is often the cause of adverse effects. For this reason, an
isolator with broadband capability covering the full waveguide band is often

used as a broadband termination for the diode under test.

Each measurement system was carefully calibrated as a unit. At millimeter-

wave frequencies, the wavelength is so smal) that small discontinuities

|
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between components can change the insertion loss for the system significantly.
The possible inconsistency of the system insertion loss that might be caused

by periodic calibration of each individual component was eliminated by
calibrating the whole measurement system as a unit.

The oscillator output power was read directly from the power meter considering
system calibration and the oscillation frequency was measured using the
frequency meter by observing the dip on the power meter. The mixer-spectrum
analyzer branch was used to investigate the frequency spectrum and bandwidth.
The operating voliage and current were monitored using digital multimeters and
these readings were used to calculate input power and dc-to-RF conversion

efficiency.

5.3.3.2 RF Performance - RF evaluation of an IMPATT diode has routinely been

performed in a coaxially coupled reduced-height waveguide cavity. Since the
approximate device/circuit models described previously could not provide the
required accuracy of element values to the degree conducted by fine adjust-
ment, the final oscillator perfcrmance was optimized through experimental
circuit adjustment. Systematic circuit optimization has been carried out to
improve oscillator performance for each diode lot. Among the various
parameters, the bias choke position, and the spacer hole size and thickness
were found to be most effective for circuit optimization. The spacer effec-
tively controls the line length and the characteristic impedance of the coaxial
line. The final tuning of the cavity was usually conducted by the sliding

short.

A full-height waveguide resonator cavily was also used as a test circuit for
some diode lots which had indicated reasonable RF performance in the reduced-
height waveguide cavity. The bias pin which has a different cap size at one
end was used as a basic optimizing element in this cavity. In general, the
best RF performance that could be achieved in one cavity was comparable to

that measured in the other cavity.

As described previously, Schottky contact VPE SD IMPATT diodes (both flat and

hi-lo structures) indicated poor breakdown characteristics and wide variation

5-22




emvrmninre

in breakdown voltage. Most of these diodes failed at low bias current level.
Many of the failed diodes still showed similar V/I characteristics, but at
lover forward and reverse voltages. The best output power obtained from these
diodes was limited to 100 mW at low 50 GHz range. Although some of the ohmic
contact MBE SD hi-lo dioces (grown at USC) showed fairly sharp breakdowns,

they also failed at low bias currents when tested in an oscillator cavity
without generating any significant RF power. All the SD diodes were fabricated

on plated heatsinks in the early stage of the program.

Although not quite close to the design values in doping profile, many VPE DD
flat wafers have been processed for plated heatsink diodes. Because of the
rather wide variation in doping profile, the breakdown voltage of these diodes
ranged from 13.0 to 28.0 V. Most of these diodes were prone to burn-out at
low bias currents and generated output power less than 100 mW. Only a few VPE
diode lots generated output power more than 100 mW in the lower end of V-band
frequency between 50 and 55 GHz. The maximum output power achieved from a VPE
DD flat diode was 300 mW with 5.2 percent efficiency at 51.3 GHz. The current
density at this operating point was 16.5 kA/cnz. However, most of these
diodes operated at far lower current densities (< 10 kA/cmz) and failed when
the bias current was increased. Diodes which generated output power over 100 mW

generally operated at current density higher than 10 kA/CmZ.

The VPE pill diodes mounted on diamond heatsinks were able to operate at higher
bias currents. The maximum output power obtained from a VPE pill diode was

560 mW with 5.25 percent efficiency at 51.2 GHz. The current density at this
point was 17.1 kA/cmz.

The DD diodes fabricated from the MSE wafers grown at Perkin-Elmer have pro-
duced more consistent results. From an initial design MBE diode, output power
of 260 mW was obtained with 5.2 percent efficiency at 55.1 GHz. Conversion
efficiency of 7.65 percent was also obtained with 220 mW output power at

51.6 GHz. These performances were achieved at the current density of 6 to

8 kA/cmz. All of these diodes were in plated heatsink configuration and the

current density was limited to about 8 kA/cmz, because of the high thermal
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resistance. These diodes performed better at Q-band frequencies generating as
high as 750 mW with over 10 percent efficiency.

Improved RF performance was realized from the second design MBE IMPATTs.
First, silver-plated heatsink diodes were fabricated from a section of each
MBE wafer. Although the three DD flat and two DD hybrid wafers were grown
with the same reactor settings, some discrepancy in doping profile occurred
among these wafers. When processed, sample diodes from different lots also
indicated somewhat different RF performance. The plated heatsink diodes
appeared to operate better at lower frequencies than the designed value of
60 GHz. We obtained about 500 mW output power around 45 GHz. The attainable
output power decreased with increasing oscillation frequency. The highest
15.1 percent from a DD hybrid diode. The highest oscillation frequency was
67.1 GHz with 300 mW output power. Because of the high thermal resistance of
plated heatsink diodes, the input power was limited to a bias current of about
10 kA/cm2 and 12 kA/cm2 for DD flat and DD hybrid diodes, respectively.

RF performance results of these diodes are summarized in Tables 14 and 15.

Second, the remaining portiorns of the second design MBE wafers were processed
into pills and these diodes were TC-bonded on diamond heatsinks. For the same
junction capacitance, the pill diodes were able to take much higher bias current
than the plated heatsink diodes due to the reduced thermal resistance. The
operating bias voltage of the pill diodes was lower than that of the plated '
heatsink diodes at the same bias current levels. Output power greater than 1l

W was achieved from both DD flat and DD hybrid pill diodes on diamond heatsinks.
The nighest output power was 1.12 W at 51.9 GHz from a DD hybrid diode. The
best efficiency obtained at V-band was 1l.l percent from a DD flat diode, and
15.3 percent from a DD hybride diode. Tables 14 and 15 also include the RF
performance summary of the pill diodes on diamond heatsinks. The RF performance
versus bias current of a DD flat and DD hybrid are shown in Figures 50 and 51,
respectively. The oscillation frequency increased slowly with increasing bias

current.

The next generaiion MRE wafers grown at Perkin-Elmer included DD flat, DD hybrid

(with flat p and either hi-lo or lo-hi-lo profile in n side), and DD Read (with
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hi-lo profiles in both p and n sides) structures. Many diodes fabricated from
these wafers (many of which showed a ntt spike between substrate and the

buffer layers) showed poor breakdown characteristics and burned out prematurely
in RF test. The diodes from three DD hybrid wafers (with flat p and lo-hi-lo

n profiles), however, showed sharp breakdown characteristic and generated output
power up to 1 W with 10 to 12 percent conversion efficiency. The highest output

power obtained from a DD Read diode was 500 mW with $5.% conversion efficiency.

The last batch of Perkin-Elmer MBE wafers were grown around the end of the
program and only a couple of the wafers were processed. We obtained 750 mW
around 55 GHz with 12 percent efficiency in the preliminary evaluation of these

diodes.

Several MBE wafers grown at the University of Southern California and Hughes
Research Laboratories (HRL) in Malibu in the early stage of the program were
processed for plated heatsink diodes. The measured doping profiles of these
wafers were not quite as close to the design values. These diodes genersted
no significant output power in RF evaluation, We obtained maximum 500 mW with
6 percent efficiency from a pill diode on a diamond heatsink fabricated from a
MBE wafer grown at HRL. Three DD flat and three DD hybrid (with the hi-lo
profile) MBE wafers were grown at Cornell University. When processed into
pill diodes, most samples showed sharp breakdown characteristic except the
ones fabricated from a DD flat structure. The best RF performance from a DD
flat diode was 630 mW output power at 54 GHz with 8.1 percent efficiency. The
DD hybrid diodes performed better than the DD flat dlodes. Some of the test
results of the DD hybrid diodes are represented in Table 16, The oscillation
frequency ranged from 51 GHz to 66 GHz and generally decreased with increasing
diode junction capacitance. A coanversion efficiency of 14.9 percent was
achieved at 60 GHz with 645 mW output power. Output power of 1W was also
achieved near 57 GHz with a conver. on efficiency of 12.5 percent. The
highest oscillation frequency was 66.1 GHz with an output power of 410 mW.
These RF performances were obtsined at a current density between 13 and

19.3 kA/cmz. In most cases, the maximum power was thermally limited.
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The RF performance of V-band GaAs IMPATT diodes was very sensitive to circuit
tuning, resulting in frequent diode burn-out at low bias currents. The output
signal was very clean when the circuit was properly tuned and the diode failure
often occurred with signal degradation. The cause of this circuit-related

burn-out is not clearly known at this time.

The maximum output power of the diodes appeared to be thermally limited. The
diode burn-out temperature is estimated to be 300 to 350°C. As the bias
current increased, the output power, at first, increased rapidly and then
slowed down. However, in most cases, the output power was still increasing at -

the diode burn-out point indicating thermal limitation.

5.4 NOISE MEASUREMENT

The AM and FM noise properties of CW oscillation are important parameters for
communication systems applications. These noise characteristics can be
obtained from the power spectral densities of an oscillator in the neighbor-
hood of the carrier frequency. The noise characteristics of an IMPATT

oscillator were very sensitive to bias and circuit conditionms.

5.4.1 AM Noise

The experimental setup used for the AM noise measurement of an IMPATT oscillator
is shown in Figure 52. In this system, the oscillator output is directly detected
by means of a low-noise balanced mixer. The AM noise sidebands are thus
translated to videc frequencies and the power spectrum of this video signal is
amplified by a low noise amplifier and then measured by a selective voltmeter

(or wave analyzer). The main function is to build a symmetrical circuit to
minimize the differential delay between the two branches of the balanced mixer.
The two splitted signals arrived at the mixer with a negligible or no phase
difference. Therefore, the noise generated by random phase fluctuation in the

two splitted arms will cancel each other. Only the noise generated from

the amplitude fluctuation will be detected by the balanced mixer.
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Figures 53 and 54 show the measured AM noise as a function of frequency from
carrier for a V-band GaAs DD flat (GDDP-4) and DD hybrid (GDDP-5) diodes,

respectively. In Figure 53, the diode was operated at a bias level of 238 mA
with output power of 150 wW. The oscillator cavity was adjusted to get the

cleanest signal on a spectrum analyzer at this bias level. The dovble side
band (DBS) signal-to-noise (S/N) ratio of this IMPATT source was about

=120 dbc/Hz at 300 Hz from carrier, decreased slowly to -147 dBc/Hz around

100 kHz from carrier and flattened out beyond this point. Figure 54 shows the
DSB S/N ratio of a DD hybrid diode with 1 Hz bandwidth under three different
bias levels. The oscillator cavity was tuned to get the cleanest signal at
the bias current of 250 mA with an output power of 500 mW. The bias level was
then reduced to 230 mA and 206 mA without disturbing the cavity. As shown in
this figure, the cleanest signal was observed at higher output power level of
500 mW since the cavity was adjusted at this particular bias level. The noise
characteristics of the oscillator was sensitive to either bias or circuit

condition and could change drastically with a slight tuning.

5.4.2 FM Noise

FM noise is generated from random fluctuations in phase. The test setup for
measuring oscillator FM noise is shown in Figure 55. The system is similar to
that used for measuring AM noise except for the introduction of a circulator
with a section of waveguide and the sliding short. They form a waveguide
delay line bridge discriminator which can convert the frequency deviation into
a noise voltage. As the two splitted signals arrive at the balanced mixer
with 90° out of phase, the amplitude fluctuation of these signals cancel eaci
other. The noise generated by random phase fluctuation is detected by the
balanced mixer, amplified by the low noise amplifier and then measured by the
selective voltmeter. The measured DSB FM S/N ratios of a DD flat (GDDP-4) and
a YD hybrid (GDDP-5) diode are shown in Figures 56 and 57. The diode bias and

output power levels were the same as those in AM measurements.
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6.0 KELIABILITY TEST

To obtain adequate information on diode reliability in a reasonable amount of
time, accelerated life test methods are used. These techniques can be organized

into two general categories: the step-stress test and the constant- stress

test.

Under this program, we conducted only the step-stress test for one DD flat
(GDDP-6) and two DD hybrid lots (GDDP-8 and GDDP-25). The test was under dc
condition with the diodes mounted in a teat stand and biased with no RF power
generated. This method is much less expensive than testing under RF conditions

and proved to be very useful.

In a step-stress test, devices were operated for a fixed period of time at

each of a series of increasing stress levels until failure. The specific stress
mechanism chosen for IMPATT diodes, as well as most semiconductor devices, was
temperature. The purpose is to establish operating stress levels that will
accelerate the formation of failure mechanism so that meaningful failures can
be generated in a relatively short period of time. The procedure is also useful
in determining operational limits and in establishing device screening

procedures to eliminate early failures.

6.1 TEST STATIOW

The test station, which is shown in Figure 58, is designed to permit periodic
dc testing without physically removing the diodes from the mounting stand.
Each position on the test panel is numbered so that the identity of each diode
can be maintained. Figure 59 presents the main components of the station:

the dc power supply, individual coarse and fine current-adjust ~ontrols,
current~limiting resistors, individual VR/IR readout jacks, and test diode
mounting stand in a dry nitrogen atmosphere. A strip chart recorder contin-
uously monitors the total bias current to the test stations. Changes in the

current level indicate a diode's exact failure time.
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The temperature of the diode test stand is controlled by pressure~regulated
chilled water flowing continuously through the channels inside the sts:d and

: . . . (o] s q s . . s
maintained within +2°C from the stabilized temperature. This is measured with
a thermocouple embedded into the stand.

To prevent unnecessary damage, the following protective measures were taken:
the use of current-limiting resistors which prevent excessive current when a
diode shorts, the selection of a dc power supply that has excellent voltage
regulation and negligible voltage overshoot in the event of a power outage,
installation of an over-temperature control system that reduces power supply
voltage to a value less than the breakdown voltage when the temperature of the
diode stand exceeds a preset limit, and the use of an aiarm and automati-=
emergency dry nitrogen supply system when the house nitrogen supply is

interrupted.

6.2 TEST DESCRIPTION

Before being subjected to a life test, the diodes were screened to eliminate

units which would otherwise fail prematurely and distort the normal failure

rate. The screening procedure consists of visual mechanical examination and

measurement of electrical parameters.

The electrical parameters used to screen diodes include thermal resistance, (
reverse lzakage currents, reverse voltages, and forward voltages. In the past, :
anomalies in these quantities we:re correlated with premaiure diode failure.

High thermal resistance can be indicative of a poor thermocompression bond

between the diode and heatsink, resulting in excessive localized heating. High
leakage current can signify either surface contamination or bulk defects. A

high forward voltage drop is associated with a degraded electrical contact a:

the metal-substrate interface.

The actual life testing of the IMPATT diodes is straightfcrward. The thermal
resistance of each diode was measured and recorded. The diodezs were then
mounte. onto the life test fixtures, where initial electrical data were

measured. They were then reverse-biased into avalanche breakdown. The bias




LT era L

current was adjusted so that the product of the dc power dissipated with the
measured thermal resistance equalled the desired operating junction temperature

rise above ambient. Once all the diodes in a group were operating, the test
was undervay and the operating time accumulated. The diodes were then operated

continuously for 72 hours. During this time, the operating conditions were
monitored and recorded. If a diode opened or shorted, the time-to~-failure was
recorded. After 72 hours, the power was removed and the initial electrical
measurements were repeated and recorded. The surviving diodes were then
brought up to the next step junction temperature with 25° increment and the
operating test was continued. This 72-hour cycle was repeated until all the
diodes failed.

The data measured and recorded during each life test were as follows:
1. Recorded initially and periodically after each 72-hour step.

a. Reverse voltages (VR) at 1, 10 and 100 mA.
b. Reverse current (IR) at 1 V less than Vag at 1 mA.
¢ Forward voltages (VF) at 1, 10 and 100 mA.

2. Monitored daily.

a. Date, time and total test hours.
b. Test stand temperature.
c. Vo and IR of each diode at the life test power level.

3. Time of failure,

The time of diode failure was vecorded by the strip chart recorder monitoring
the total test fixture current with a resolution of 15 minutes. The identity
(serial number) of the failed diode was obtained dur.ng the next daily mouitor

of each diode.
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6.3 STEP-STRESS TEST

The step-stress test was performed on a total of 38 diodes, 13 diodes each

from GDDP-6 and GDDP-8 lots and 12 diodes from GDDP-25 lot. (One of the GDDP-25
diodes was mistakenly recorded as shorted during the test and discounted.) The
GDDP~6 diodes have DD flat structure and the GDDP-8 and GDDP-25 diodes possess
DD hybrid structure with flat P and hi-lo n profiles. The GDDP-6 and GDDP-8
diodes were metallized by Au-Zn on the epi (P++) side while the GDDP-25 diodes
by Pt-Ti-Pt-Au. The metallization of substrate (n++ side of all diodes was
Au-Ge-Ni-Au. All the diodes were mounted on diamond heatsinks inside quartz-
ring packages with cross-strap ribbon configuration. The zero-bias capacitance
was chosen around 1.5 pF at which value the optimum RF performance of the diode
was achieved. We started the step-stress test at 200°C. The junction tempera-
ture was raised by 25° increment until all diodes failed. The test duration

at each step was 72 hours.

The test results are shown in Figures 60 through 62 for diode lots GDDP-6,
GDDP-8, and GDDP-25, using histograms indicating the failed diodes at each
temperature. Failures for these tests were taken to be catastrophic, i.e.,
either short- or open-circuited diodes. All the test diodes failed by shorting.
The V-band GaAs IMPATTs failed over wide range of junction temperature.
However, majority of the failures for GDDP-6 (DD flat) and GDDP-8 (DD hybrid)
diodes with Au-Zn metallization on the epi side occurred around 350°C while
the majority of GDDP-25 diodes (DD hybrid) with Pt-Ti-Pt-Au metallizat on
failed between 400 and 425°C. The main reason for this discrepancy was the
difference in thermal resistance. The measured thermal resistance of the
diodes with Pr-Ti-Pt-Au metallizarioa was higher by about 50 perceat compared
to the same size diodes with Au-Zn metallization as described in Section 5.2.
The maximum failure temperature corresponded to the input power of 7.5 to 8.0
W for all diodes from three different lots. According to the results of the
step-stress tests, the failure of V-band GaAs IMPATTs appeared to be pretty

much process-related and strongly depended on diode fabrication process.

6-6
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Figure 60 Step-stress test histogram for lot GIiP-o.
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Figure 62  Step-stress histogram for lot GLDP-25.
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6.4 FAILURE ANALYSIS

Whether circuit-related or thermally limited, the failure mode of V-band GaAs
IMPATTs occurred in RF evaluation was predominantly shorting. The rare diode

failures by opening seemed mostly related with power transient in the bias
circult. Several failed diodes in RF evaluation were subjected to failure
analysis. The cap of the package was removed and the diode was examined under
a scanning electron microscope (SEM). In general, diodes with initial sharp
breakdown characteristic showed a small melted area on the perimeter of the
diode. Figure 63 shows SEM photographs of a shorted diode with a preformed
ribbon. A melted spot that caused the diode failure can be seen at the
perimeter of the diode. The failure mechanism seemed to be similar among the
failed diodes at different bius levels. An interesting note is that the diode
chip has a rectangular shape rather than a circular shape due to uneven diode
etching beneath the preformed ribbon. The SEM photographs of a shorted diode
with a gold wire (1 mil diameter) ribbon are shown in Figure 64. A melted
spot is shown in the lower left corner of Figure 64(a). Enlargement of this
region is shown in Figure 64(b). Diodes with poor breakdown characteristic
often showed a melted spot in an area other than the perimeter. In

Figure 65(a), the shorted area appears to be a melted gold protrusion near the
center of the diode. Figure 65(b) shows the enlargement of this area. SEM
photographs of an opened diode are shown in Figure 66. As shown in these
photographs, both the diode and ribbons were melted away in most cases.
According to SEM photographs, the actual junction diameter of the diodes was ’

about 10 percent smaller than obtained by optical measurement.

To investigate the diode failure, a couple of the failed diodes from three
different lots subjected to step-stress tests were examined under a microscope.
Although many diodes showed a cracked quartz ring, nothing was unusual on the
surface in our visual inspection. Next, we carefully removed the metal cap,
contact ribbon and quartz ring and examined each portion under a SEM to investi-

gate any anomaly the in diode package. Figure 67 shows the SEM pictures taken

5
b

at this stage. When being checked at this stage, two of the six diodes revealed
normal breakdown characteristics while the remaining four diodes indicated

shorting. The cause of the shorting of the two diodes appeared to be the excess

6-10




Figure 63
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diode with a preformed ribbon.
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metal overhang on top of the diode chip. Then we etched away the GaAs chip.
We found no suspicious areas on the two diodes which showed normal breakdown
characteristics. The remaining four diodes showed melted spot(s) between the
diode and heatsink which caused the diode failure. An example is shown in
Figure 68. The bright gold spike causing the diode to short is clearly

visible.
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7.0 PROGRAM DELIVERABLES

According to the program schedule, a total of 40 V-band GaAs IMPATT diodes
have been delivered to the coantract office along with the test data of each

diode. A test circuit was also delivered with the related documents at each

delivery.

7.1 IMPATT DIODES

The first delivery diodes were developed based on our initial design. These
diodes were fabricated from double-drift hybrid MBE wafers in plated heatsink
configuration. Table 17 represents test data of the five GaAs IMPATT diodes.
One of the IMPATT diodes was mounted in the oscillator cavity. The best output
power was 100 mW with 2.5 percent conversion efficieucy. The oscillation

frquency was just above 50 GHaz.

The second delivery diodes were pill diodes on diamond heatsinks, All fiva
diodes were seclected from a DD hybrid MBE lot. The RF performance data of

these diodes are shown in Table 18. Minimum output powec of 500 mW was achieved
with a conversion efficiency greater than 10 percent. By comparing Table 18
with Table 17, substantial pe-formance improvement can be seen. The diode

data were obtained using the same test cavity with only the sliding short

adjusted for tuning purpose.

The third delivery diodes were selected from the GDDP-5 lot, same as the second
delivery diodes. However, by increasing bias current beyond 300 mA, output
power around ! W was achieved with a conversion efficiency greater than

12 percent as shown in Table 19.

At the end of the program, 25 V-band GaAs IMPATTs were delivered to the con-
tract o“fice. All the diodes were selected from a DD hybrid lot, GDDP-8. The
dc and RF characteristics of these diodes are shown in Tables 20 and 21, Tnese
diodes have zero-bias capacitance from 1.51 to 1.64 pF with an average thermal
resistance of 350C/W. Typical output power was 1.0 W with a2 12.9 peru:ent

.. . . . . >
effieciency with &n average junction temperature rize of 236°C.
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7.2 IMPATT OSCILLATOR

The test circuit for the delivery dicdes was the :oaxially coupled reduced-
height waveguide cavity shown in Figure 44. The test data of delivery IMPATT3

was obtained by tuning the test circuit for optimum RF performance for each
diode. At each delivery, at least one diode was shipped as mounted in the
cavity for an easy check of the test data. The IMPATT oscillator was pretuned
for optimum RF performance inside the cavity. (The bias choke was glued to
the bias slab and the tuning short was locked using a set screw.) An isolator
was connected at the output port of the cavity to minimize the loading effect.

An air-cooling system is recommended for operation of the socillator.

7.2.1 Operation of IMPATT Oscillator

Using a test setup shown in Figure 49, the diode RF performance can be

measured as follows:

1. Set the current and voltage control knobs of a power supply at zero
position before connecting the power supply to an IMPATT oscillator.
An ammeter between the power supply and the oscillator and a volt-
meter across the oscillator can be connected to monitor the operating

bias current and voltage of the IMPATT oscillator.

2. Connect the power supply to the IMPATT oscillator for right polarity
(positive to the center conductor). A crowbar box may also be
introduced in parallel with the IMPATT oscillator.

3. Turn on the power supply.

4, Set the voltage control knob of the power supply beyond the operating
bias voltage by 2 to 3 volts.

5. Turn slowly the current control knob of the power supply to increase

the bias current to the specified value.

7-8
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The oscillator must generate the RF performance specified in the data
sheet. If the oscillator does not generate the specified RF

performance.

6. Unlock the set screw and adjust slightly the tuning short for optimum

performance.

7.2.2 Diode Replacement and Optimization

The IMPATT diode in the delivery oscillator can be replaced through the hole
at the bottom of the cavity. This can be done by removing the threaded plug
without disassembling the cavity. The replacement steps are outlined below:

1. Remove the threaded plug at the bottom of the cavity.

2. Remove the diode to be replaced. (If the diode does not drop with

the plug, it may be taken out with a tweezer.)

3. Insert a new diode to be tested.

4, Tighten the threaded plug. Dc not overtighten.

After replacement, the new diode can be optimized through the following

p-ocedure:

1. Set the current and voltage control knobs of a power supply at zero

position before connecting the power supply to the oscillator.

2. Connect the power supply to the IMPATT oscillator for right polarity

(positive to the center conductor).

3. Turn on the power supply.

4. Set the voltage control knob of the power supply beyond the operating

bias voltage by 2 to 3 volts.
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Turn slowly the current control knob of the power supply to increase

the bias current to around 160 mA.

Adjust the tuning short for maximum output power.

Increase the bias current of the oscillator until the output power

saturates.

Adjust the tuning short very slowly for maximum output power. Care
must be taken to avoid any sudden drop of the output power which may
cause diode failure. Move the sliding short in slightly until the

output power drops about a couple tenth of a dB.
Repeat Steps 7 aud 8 until the bias current of the oscillator reaches

to the specified value. At this current level, adjust the tuning

short for maximum output power.
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8.0 CONCLUSIONS AND RECOMMENDATIONS

We have made significant advance in V-band GaAs IMPATT technology. Progresses
have been made in diode design, material growth and wafer processing areas.

As a result, we achieved state-of-the-art performance from double-drift (DD)
GaAs IMPATT3 at V-band frequencies. CW output power of 1W was obtained at
52.75 GHz with 14.7 percent conversion efficiency at a junction temperature of
228°C, The highest output pover demonstrated at V-band was 1.12 W and the

best conversion efficiency was 15.3 perce:-.

We have designed DD flat, DD hybrid, and DD Read structures. Initial doping
profiles of the V-band GaAs IMP.\TTs were based on the small-signal analysis

and the scaling of the IMPATT pr>files designed for operation at lower frequen-
cies. These profiles were modified later with the results of large-signal
analysis as well as the feedback information gained in RF evaluation of the

previously designed IMPATT diodes.

We grew GaAs materials using molecul~: beam epitaxy (MBE) as a primary

approach and vapor phase epitaxy (VPE) as a back-up. MBE provided excellent

doping control. Accord’ng to secondary ion mass spectrometry (SIMS) analysis,

MBE wafers revealed good doping density uniformity in each layer with sharp

transitions between layers. Despite our intensive efforts, we were not able

to grow qualified wafers using VPE. The growth rate of VPE was too fast to

grow the complicated doping profiles with submicrometer layer thicknesses.

VPE wafers indicated graded transitions with l2ss uniform doping concentration '

in each layer.

We believe that two techniques we applied in wafer processing were particularly
instrumental for the successful development of the V-band GaAs IMPATTs. One
was the reduction of the GaAs wafer thickness to less than 10 um. This reduced
the diode series resistance and produced well-defined mesa configuration, which
permitted higher bonding pressure during thermocompression (TC)-bonding a diode
to a heatsink. The number of diode chips available from a wafer in pill con-
figuration was substantially higher than the number in plated heatsink

configuration. By TC-bonding the diodes on diamond heatsinks, the thermal

S
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resistance of the pill diodes was reduced by as much as 50 percent compared to

that of the plated heatsink diodes.

We have experimented different metallizations including Ti-Au, 2t-Ti-Au,
Pt-Ti-Pt-Au, and Au-Zn for the contact on the epitaxial side of the wafer.

For the ohmic contact on the substrate side we relied on Au-Ge-Ni-Au metalliza-
tion. When a Schottky contact was made directly on n~type material of
single-drift (SD) structure, the diodes often indicated poor breakdown
characteristic and burned out prematurely in RF evaluation. Although sharp
breakdown was achieved by depositing a p-layer before metallization, the RF
performance of the SD diodes was limited to a couple hundred milliwatts output

power.

The measured thermal resistance of the diodes with Au~Zn metallization was
lower than that of the diodes with Pt-Ti-Pt-Au on the epi side. However, the
diodes with Au-Zn metallization were also burned out at lower junction tempera-
tures. It appeared that the metallization of the wafer has direct bearing on

the thermal resistance and reliability of the diodes.

The RF evaluation of the diodes was conducted in a coaxially coupled reduced-
height waveguide cavity. Over a half watt output power was obtained at V-band
from DD GaAs IMPATT diodes of different profiles; DD flat, DD hybrid, and DD
Read diodes. However, DD hybrid diodes thus far have produced the best RF
performance. Typical performance of a diode from a good diodeilot was 0.8 to
1.0 W output power with 12 to 13 percent efficiency at a junction temperature
around 260°C. The RF performance and the noise characteristics of the V-band
GaAs IMPATTs were sensitive to bias and circuit condtions. We experienced
frequent diode failure while tuning the circuit even at low bias current levels.
The diode failure was often accompanied with significant noise degradation.
However, the maximum output power of the diode appeared to be thermally limited.
When properly tuned, the measured double side-band (DSB) AM signal to noise

(S/N) ratio was about =120 dBc/Hz at 300 Hz from carrier and reduced to about

q
:
s

-140 dBc/Hz at 200 kHz from carrier. The DSB FM S/N ratio reduced from about
-10 dBc/Hz at 300 Hz from carrier to about -115 dBc/Hz at 300 kHz from carrier.
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We performed dc step-stress test on saripie V-band GaAs IMPATTs selected from
one DD flat and two DD hybrid diode lots. Unlike silicon IMPATTs, (2As diodes

failed over a wide temperature range. This may indicate more process-related
diode failure of GaAs IMPATTs. The maximum failire temperature of the diodes

with Au-Zn metallization on the epi side was 375°C while that of the diodes

with Pt-Ti~Pt-Au metallization was 425°C.

We anticipate further improvement in RF performance of the V-band GaAs IMPATTs.
Louble—-drift GaAs IMPATTs with lo-hi-lo profiles could generate better perform-
ance since the lo-hi-lo profile can provide a more confined avalanche region

than the hi-lo profile. Large-signal analysis with well defined material
parameters will be useful in determining the optimum profiles of these structures.
According to a recent study, l.5 W CW output power car. be achieved at 50 GHz

with 22 percent efficiency, and close to 1.0 W CW output power at 94 GHz with

18 percent efficiency from DD Read GaAs IMPATT diodes in ideal conditions.

Material growth of the V-band GaAs IMPATTs was singled out as one of the most
critical area for successful development of V-band GaAs IMPATTs. The
complicated doping profiles with submicrometer layer thicknesses of 60 GHz

GaAs IMPATTs were taxing even for the most advanced material growth techniques.
Although MBE has demonstrated the capability of excellent doping profile coatrol,
more work has to be done to improve the uniformity within a wafer and the

repeatability among wafers.

Scanning electron microscope (SEM) examination of the V-band GaAs IMPATT diodes
revealed non-uniform surfaces on the periphery after trim-etch, which may be
the cause of many diode failures. Techniques to eliminate this non-uniformity
can be investigated to provide more uniform current density across the diode.
The quality c¢f the metallization has a direct bearing on diode thermal resist-

ance and its RF performance.

Different metallizations can be investigated to provide good thermal conduction
with minimum electrical contact resistance. Optimum metallization and bonding
conditions can also be examined. Because of tensive stresses in films, piil

diodes have been made from a small section of wafers. The present pill process

8-3 "
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must be refined to reduce teasitive stress, thus allowing pill diode fabrication
from larger size wafers.

The diode reliability is directly related to tte operating junction temperature
and the maximum output power of a V-band GaAs IMPATT diode is thermally limited.
The thermal resistance of the diode can be further reduced by using a ring
geometry structure rather than the conventional solid circular structure.
However, process modification may be required to achieve a well defined ring
structure with such dimensions as those required in V-band frequency operation.
The reliability of the diodes must be well established to be eligible for
systems applications. Preliminary results of the step-stress test indicate

that many diode failures of GaAs IMPATTs are process-related. Wz strongly
recommend more systematic reliability test on V-band GaAs IMPATT diodes to

idencify the failure mechanism and to establish the life expectancy of the

diodes.
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