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CEN A OBSERVATION AT MEV-ENERGIES

P. v. Ballmoos, R. Diehl, and V. Sch6nfelder
Max-Planck-Institut fiJr extraterrestrische Physik, Garching9 FRG

ABSTRACT

During a balloon flight with the MPI Compton telescope from
Uberaba/Brasil gamma-ray emission from the direction of Cen A was
observed at MeV-energies. The observed flux connects to the x-ray
spectrum of Cen A beyond 0.7 MeV and has a statistical significance
of 4.1_'. The extension beyond 3 MeV has a significance of 3.8G.
Possible interpretations of the energy spectrum are discussed.

1. Introduction. The bright radio galaxy Cen A is the nearest active galaxy
at a distance of 4.4 Mpc. Existing hard x-ray and low energy gamma-ray
measurements extend to about 1 MeV (Ref 1-6). At these energies the spec-
trum follows a power law dependence. The x-ray emission is highly variable in
intensity and spectral shape on the timescale of months or even days. Above
35 MeV only upper limits to the gamma-ray intensity exist (Ref 7, 8). In this
paper new results on the gamma-ray emission from the direction of Cen A in
the energy range 0.7 to 20 MeV are presented. The results were derived from
a balloon flight observation of Cen A during a flight on Oct. 31, 1982 from
Uberaba/ Brasil with the MPI Compton-telescope. The balloon reached the
float altitude of 3.5 to 4 g/cm2 residual atmosphere at 14.4 h UT, 30 minutes
after the transit of Cen A. Cen A was within the field of view of the tele-

scope for about two hours; its closest angular distance to the telescope axis
was 23 ° .

2. Data Analysis and Results. The Compton telescope of the MPI and its
performance are described in detail in ref. 9. The telescope characteristics
are determined mainly by two detector layers. In each layer the position of
the interaction and the energy deposit of the infalling gamma-ray are meas-
ured. The connection between the two interaction points defines the direction
of the scattered gamma-ray: its projection onto the celestial sphere may have
the coordinates O¢s, _s" From the two energy deposits the Compton scatter-
ing angle _ can be calculated. For each measured gamma-ray event a proba-
bility distribution of arrival directions is determined, which may be called the
"event cake" 9 because it looks like a donut centered around the direction of
the scattered gamma-ray.

Fig. I shows a likelihood sky map obtained from all flight d_ata at
float altitude (3 hours). For each point of the map the probability Ps was
calculated (by multiplication of all event-cakes) that no measured gamma-rays
came from that point. A corresponding probability Pm was then determined
for the mirror position of this selected celestial point. The mirror point is
defined by telescope symmetries, it has the same background response as the
source point; its position on the sky changes during the flight. The contour
lines in Fig. I represent the ratio Pm/P-s. This ratio shows a maximum at o( =
20609 _ = -43 °. The likelihood for the existence of a source is greatest at
this position. The asymmetry of the source profiles is caused by the large off-
axis angles of the source and is understood as instrumental effect from Monte
Carlo calculations.

The statistical significance of the excess was determined in the fol-
lowing way: For each event the derived Compton scatter angle _ was sub-
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tracted from the angle _G which is the difference between the direction of
the scattered gamma-ray a,,d the assumed direction of the source. The quanti-
ty _ =_-1°G may be called the "angular residual" of an event. The distribu-
tion of residuals for a source at the position of Cen A (no background) was
calculated by a Monte Carlo simulation for actual balloon flight conditions. If
the distribution of residuals of the same Cen A-events around the mirror point
is subtracted, then the resulting distribution shows a maximum at _ = 0o
(lower half of Fig. 2). In the upper half of Fig. 2 the distribution of _esiduals
around Cen A (0( = 201o, oC=43o) and its mirror position are derived from
the real flight data (including background). As can be seen the difference
between both distributions indeed shows an excess at _ = 0° and has the
overall shape as expected from the Monte Carlo simulation. The excess in the

interval -5 ° < _ (+50 (corresponding roughly to the FWHM angular resolution
of the telescope) contains 112 events and has a statistical significance of
4.1_. Fig. 3 shows the differential count rate spectrum of the source events.
This count rate spectrum was converted into a photon spectrum using the
Monte Carlo simulation code. The resulting gamma-ray spectrum is shown in
Fig. 4, where comparison is made with previous measurements in the adjacent
energy ranges. The statistical significances of the observed values are 2.96",
0.36"9 3.3_', and 1.9_" in the energy ranges 0.7-1.5, 1.5-3, 3-8 and 8-20 MeV,
respectively. As can be seen the derived gamma-ray spectrum is an extension
of the x-ray spectrum of Cen A beyond 0.7 MeV. This fact together with the
position of the excess in Fig. I is taken as indication that the observed gam-
ma-ray emission is related to Cen A.

No gamma-ray lines at 1.6 MeV and 4.4 MeV are seen in the energy
spectrum of Cen A in contrast to those reported in ref. 2. The 2_-upper
limits to both lines are (3.4 and 8.0).10-4cm-2sec-l, respectively. It cannot be
excluded that a larger number of unresolved lines (of correspondingly lower
intensity) contribute to the total observed flux.

3. Discussion. In spite of the low statistical significance of the source
detection a discussion of the implications is in order. However, no firm con-
cJusion can be derived from the energy spectrum yet because of the large
uncertainties.

The power law x-ray spectrum as previously measured up to about
I MeV extends to I0 or 20 MeV. Beyond this value the spectrum must steepen
rapidly in order to meet the upper limits set by SAS-2 (Ref 7) and COS-B
(Ref 8) above 35 MeV and 50 MeV, respectively (assuming their validity also
during the time of the balloon observation). Considering the low statistical
significance of the 8 to 20 MeV point (1.9_), the turnover may be even
around 8 MeV.

This steepening may be due to photon-photon absorption, if the source
is sufficiently compact. Following Herterich (Ref 10) and assuming the gam-
ma-ray source to lie within a surrounding isotropic x-ray source, the radius of
the x-ray source should be (1.$ to 1.9).1013 cm depending on whether the
turnover is at 10 or 20 MeV. Assuming the source size to be 10-times the
Schwarzschild-radius, the central object should have a mass of order 5.106M¢_.
The measured gamma-ray luminosity of 3.9-1043 erg/s (1 to I0 MeV) or 7"10 _3
erg/s (0.7 to 20 MeV) would be 796 to 896 of the Eddington limit of this
object (L E = (6 to 8.5).1044 erg/s). If the photon-photon absorption really is
responsible for the turnover of the spectrum, then future measurements should
find a shift of the turnover to lower (higher) energies, when the x-ray source
goes into a higher (lower) intensity state.
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Basically two models have been discussed in the literature, how the
power law photon spectrum can be produced: the one is the Synchrotron-Self-
Compton Model and the other the Thermal Comptonisation Model.

In the first case the existence of high energy electrons is postulated.
These produce infrared or radio photons via the synchrotron process by gyra-
tion in magnetic fields. The synchrotron photons are then scattered by the
same electrons into the x- and gamma-ray range. A synchrotron-self-Compton
model has been suggested by Grindlay (Ref [l) for Cen A. In his model a
sharp turnover of the gamma-ray spectrum is predicted at about 5 MeV.
Within one decade of energy the gamma-ray intensity should drop by more
than 3 decades. The break is caused by the observed turnover of the infrared
spectrum at frequencies above 1014 Hz. The synchrotron-self-Compton model
predicts correlated intensity changes in the infrared and x/gamma-ray range.
Due to the energy dependence of the electron life-time the delay in the
intensity changes should be smaller at gamma-ray energies than at x-ray
energies.

In the Thermal ComptonJsation Model low energy photons (e.g. infrared
photons) are Compton scattered by thermal electrons, which have a kT-value
in the x- or gamma-range. Repeated scatterings of the electrons with the
photons result in an approximate power law spectrum, if the number of scat-
tering processes of each photon is sufficiently large. The power law drops off
at .photon energies of a few kT. In the case of Cen A a value of kT _ 10
mc z would be required together with a small optical thickness for Thompson
scattering (_'T _(: 1) in order to fit the observed spectrum. It has been shown
(ReI 12, 13) that in such a case the Comptonised spectrum is bumpy and
consists of a superposition of a few individual scattering profiles. It could
indeed be that the negative dip in the measured spectrum between 1.5 to 3
MeV - if real - is due to such a negative bump. The present measurement
does not allow to derive this conclusion because of the limited statistical
accuracy. II, however, the dip is confirmed in an observation with higher
sensitivity then this would prove that thermal Comptonisation is operating. No
doubt, Cen A will be one of the very interesting objects to be studied by
GRO, which will be able to determine its spectrum with high precision.

4. Acknowledgement. The authors would like to thank NCAR and INPE for
the successful balloon flight under very difficult conditions. In addition they
are grateful to U. Graser, W. Hofmeister, N. Hubert L. Pichl and F. Schrey.
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