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1. Introduction. From the energy spectra of the heavy nuclei observed by

the French-Danish experiment on HF_3, we have derived the source

spectra of the mostly primary nuclei (C, O, Ne, Mg, Si, Ca and Fe) in the
framework of an energy dependent leaky box model (Engelmann et al. 1985).

The energy dependence of the escape length was derived from the observed
B/C and sub-iron/iron ratios and the presently available cross sections
for C and Fe on H nuclei (Koch-Miramond et al., 1983). A good fit to the

source energy spectra of all these nuclei was obtained by a power law in

momentum with an exponent _ =-2.4+0.05 for the energy range 1-25GeV/n
(Engelmann et al. 85). Comparison with data obtained at higher energy

suggested a progressive flattening of these spectra.
In the present paper we want to derive more accurate spectral indices by

using better values of the escape length based on the latest cross
section measurements (Webber 1984, Soutoul et al. this conference). Our

aim is also to extend the analysis to lower energies down to 0.4GeV/n

(kinetic energy observed near earth), using data obtained by other

groups. The only nuclei for which we have a good data base in a broad
range of energies are O and Fe , so the present study is restricted to
these two elements.

2. Derivation of the source spectra. We work along the same lines as in

Engelmann et al. 1985. We first derive the interstellar spectrum by
"demodulating" the observed spectrum, using the "force field

approximation" (Gleeson and Axford, 1968) ; then we correct the
demodulated flux values for the nuclei of secondary origin produced
the interstellar medium and for the energy loss suffered by the particles

during their propagation. We get the interstellar flux of the "surviving"

primaries J(E), which is related to the source strength dQ/dE by the
relationship :

dE _>ke(E "_E

where_ diis the pathlength for nuclear destruction of the element i in
the interstellar medium and _eiS the escape length, the value of which
is derived in a companion paper (Soutoul et al., 1985). "_/ _E is the

ionization energy loss term and dE/dx is the stopping power of the

particle in pure H.
When applying this step by step procedure, we are faced with two
difficulties : i) if the modulation correction is too large, the

uncertainty on its value will lead to a large uncertainty in the
interstellar flux value. To keep this kind of error at a relatively low

level, we select among the published data those registered in such
conditions (energy range, modulation level) that the modulation
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~l:;~S)h(i~' + 1 J _ .:Q.-JT(E)dEl (1) 

dE ~. A (E») OE r dx J 
dl e 

where")\ di is the pathlength for nuclear destruction of the element i in 
the interstellar medium and A.eis the escape length, the value of which 
is derived in a companion paper (Soutoul et aI., 1985). ()/ OE is the 
ionization energy loss term and dE/dx is the stopping power of the 
particle in pure H. 
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correction on the flux values does not exceed 35_. When this condition is

fulfilled an error of 0.10 GV on the modulation parameter around a mean

value of 0.40GV leads to a maximum error of 10% on the flux value

corrected for modulation, ii) For the flux value registered by a
particular experiment at a given energy, there are two major causes of
errors : the statistical error and a systematic error due to the
uncertainties on the exposure factor of the instrument and on the

atmospheric corrections for balloon experiments. If we renormalize the

data in order to put certain flux values from different experimenters in
agreement we introduce a subjective feeling in the choice of these flux

values. To avoid this problem we do not try to derive from the data the

absolute flux values but merely the spectral indices measured by each
experimenter in given energy ranges.

3. Data base used in this study. Our data base is listed in Table I

Date of _nt Washington },_dulation Type of Selected

Reference measurement neutron monitor parameter particle energy
count rate cj5GV range

Webber 85_1} 1974, July 2290 0.50 0,Fe 0.95-6
Webber 85(1) 1977, Sept. 2360 0.35 0,Fe 0.65-6

Webber 8_1) 1974,77,78 2300 0.50 0,Fe 10.5-i12
HEAO-3_) 1979 Oct. to 2190 0.60 0,Fe 1.3-25

1980 June

Juliusson 74 1971-72 Sept 2350 0.40 0 23-76

Orth & ai.78 1972 Sept 2350 0.40 0,Fe 2.4-11

Maehl & a177 1973 Aug. 2350 0.40 0,Fe 0.85-2.2
Caldwell 77 1974 Sept 2310 0.50 0 5.5-95

Minagawa 81 1975 Sept 2404 0.30 Fe 1.5-8.0

Simon & a180 1976 Oct. 2420 0.30 0,Fe 2.5-630

(1) These data consist of revisited flux values obtained in several
balloon flights and published in Lezniak and Webber 1978 and Webber 1983.

More accurate atmospheric corrections have been applied.
(2) Juliusson et al., 1983 ; Engelmann et al., 1985.

The modulation parameter _ characterising the conditions prevailing at
the time of each experiment can be correlated to the counting rate of the
Washington neutron monitor (Lockwood and Webber 1979, 1981).
The interstellar energy spectra dJ/dE of O and Fe derived from these

selected data after demodulation have been plotted in Fig. 1 as a
function of the momentum of the particle.

4. Results. As can be seen in Fig. 1, the differences between the

experTmental points obtained at the same energy are much larger than the

errors quoted by the authors. As mentioned above this is probably due tou

errors on the geometry and efficiency of the experiments and on the

atmospheric corrections. So we consider separately each experiment, and
for some of them we devide the energy range they cover into several

, energy intervals. For each experiment and energy domain we derive the

spectral index _ of the source strength assumed to follow the law :
dQ/dE = Kp-Y (2)

where P is the momentum of the particle in GeV/c/n. The values of the

index for O and Fe have been plotted as a function of momentum in
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Fig.2 and 3 respectively.

For O the data seem to be consistent with a constant _ index above

4GeV/c/n with a weighted mean value _ 0=2.29+0.03 (Note-that the HEAO
results are significantly above the average ; excluding these data would

lead to a weighted mean _o=2.22+0.04). Below 4GeV/c/n, the index seems
to increase when the momentum decreases, up to_ "J 2.9 atO '_

1.5GeV/c/n. For Fe we find for the weighted mean a value of_Fe=2.36+0.05
which is nearly the same as that found for O at high energy. But the
increase observed for O at low energy does not seem present for Fe,

although the large error bars and the scarcity of the points at low
energy prevent us from drawing any definite conclusion.

The quoted errors on _ are due to the errors on the flux values and to
the spread of the corresponding points. If we include in addition the

error on_ e due to cross section errors on the production of B by
spallation of heavier nuclei and of Fe secondaries by spallation of Fe,

we get the final values _ (H.E.)=2.29+0.06 and _Fe=2.36+0.07. Therefore

a unique power law in momentum does not hold for the O source spectrum.
What about a power law in total energy, which we have used earlier
(Perron et al., 1981)_:

dQ/dE = K' E- _' (3)
Tot

The _' index values from the experimental data have been plotted as a
function of the kinetic energy for O nuclei in Fig. 4. The weighted

mean _ value above 3 GeV/n is again 2.29+0.03 and the same type of
increase is observed when going towards lower energies.
It is worthwhile to stress that this type of increase cannot be due to an
error in the modulation correction (unless the modulation theory is

grossly in error). An error of +0.1GV around an average value of 0.4GV
for the modulation parameter would lead to an error of +0.07 on the

spectral index around 1GeV/n, i.e. about 10 times less than the index
variation observed between 1 and 3GeV/n (interstellar kinetic energy).

4. Conclusion. We find, at least for O nuclei an apparent increase of the

index of the source spectrum below 3GeV/n. Is this low energy steepe-
ning of the spectrum real ? As discussed above, the careful selection of
the data used in this study should prevent the demodulation to be respon-
sible for this result. As concerns the partial cross sections from which

the escape length is derived, the uncertainty in their values may intro-
duce an error on the source abundances. If some energy dependences were

left on the cross section errors, these would propagate into an error on

the source spectral index. It is precisely in the energy region where the

index is changing (0.8 to 3GeV/n) that the cross sections were measu-
red with the best accuracy (Webber,1984). From the quoted errors, we
calculate that a possible energy dependence on q- could be responsible at

maximum for an apparent slope of 0.05, far smaller than the observed

variation.
This apparent increase of the source spectrum at low energy can be
brought together with the flattening of the CNO source spectrum observed
in the TeV energy region (Engelmann et al. 1985). It is in agreement with

our suggestion that a soft component with a source spectral index around

2.7 may be superposed on a common source spectrum, including H and He,
with a spectral index _2.1. In the fewGeV/range, both components would
contribute to the observed flux of heavies, leading to a spectral index
around 2.3 .
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