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ABSTRACT

The longitudinal shower development of EAS observed
in the _y's Eye is used to determine the distribution of
Xmax, the depth in the atmosphere of the EAS maximum.
Work in progress to compare data and Monte Carlo simulations
of proton and iron primaries is described. Preliminary
evidence is in favor of a substantial contribution from
light primaries.

1. Introduction. The overall longitudinaldevelopment of the EAS
detected by the Ny's Eye(l) can be used to determine the depth in the

atmosphere in gm/cm2 of the EAS maximum X_ax" The distribution in Xmax
is in principle sensitive to the composizlon of the primary particles
since iron nuclei and protons will give rise to Xmax distributions that
peak at shallower and deeper depths and have narrower and wider widths,
respectively. It also follows that a mixed composition will have a
broader Xmax distribution than any single source.

In what follows, we discuss the reconstructionof longitudinal
shower profiles and the systematics of determining Xmax distributions
and then discuss work in progress on Monte Carlo simulations,which
include the details of the _y's Eye acceptance, for pure protons,
iron, and a mixed composition.

2. Shower Size Measurement. A fit to the relative time of arrival i

of light to succeeding phototubes in the event-detector plane yields

Rp, the impact parameter of the shower to the detector, and the zenith
and azimuthal angles of the EAS. Measured values of optical gathering
power, efficiencies and electronic gains and pedestals are used to
convert photoelectron yields into apparent brightness, i.e., numbers of
photons arriving at the detector from the source. This can be converted
into intrinsic source fluorescent brightness after correcting for: (a)
directly produced Cerenkov light beamed in the direction of the detector;
(b) Cerenkov light scattered in the direction of the detector due to
Rayleigh and Mie scattering; and (c) atmospheric attenuation of light.
The details of these corrections are described in reference 1. The
intrinsic fluorescence brightness can be translated directly into a
shower size using the known nitrogen fluorescence efficiency.

J

The Cerenkov light production model, and in particular, the
dependence of the Cerenkov light intensity on emission angle has been
checked by using a sample of events seen by both Ny's Eye I and Ny's °
Eye II, a smaller station situated 3.3 km from _y's Eye I. We find
good consistency in size estimates of sections of EAS viewed
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simultaneously at different emission angles by the two eyes.

The size versus depth distributions are fitted with a Gaussian
form and the Xmax and energy of the event determined(i). The Gaussian
form fits most showers well. Figure 1 shows a typical shower profile.
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Figure 1. Typical Longitudinal Shower spheric density

Profile distribution.
There is also an
intrinsic correlation

between Xmax and the shower energy. Showers whose reconstruction
err to smaller Rp and larger oz will have systematically deeper
Xmax and smaller estimated energy while errors that lead to larger

TR_and smaller 0z yield smaller Xmax and larger energy estimates.is is a direct consequence of random errors and the exponential
nature of the atmosphere. Any additional systematic bias in 0z or

Rp will shift the Xmax distributions accordingly.

To reduce these effects to a minimum, we consider events

that are very well reconstructed,with Rp>2.0 km, projected track length
>50°, SRD/RD<.I, SOz<IO° and relative uncertainties in Gaussian

" width, X_ax',and energy of <.4. These cuts also have the effect of
reducing"'theCerenkov subtractions to a level where 50% variation in
the Cerenkov light model parameters do not significantly affect the
Xmax distributions. Since any residual reconstructionbias will
affect data near the tails of the energy distribution,we cut on .7<E<3
EeV, around the maximum of our energy acceptance. We believe residual
systematic effects in this data sample will produce less than a + 50
gm/cm2 shift in the average Xmax. We note that the width of the
Xmax distribution is much less sensitive to systematic errors. We

- estimate the systematic error in the width to be +_10 gm/cm2. The
resultant distribution in Xmax is shown in Figure 2. The average
Xmax for this sample is 730+60 gm/cm2 while the width (standard
deviation) is 120+40 gm/cm2.
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Figure 2. Distributionsof Xmax in For the case of
gm/cm2. iron primaries a

superposition model
is assumed. The

Monte Carlo follows hardons and electromagneticparticles down to
1/30th of the primary energy after which parameterizationsof shower
development are used. We use these showers to predict the number of
photoelectrons and relative time delays observed in the detector and
generate fake events which are then passed thru the same reconstruction
and analysis programs as the real data. This work is in progress but
preliminary indications are that the depth of maximum distribution for
heavies is substrantially narrower than that for protons. It is
important to note that comparing the observed Xmax distributions to
theoretical predictions without taking into account the details of
detector response can lead to misleading conclusions.

5. Conclusions. Although we are not yet ready to quote quantitative .
comparisions between the data and Monte Carlo simulations, preliminary

evidence based on comparisons of the widths of the Xm@x distribution
to Monte Carlo is in favor of a substantial contributlon from light
primaries to the cosmic ray composition at these energies. Detailed
comparisons will be forthcoming.
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