EAS SPECTRUM IN THE PRIMARY ENERGY REGION ABOVE 10¹⁵ eV BY THE AKENO AND THE YAKUTSK ARRAY DATA

D.D.Krasilnikov, S.P.Knurenko, A.D.Krasilnikov, V.N.Pavlov, I.Ye.Sleptsov, V.P.Yegorova

Institute of Cosmophysical Research & Aeronomy, Lenin Ave., 31, 677891 Yakutsk, USSR

ABSTRACT

The EAS spectrum on scintillation density ρ_{600} in primary energy region $E \simeq 10^{15} - 10^{20}$ eV on the Yakutsk array data and recent results of the Akeno is given.

1. Introduction

At present the EAS observations at sea-level take the widest energy range of primaries. The observed EAS spectra on particle number N in a shower at E $\lesssim 10^{18} eV$ and on particle density ρ_{600} at a distance R=600 m from axis at $\bar{E}_{>}$ 3.10¹⁷eV are obtained. Either for the recovery of the spectrum on E or for the comparison it is reasonable to obtain these results in aform of "corrected" spectra where effects of the development fluctuations (different for N and ho_{600}) and N and ρ_{600} measurement dispersions (different for various arrays) are taken into account. To consider the EAS spectrum on the whole it is required also to use in the analysis a common basic unit of measurement of the shower particle number (density) and a common parameter of the shower size. Yet it is reasonable and possible only on the basis of ρ_{600} : there is the experimental estimation of ρ_{600} and E_ relationship and only in the Akeno array data there is the possibility of transition from N to ρ_{600} .

2. Results

a) Yakutsk. In the central part of the array [4] the registration of showers was triggered by a small master (SM) and on the whole array - by a big master (BM). For the analysis the shower events were selected with an axis within fixed receiving areas (different for various ranges of ρ_{600}) and for those periods of the array operation T, when ~100 % efficiency of registration and levels of $\delta\rho_{600}$ summary relative deviations of fluctuations of the shower development and their measurement dispersions obtained from a total measurement simulation [5] and accepted for the analysis [1,2] were provided. Each shower was individually treated as follows: 1) from approximation of measured particle densities by $\rho(\mathbf{R})_{i} \propto \mathbf{R}^{-n} \mathbf{i}$ [5] \mathbf{n}_{i} and $\rho_{600,i}$ were determined; 2) $\rho_{600,i}$ was reduced to the zenith angle $\theta = 0^{\circ}$, atmospheric temperature 240 K and pressure 1006 mb (ρ_{600} and \mathbf{E}_{o} relationship at the atmospheric depth X=1025 g.cm⁻² at these parameters was found) using the absorption length measured in the experiment $\lambda(\rho_{600}) = (218 \pm 15) + (172 \pm 15) \cdot \sec \theta$, g.cm⁻², $\theta < 60^{\circ}$, a barometric coefficient $d_{p} = -0.25 \pm 0.03$ % per mb and temperature coefficient $d_{T}(\rho_{600}) = 0.30 \pm 0.11$ % per K. For $-0.35 < \lg \rho_{600} < 0.6$ as an intermediate parameter of shower size the $\rho_{300,i}$ having the absorption length $\lambda(\rho_{300}) = 251 \pm 21$ g.cm⁻², $\theta < 40^{\circ}$ and $\rho_{600} = (0.14 \pm 0.01) \cdot \rho_{300}$

Data used in spectrum construction on the whole have following common characteristics:

	$lg[\rho_{600}, m^{-2}]$	δρ600	STΩ ,m ² s·sr	Number
SM	-0.35 + 1	0.40+0.17	(0.16+4.33)·10 ¹³	oi events 534
BM BM	1 +1. 5 > 1.5	0.22 . 0.21 0.21	(1.88+4.40) •10 ¹⁵ 5.69 •10 ¹⁵	109 79

Introducing into the observed intensities the corrections for the summary effect of the development fluctuations and measurement dispersions with the correction factor [2] K= $0.98 [1 + \delta \rho_{600}^2] -0.5 \mathscr{R}(\mathscr{R}-1)$ the differential $f_0(\rho_{600})$ and the integral $F_0(>\rho_{600})$ corrected EAS spectra (see Figure) were obtained. The differential spectrum for $-0.3 < \lg \rho_{600} < 1.7$ displays significant irregularities and at the description by $f_0(\rho_{600})$

= $A(\rho_{600}/10)^{-2e-1}$ has the following parameters:

lg peoo	-0.3+0.5	0.5+1.2	1.2+1.7	1.7+2.3
lg A	-13.37+0.04	-13.63+0.02	-13.92+0.05	-13.20+0.09
æ+1	2.95.0.04	3.58+0.05	2.45+0.10	3.43+0.11

The spectrum on ρ_{600} obtained by the relationship $\rho_{600} = (2.05 \pm 0.11) \cdot (Q_{400} / 10^7)^{0.99 \pm 0.02}$ from the transformation of the density spectrum of the shower atmospheric Cerenkov light Q_{400} [1] and having the form of the spectrum of **loss in atmosphere confirms** the change for $-0.3 < \lg \rho_{600} < 1$. In the Figure a dashed line corresponds to the observed spectrum on Haverah Park data[6] reduced by us to the scintillation density ρ_{600} due to [7]. In this case according

to [8] the effect of $\delta \rho_{600}$ at $\lg \rho_{600} \leq 1$ is small ($\leq 10\%$ on intensities) and at $\lg \rho_{600} \geq 1$ somewhat increases. Taking into account this fact we find a satisfactory agreement of the results of both arrays. It is remarkable that the Haverah Park spectrum reveals also the steepening tendency for $1.8 \leq \lg \rho_{600} \leq 2.3$.

b) Akeno. The observed EAS spectrum at sec $\theta = 1.1$ (at the depth 1011 g.cm⁻²) is given by $f(N_e)dN_e = A(N_e/10^6)^{-\infty}N^{-1}$ with $A = (1.2 \pm 0.2) \cdot 10^{-13}m^{-2}s^{-1}sr^{-1}part.^{-1}$, $\Re_N = 1.49 \pm 0.17$ for $5 < \lg N_e < 6$ and $\Re_N = 1.80 \pm 0.12$ for $6 < \lg N_e < 8$. Some corrections were made: the spectrum is reduced to the Yakutsk level 1025 g.cm⁻² with absorption length λ (N_e) = 235 g.cm⁻²; the effect of the shower development fluctuations was taken into account on [9] with average correction factor $\overline{K}_{\delta} = 0.89 \cdot [1 + \delta N_e^2]^{-0.52} N^{(2N-1)} = 0.77$ where the deviations were taken according to [10] to be 0.7 for $5 < \lg N_e < 6$ and 0.44 for $6 < \lg N_e < 8$.

From [11,12] we find $\lg \rho_{600}^* = \lg \left[\rho_{600,e}^* + \rho_{600,\mu}^* \right] = 0.961 \, \lg N_{e} - 7.46$ at the depth 966 g.cm⁻² at T = 279 K.

: 1

Recounting ρ_{600} to depth 1025 g.cm⁻² with λ (ρ_{600}) = 390 g.cm⁻² at T = 240 K with $\alpha_m = 0.3$ % per K and to the Yakutsk basic unit of muon equivalent having the relationship u_{μ}/u_{a} = = 1.15 with the electron equivalent unit [3] the relationship ig $\rho_{600} = 0.96 \cdot \text{lgN}_e - 7.534$ is obtained.

In the Figure the differential and integral corrected

EAS spectra on ρ_{600} from the Akeno data are given. For 1g ρ_{600} < 0.12 we obtain: $f_0(\rho_{600})d\rho_{600} = A_0(\rho_{600}/10^{-1.80})^{-1}d\rho_{600}$ with $A_0 = (1.2 \pm 0.2) \cdot 10^{-5 \cdot 297} \text{m}^{-2} \text{s}^{-1} \text{sr}^{-1} (\text{part}./\text{m}^2)^{-1}$, $2e = 1.55 \pm 0.18$ for $-2.76 < \lg \rho_{600} < -1.80$ and $2e = 1.88 \pm 0.13$ for $\lg \rho_{600} > -1.80$. 3. Conclusion

In the considered 5-decade energy range the EAS spectrum on ρ_{600} reveals significant irregularities. For $\lg \rho_{600} < 1.2$ the steepening(rather consecutive) of inclination of $f_{\rm s}(\rho_{600})$ with increase of ρ_{600} occurs: $-2e-1=-2.55\pm0.18$; -2.88 ± 0.12 ; -2.95 ± 0.04 and -3.58 ± 0.05 for $\Delta \lg \rho_{600} = -2.76\pm-1.8$; -1.8+-0.3; -0.3+0.5 and 0.5+1.2, respectively. At $\lg \rho_{600} > 1.2$ the irregularity is observed: -22-1 = -2.45±0.1 at 1.2 < lg $\rho_{600} < 1.7$ and $-2e - 1 \leq -3$ at $1.7 < \lg \rho_{600} < 2.3$. We assume that four shower events with $\lg \rho_{600} > 2.3$ from the spectrum of [6] if to eliminate the effects of methodical character could indicate the possible existence of the other irregularity in the range out of the control of the Yakutsk array.

References

- Krasilnikov, D.D. i dr., (1983), <u>Kosmicheskie luchi</u> <u>s energiei vyshe 10¹⁷eV</u>, Yakutsk, 117.
 Krasilnikov, D.D. i dr., (1985), Izv.AN SSSR, ser.fiz.
- 49, No.1.
- 3. Nagano, M. et al., (1984), J. Phys. G, <u>10</u>, 1295.
- 4. Kerschenholz, I.M. et al. (1973), Proc. 13-th ICRC, Denver, 4, 2507.
- 5. Dyakonov, M.N. et al., (1981), Proc. 17-th ICRC, Paris, <u>9</u>, 166.
- 6. Bower, A.J. et al., (1981), Proc. 17-th ICRC, Paris, 9, 166.
- 7. Bower, A.J. et al., (1983), J. Phys. G, 9, L.53.
- 8. Brooke, G. et al., (1979), Proc. 16-th ICRC, Kyoto, <u>8, 13.</u>
- 9. Kalmykov, N.N., (1969), Yadernaya fizika, 10, 121.
- 10. Kulikov, G.V., (1973), Thesis, MGU.
- 11. Hara, T. et al., (1983), Proc. 18-th ICRC, Bangalore, 11, 272.
- 12. Nagano, M. et al., (1984), J. Phys. Soc. Japan, <u>53</u>, 1667.