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SUMMARY

A procedure is described for improving a linear nonproportionally damped
analytical model of a structure. An approximate analytical model is assumed
to be available. Given also is an incomplete set of measured frequencies,
damping ratios and complex mode shapes of the structure, as may be obtained
from a vibration test. A method is developed which finds the smallest changes
in the analytical model such that the improved model matches the measured
modal parameters. This report includes a discussion of the problem, the deri-
vation of the aldorithms and a description of the computer implementation. An
example of an application of the procedure to improve an analytical model is
presented.
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INTRODUCTION

With the increasing complexity and accuracy requirements of modern aero-
space structures, system identification may be perceived as an attractive
alternative to intuitive validation of analytical models. In recent years,
within the framework of linear undamped systems, many procedures have been
proposed to improve an analytical model by using measured modal parameters.
Typical publications which are related to the method developed in this report
are represented by Refs. 1-7.

Analytical mass and stiffness matrices are often available from some
source, such as a finite element analysis. Certainly, the resulting model is
only an approximate representation to the structure and contains errors of
undetermined magnitude. On the other hand, vibration tests result in incom-
plete sets of natural frequencies and mode shapes of the structure. These
data also contain errors whose magnitudes are unknown. Assuming 1t is desired
to have an analytical model which will be consistent with the analysis and the
test, Berman and wei6 applied the Lagrange multiplier method of Baruch and Bar
Itzhack3 to minimize a weighted matrix norm and obtained an improved model
which exactly predicted the measured modal data and also minimized the changes
in the analytical model.

The acceptability of the original analytical model as a baseline for fur-
ther analysis depends upon the size of the minimum changes. The requirement
for a small modification implies that the analytical model is a good represen-
tation of the structure. Evaluation of these changes is based on the user's
judgement and statistical information regarding the changes. In contrast with
more conventional procedures which require trial-and-error adjustment of the
original model to match the test data, this method yields an improved model
and information of possible deficiencies in the test data or analytical model.
Applications of this procedure to improve the analytical models of large

structural systems have been reported6’7.



The procedure mentioned above, among others, 1s based on the assumption
that the system possesses only negligible damping or that the damping 1s pro-
portional and that the measured modal parameters are real. However, there are
cases in which damping effects must be taken into account. For instance,
ground vibration tests of a helicopter fuselage have shown that the modal
damping ratios of several lowest modes are over 12 percent and the mode shapes
are essentially comp]exs. Therefore, it was necessary to refine the previous
method so that the more realistic, nonproportionally damped system and the
corresponding modal parameters may be equally treated. In the analyses repor-
ted hereafter, the system damping can be of any type so long as it can be rep-
resented by a real symmetric matrix coefficient of the velocity vector in the
dynamic equation.

Primary concerns in the present study are as follows:

1. The method must be applicable to large structural systems. Let the
number of degrees of freedom be n and the number of measured modes be m. Typ-
1cally, n is of the order of hundreds or thousands and m 1s much less than n.
Methods involving extensive iteration or repeated eigensolutions may be prohi-
bitively expensive and the convergence problem would always involve some
uncertainty. Methods requiring the solution of sets of equations of order n2
would also be impractical.

2. Besides the analytical mass (MA) and stiffness (KA) matrices, the
present procedure requires an analytical damping matrix (CA). Each of these
analytical matrices is to be minimally changed to agree with the test data.
It is acknowledged that no general rules currently exist for formulating a
damping matrix as are those for mass and stiffness matrices. One way to
obtain CA in the first approximation is to represent it as a proportional
matrix which is a linear combination of MA and KA' This step, of course,
involves considerable engineering judgement and the accuracy may not be high.
It should be noted that the procedure will modify this matrix to make it
appropriately nonproportional if the modes are complex.



3. Unlike its undamped counterpart, a damped system has complex-valued
modal matrices @ and ¢. In order to guarantee that the improved matrices are
real symmetric, the constraints which must be imposed on the system equations
render the problem considerably more complicated than would otherwise be the
case.

A method was developed which is applicable to realistically large models,
is computationally efficient, and satisfies all the theoretical requirements,
except that further improvement of the identified stiffness matrix is
required. Further research is necessary to eliminate this deficiency. The
modified analytical model is, however, a distinct improvement over the orig-
inal.
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SYMBOLS

Matrix defined in Eq. (4)

Matrix defined in Eq. (5)

System damping matrix

Coefficient matrix, Eq. (14)

GH, defined in Eq. (27c)

Matrix defined in Eq. (15)

Matrix defined in Eq. (22c)

Matrix defined in Eq. (27a)

Matrix defined in Eq. (22a)

Matrix defined in Eq. (27b)

Matrix defined in Eq. (22b)

Identity matrix

Svstem stiffness matrix

WK K WK

Number of test points

System mass matrix

Number of measured modes

Number of degrees of freedom

Matrix defined in Eq. (27d)

Matrix defined in Eq. (27e)

Real part of ¢

Imaginary part of ¢

Real part of Q

Imaginary part of ¢Q

Weighting matrix

Displacement vector, Eq. (1)

Vector of system state variables, Eq. (3)
Matrix defined in Eq. (27f)

Matrix consisting of Lagrange multipliers, Eq. (18)
Matrix consisting of Lagrange multipliers, Eq. (18)
Matrix consisting of Lagrange multipliers, Eq. (18)
Matrix defined in Eq. (14b)
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Superscripts

()
(")

Subscripts

D X R = O >

Weighted matrix norm
Y-YT

Matrix consisting of Lagrange multipliers, Eq.

Rectangular complex mode shape matrix
w>le
K
Lagrangian function
Dragonal complex matrix consisting

of damping ratios and natural frequencies

Differentiation with respect to time

Complex-conjugate of a matrix
Matrix transpose

Conjugate transpose of a matrix
Moore-Penrose inverse of a matrix

Analytical matrix
System damping
Imaginary part
System stiffness
System mass

Real part

(14b)



THEORETICAL DEVELOPMENT
Theoretical Background

A Tinear structural system of n degrees of freedom is described by the
matrix equation

MX + CX + KX = O (1)

where M, C and K are real symmetric constant coefficient matrices. With the
state-space representation, Eq. (1) can be rewritten as

AY + BY = 0 (2)
where
X
Yy = (3)
X
A = [ﬁ g] (4)
B = ['g 2] (5)

By the use of Eqs. (2) to (5), the following orthogonality relationships are

obtained:
- -T - -1
oQ Q
-¢ ] A ,_(b | = I (6)
- AT - -
*Q oQ
¢ ] B & | = -4 (7)

or equivalently,

T T T

' Mo+ QodMO+ o CoO=1 (6a)



and

Q ¢T Mo g - @T Ko =@ (7a)

where @ is a complex-valued diagonal matrix containing modal damping ratios
(real part) and natural frequencies (imaginary part) and ¢ is the correspon-
ding mode shape matrix. In this analysis ¢ is a rectangular matrix and Q is
diagonal, of order m. With these modal parameters, the dynamic equation (1)
can be cast in the form of

Mo 92 +Coa+Ko=0 (8a)

Given @ and &, it can be shown that if M, C and K satisfy Eqs. (8a) and
(6) then they also satisfy Eq. (7). In other words, Eqs. (8a) and (6) imply
Eq. (7), but Eqs. (8a) and (7) do not imply Eq. (6) unless 9 is nonsingular.
Therefore, Eqs. (8a) and (6) have been selected to improve the analytical
model since it is desired to include rigid body modes if the system has free
boundary conditions.

Intuitively, it might seem appropriate to improve M, C and K by directly
identifying A and B of Eqs. (4) and (5). Unfortunately, this cannot be done.
The reason is that the optimization techniques would distribute variations to
all variables involved and, for example, the upper-left portion of the modi-
fied matrix will no longer to be precisely zero, which is certainly unaccep-
table. Thus, it is necessary to take the more difficult analytical approach
of specifically identifying the physical matrices.

Full Mode Computation

Since in practice, the degrees of freedom measured in a vibration test
are only a small portion of those specified 1n the analytical model, an inter-
polation procedure is employed to compute the modal displacements at the
unmeasured degrees of freedom. This preprocessing procedure, referred to as
"full-mode computation," has been discussed in Ref. 6. A slight modification
is made here to include the system damping.



Let Qi be the ith column of the mode shape matrix ¢. The portion of ¢1
whose elements are measured is denoted by ¢11 and the rest by ¢21. With this
coordinate transformation, Eq. (8a) can be written as:

M, M c. ¢ K. k1l le..
L W] I L U T b W11 I A 1 (8b)
L Y A el ¢ Kokl e
2 Mg 2 G 2 Kal| (%23

where, for the ith mode, Qi

titioned as shown. At the start of the identification procedure, M, C and K
are the analytical matrices My, C, and K,. It is apparent from Eq. (8b) that

is the measured eigenvalue and M, C and K are par-

0p; = - (2, + 2;¢, + k)™ (2 + 2,05 + K)oy (9)

Because analytical matrices are involved in the equation, the accuracy of
¢21 solved from Eq. (9) is expected to compare to that of MA’ CA, or KA’ even
if Qli
exactly predict ¢11, which is the only data actually measured. The first step
in the procedure is to compute the full modes from Eq. (9). The following

1s exact. Note that even if 021 is inexact, the improved model should

analysis uses the full, but incomplete, modal matrices ®(nxm) and 2(mxm).
Improvement of Mass and Damping Matrices

The basic equation to be used for improving analytical mass and damping
matrices is the orthogonality relationship, Eq. (6a). Since m < n, given ¢
and 2, there are infinite sets of M(nxn) and C(nxn) satisfying Eq. (6a). A
unique set of mass and damping matrices will result if, in addition to satis-
fying the orthogonality relationship, a norm

e = [y (M-My) wyll + [ (c-cp) well (10)
1s also minimized, where wM(nxn) and wc(nxn) are arbitrary real symmetric,

nonsingular weighting matrices. Let ¢ = R + iS and ¢ = U + iV; then the real
and imaginary parts of (6a) are separated into



R'MU + UTMR - STMV - vTMS + RTCR - sTCS = I (11a)

T T T T T

R'MV + VMR + S'MU + U CR (11b)

[[]
o

MS + RICS + S

Define the Lagrangian function

m m
‘l’=e+z Z(A

(R™MU + UTMR - sTwv - vTMs + RTcr - sTcs - 1),
i=1 j=1 "W 1

R)4

T T T T )

T o T T
# 1 1 (A.: (R'MV + VIMR + STMU + U'MS + R'CS + S'CR (12)

i=1 3=1 Y W

where AR and AI are Lagrangian multipliers. Differentiating ¥ with respect to
M and C, respectively, and equating the results to 0 yield

_ 1,,-2 T T T T T T
M= My - > Wy (RARU + UART - SAQVY - VARS' + RALVT + VAR
T -
+SAUY UAIST) wM2 (13a)
_ 1,,-2 T T T Ty -2
C=Cp -5 W" (RAR' - SA.ST + RAST + SAR') W (13b)

Obviously, requiring A, and A; to be symmetric in Egs. (13a, b) is equi-
valent to imposing the constraints of M and C to be symmetric in Egs. (lla,
11b). The Lagrange multipliers (AR)ij and (AI)ij may be solved numerically
from the following set of equations obtained by substituting Egqs. (13a, b)
into Eqs. (11la, b),

Eriieg | Erodikag) [Pl o [R)14 (142)
o likes | E22ikeg| |Mlke| {31045

which, for simplification, may be written as

EA = A (14b)

where

T T T T T T
R=2 (I -R MAU - U MAR + S MAV +V MAS - R CAR + S CAS) (14c)

>
1



T T T
MAV +V MAR + S

T T

A, =2 (R

I S+

T
MgU + U'MyS + R'Cy CAR) (14d)

. . -2 -2
The submatrices Ell' E12, E21 and E22 are functions of R, S, U, V, wM and wc
and their explicit function forms are given in the Appendix. In Eq. (14), a

repeated index in a product denotes summation over the range of the index.

Since AR and AI are symmetric, there are m(m + 1) unknowns along with
m(m + 1) equations in Eq. (14). In the implementation of the technique, the
coefficient matrix E which has m{(m + 1) x m(m + 1) elements is formulated by a
FORTRAN program. The improved mass and damping matrices, M and C, result when
AR and AI are solved from Eq. (14) and are numerically substituted into Egs.
(13a, b).

In this section, a numerical method has been used to solve m(m + 1) equa-
tions. In practice the number of measured modes is small enough to make this
solution economically practical.

Improvement of Stiffness Matrix
Given the full modal matrices ¢ and @, the improved M and C, and the ana-

lytical stiffness matrix KA’ an improved stiffness matrix K must satisfy the
dynamic equation

¢Tk = - (QZQTM + Q@TC) Wy (15)
or
ok = f (15a)
and the constraints
K=k (16a)
k=K' (16b)
1

in which an asterisk denotes the conjugate transpose of a matrix, ¢ = NE 3,
k = wK K wK and NK (nxn) is an arbitrary, real symmetric, nonsingular weight-
ing matrix. The constraints, Eqs. (16a, b), guarantee the improved stiffness

10



matrix to be real symmetric. A unique set of K will result if k satisfies
Egqs. (15), (16a,b) and also minimizes the norm

e = HNK (K - KA) NKH = Ilk - kAH (17)
Define
Ton Te - f T *
= . - f).. + a*. - f)*,
Y= ¢+ izl jzl a5 (¢ )1J + oty (¢ k f)1J
n n | T
- k* * * - .
+ 121 jzl Bij (k - k )ij + Bij (k k)ij T (k - k )iJ
+ oy, (k- kT)t.} (18)
1j ij

Note that it is no longer practical to solve the equations numerically
for the Lagrange multipliers g and y because their order is n. A closed-form
representation for the improved stiffness matrix is necessary. Differenti-
ating ¥ with respect to k and equating the result to zero yield

(k = kp)* + ¢ + 8- B* +y - Y =0 (19)

The reason for defining Lagrangian function in the form of Eq. (18) is now
clear since if v is differentiated with respect to k* rather than k, the same
equation, Eq. (19), is obtained. Taking the conjugate transpose of Eq. (19)
and adding it to Eq. (19) result in

2 (k - kp) + 90 + (¢a)* + 0+ 0% =0 (20)

a)

where 0 = y—yT and the relationship k-kA = (k-kA)* has been used in the equa-

tion. Premultiplying Eq. (20) by ¢T, applying Eq. (15), and noting that ¢T¢

is nonsingular, then

a = - (610! o) + oT(0vem)] - (6T)h oTawe (21)

11



The Lagrange multipliers a and a* can be eliminated by substituting Eq. (21)
into Eq. (20) which, after some algebraic manipulations, results in

k=ky+g+h (22)
where
- i - *
g =6 (6T0)7 (7 - £+ [steT0) ! (£ - )]
- *
L eTe) e (f - £y (22a)
? A
i * -1 *
v lo" (f - fA)*] o (o70)!
L
i - - *
h = --% 1 - 4(s') 1¢T] (0 + %) [I - 4(s79) 1¢T] (22b)
A= o'k (22¢)
Applying the symmetric condition Eq. (16b) to Eq. (22) yields
g+h=g +h (23)

Premultiply and postmultiply Eq. (23) by ¢* and ¢, respectively, and from Eq.
(22b), note that h'¢ = 0. Then

#*he = ¢* (g' - g) ¢ = Q (24)
Solving Eq. (24) for © + o*
w0+ 00 = -2 (w0 q )] (25)

in which (d>*Z)+ is the Moore-Penrose inverse9 of o*Z,

Therefore, the improved stiffness matrix becomes

2 1 =2py-2

* - - - -
K = Ky + [(zw)+ z*] Q(z*e)t 7* - WeF - (WKZF)* + 5 W “PHY (26)
where
G=0 (o wkz )-1 (27a)
H=qa'M+q0lC+ @TKA (27b)

12



F=0GH (27¢)

P=g [@TH* + (<I>TH*)*] G* (27d)
- -2 - -2 eyl* o1 -2 T -2

0= o {2 (F = F) + [WF - " FuZ (07 - P} o (27¢)

Z=1-Wl6e (27¢)

The matrix inversions required for the evaluation of the improved damping mat-
rix are Nkz and (¢TWE2 )'1. Neither will cause difficulty since the first one

is a chosen weighting matrix and the other is of order m.

Two important features are related to the selection of weighting matri-
ces. First, the present 1dentification is based on the minimum-norm approach,
thus, the chosen weighting matrices reflect, in a sense, the confidence level
in each element of the original analytical model. Second, the improved mass
and damping matrices are used to identify the stiffness matrix. For large
structural systems, it is quite impractical to specify confidence levels for

all elements of system matrices. A convenient and physically reasonable
damping identification and then M

choice 1s to use MR as the weighting matrices for mass and
“V2Z for stiffness identification. Other
options, provided in the "Computer Implementation" (see page 19), are identity

matrix and user supplied diagonal matrices.

Note that the analysis up to Eq. (23) is exact. Numerical solution for ©
from Eq. (23) would be prohibitive because the unknown matrix is of order n.
Eq. (24) 1s obtained through pre- and post-multiplying h by ¢* and 4. The
rank of ¢*h¢ in Eq. (24) is at most m (the rank of ¢) which is in general less
than that of h. It is believed that the analysis is only approximate after
Eq. (24) because of the reduction in rank due to the pre and post multiplica-
tions. The inexact orthogonality check in the example are explained by this
consideration. However, it appears that a similar procedure is exact in case
of undamped system identificationlo. Further research in this area is
required,

13



COMPUTER IMPLEMENTATION
General Description

Fig. 1 summarizes the computer program designed for improving mass,
damping and stiffness matrices described in this report. A separate program,
AMIR, 1s used to reorder analytical matrices on sequential files to place test
degrees of freedom in the upper left of each matrix (see Eq. (8b)) before
invoking the present program.

The program performs the following functions:

(1) Input and validate data. The data input include n, m, £, test modal
parameters (natural frequencies, damping ratios and mode shapes) and weighting
matrices (optional).

(2) Full mode computation. If m < n, Eq. (9) is solved to compute the
full modes. A user option is available to ignore the frequency dependent
terms (Guyan reduction) or using LoL” (see Ref. 6) decomposition to solve Eq.
(9) exactly.

(3) Normalize the mode shapes by using the orthogonality relationship,
Eq. (6a).

(4) Formulate E and & in Eq. (14) and solve for Lagrange multipliers.
The CPU time spent in performing this job depends on the number of measured

modes, m, and may be the most time consuming step if m is not small.

(5) Compute the improved mass and damping matrices by using Eq. (13) and
check the orthogonality relationship, Eq. (6).

(6) Compute the improved stiffness matrix by using Eqs. (26) and (27)
and check the orthogonality relationship, Eq. (7).

14
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FULL MODE
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FORMULATE COMPUTE AND
SOLVE FOR
E, A . —= WRITE AM, C,
AR AND AI
EQ. (14) M, C
COMPUTE COMPUTE AND

COEFF,

IN (27)

f——= WRITE & K
AND K
Figure 1. Program AMIMP.



(7) The improved mass, damping and stiffness matrices are 1isted and
placed on sequential files and statistical data is computed and listed. This
data consists of: RMS of original matrix, RMS of changes, the ratio of the
preceding, the mean absolute ratio of the diagonal changes to the original
diagonals, the RMS of the changes divided by the corresponding diagonal ele-
ments, i.e., the square root of the mean of

2
LM - MOT /(M x My )

i,J ii JJ

1/2

In addition, the 50 largest changes are printed.

Fourteen sequential files are used in the program, one for the input
data, 3 for analytical matrices (MA, CA, KA), 3 for improved matrices (M, C,
K) and the rest are working files. At the completion of the implementation,
the analytical matrices will be preserved and three files will contain the
improved matrices.

Numerical Schemes

(1) The LDLT decomposition used to compute full modes is the same as
that described in Ref. 6. This algorithm performs lower-diagonal-lower trans-
pose decomposition of a symmetric matrix and is designed for large matrices
which do not fit 1n core. For details, see Ref. 6.

(2) E in Eq. (14b) is a full matrix containing m(m+1) x m(m+1) elements.
Let E(p,q) be the (p,q)th element of matrix E and (Ers)iklj be the (i, k, ¢,
J)th element of Epe (r=1,2; s=1,2) as shown 1n the Appendix. Then the coeffi-
cient matrix E is formulated as follows

E(psa) = (B )ig;
where
p=(i (i-1)/2) + for r=1
= (i (i-1)72) + j + m (m + 1)/2 for r=2

16



g = (k (k-1)/2) + 2 for s=1
= (k (k-1)/2) + 2+ m (m + 1)/2 for s=2

i,d,ks2 =1 tom

The vector & in Eq. (14b) contains m (m+1) elements. If A(p) denotes the pth

element of A and (AR)ij’ (AI)iJ the (i,j)th element of Bps By respectively,
then
A(p) = (AR)’IJ or (AI)'IJ
where
p=(i (i-1)/2) + ] for a(p) = (8g);
= (i (i-1)/2) +j + m (m+ 1)/2 for a(p) = (87)4;

An LU decomposition algorithm is then applied to solve A from Eq. (14b).

(3) The following algorithm (Ref. 11) 1is used to compute the Moore-
Penrose inverse (A+) of an arbitrary rectangular matrix A (rxs), r 2 s.

1. Compute C=A*A. Note that the size of C(sxs) is no larger than
that of A(rxs).

2. Use LU decomposition to find nonsingular matrices P and Q so

that
110
2
PCQ=1_= |--{--
2

where I is the identity matrix of the rank of C~.
3. Compute S = QIOP.

4. Compute C* = (CS) (CS) C.

17
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5. Compute At = cax,

Since (AT)+ = (A+)T, it 1s AT, rather than A, which must be
used to compute AT for A (rxs) in steps 1 to 5, if r < s,

User Options
There are some user options in the program:

(1) Input/Output

ITYP = 0 normal input
1 special NASTRAN input
IRITE = 0 no matrix output

1 diagonal element output, with ratio changes
2 full matrices (analytical and changes)
(2) Analytical damping matrix
ICOP = 1 user supplied matrix
2 proportional damping matrix (can be null matrix)

If ICOP = 2, then CA = COEM x MA + COEK x KA’ where COEM and COEK
are user supplied coefficients.



Full mode
FDEP = 0
=1

FMOD = 0
=1
Weighting
IWM =20
=1
= 2

IWC =0
=1
=2
IWK = 0
=1

= 2

computation

frequency independent (Guyan reduction)

frequency dependent

full program execution

stop when the mode computation finishes
matrices
WM =1
-2
Wy = M
wﬁz = user supplied diagonal matrix
NC = ]
-2
We = Ca
WEZ = user supplied diagonal matrix
NK =1
-2
WK =M
Niz = user supplied diagonal matrix

19



A NUMERICAL EXAMPLE

A 10 DOF Tumped mass model and the corresponding analytical mass, stiff-
ness and damping matrices are shown in Fig. 2. Eigenvalues and eigenvectors
of the system were obtained by using Kaman's computer program, DYSCO. Fig. 3
lists computed eigensolutions of the first two modes (m=2) with five test
points (2=5). The "measured" modes 2 and ¢ were simulated by perturbing up to
10% the computed @ and the real part of computed ¢ and multiplying the imagin-
ary part of computed ¢ by 100. With @, ¢, MA’ CA and KA, the procedure des-
cribed 1n this report was then applied to improve the analytical model. The
results are shown 1n Figs. 4 and 5. In Fig. 4, the diagonal elements of MA
and M and the percentage change of these diagonal elements are listed on the
first three columns. Columns 4 and 5 are maximum absolute changes of the ele-
ments beyond the diagonal element in each row and the percentage change with
respect to the corresponding diagonal element 1n MA‘ In this example, both
the maximum percentage change of column 3 (28%) and column 5 (33%) appear 1n
the 3rd row of the mass matrix. For the damping matrix, the maximum percen-
tage change of the diagonal elements is 8.5%. Three columns (9 to 11) which
list the sub-diagonal element in each row of CA and C and the percentage
change with respect to corresponding CA element are also included. Columns 12
and 13 give the maximum absolute change of element beyond the diagonal and
sub-diagonal ones 1n each row. Similarly, percentage changes of the diagonal,
sub-diagonal elements and the maximum change in each row are given in Fig. 5
for stiffness matrix.

Given in Fig. 6 is a partial validation of improved model by checking the
orthogonality relationships, Eqs. (6a) and (7a). As shown in the table, the
improved mass and damping matrices excellently satisfy Eq. (6a) with numerical
errors of order 10'8. The improved mass and stiffness matrices, however, do
not satisfy Eq. (7a) as well. The resultant matrix is very close to the mea-
sured 9 except that the second damping ratio here reads -0.01414 rather than
0.00916. The off-diagonal terms are 1n error by about-10-3. In this regard,

improvement of stiffnes matrix is only partially successful.
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An eigenanalysis has been performed on the improved model. For compari-
son, Fig. 7 lists the first two modes of the improved model, as well as the
measured modes duplicated from Fig. 3. It is noted that the imaginary part of
Q and real part of ¢ of the improved model are almost identical to their mea-
sured correspondence. However, the real part of @ and imaginary part of ¢ are
in error. Again, this is attributable to an imperfect improvement of the
stiffness matrix.
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COMPUTED MODES MEASURED MODES

-0.002486 + 0.49861 -0.002586 + 0.52861

€

Q=
-0.009555 + 0.97741] -0.009155 + 0.9374
0.1119-1.46E-61 -0.2159-1.6E-71] [ 0.1189-1.46E-41 -0.2259-1,6E-51]
0.3301-3.99E-61 -0.6064-4.2E-71 0.3401-3.99E-41 -0.6364-4,2E-5i
0.7008-6.54E-61 -0.9239-4.7E-7i| ¢ = | 0.6808-6.54E-41 -0.9539-4.7E-5i

0.8513-6.34E-6i
0.9830-2.35E-61

Figure 3.

-0.9062-3.9E-7i

-0.1779+9.0E-8i

0.8913-6.34E-41
0.9530-2.35E-4i

Computed and measured (perturbed) modes.

-0.8762-3.9E-51
-0.1879+9.0E-61 |
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MASS DAMPING
DIA. DIA. | DIA. SUB. | SUB.

My % | MAX. A % Ca C % Ca C % | MAX. & | %

(1) (2) (3) | (4) (5) ( (6) [ (7) [ (8) [ (9) | (10) | (11)1 (12) |(13)
2 | 2.022| 1.1 0.129 | 6.5 .6 | .601 | 1.4 .005 | 1
4 | 4.175 | 4.4 | 0.367 | 9.2 3 | .307 | 2.3 -.2 | -.198 1 013 | 5
2 | 2.560 | 28 | 0.654 | 33 3 | .320}6.8| -.1 | -.088]| 12| -.017| -6
4 | 4.763 | 19 | 0.654 | 16 3 | 325 |85 -.2 | -.177| 12| -.021 | -7
2 | 2.502 | 25| 0.626 | 31 3 | 312 40| -1 | -.082| 18| -.017| -6
4 | 3.985 | -.1| -.409 | -10 3 | .298 | -1 -.2 | -.198 1| -.009 { -3
2 | 1.767 | -12 | -.345 | -17 .3 | .30t )07 -.1 |-.108| -8| -.015] -5
4 |3.913 | -2| 0.521 | -13 .3 | .310 | 3.4 | -.2 | -.195 2.5 -.021 | -7
2 | 2.006 | 0.3 | -.308 | -15 3] .304 | 1.3 | -.1 | -.094 6| -.012| -4
4 | 4.003|0.1| -.123| -3 .6 | .601 { 1.0 | -.2 | -.198 1| -.005 | 1

Figure 4,

Improved mass and damping matrices.
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STIFFNESS

DIA. KA DIA. K % SUB. KA SUB. K % MAX. A %
(1) (2) (3) (4) (5) (6) (7) (8)
30 30.05 .2 ~-.24 -1
15 15.43 3 -10 -9.85 2 -.63 -4
15 16.18 8 -5 -4.33 13 -.52 -3
15 15.34 2 -10 -9.23 8 -.42 3
15 15.32 2 -5 -5.55 -11 -.63 -4
15 15.19 1 -10 -9.31 7 -.49 -3
15 14.82 -1 -5 -5.33 -7 .60 4
15 15.03 .2 -10 -10.1 -1 .53 4
15 15.05 .3 -5 -4.95 1 -.28 -2
30 30.01 .03 -10 -9.98 .2 -.11 .4
Figure 5. Improved stiffness matrix.
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QTM oQ + QQTM % + QTC $

Q¢TM ®Q - ¢TK ¢

Element Real Imaginary Real Imaginary
1,1 1.0 (1)* -1.3 x 1078 (0) | -2.538 (-2.537) x 1073 | 5.286 (5.286) x 107}
1,2 7.2 x 1072 (0) | 5.8 x 10710 (0) 3.263 x 1073 (0) 8.24 x 10°° (0)
2,1 1.7 x 1078 (0) | -1.1x 107° (0) 3.263 x 1073 (0) 8.24 x 108 (0)
2,2 1.0 (1) 3.6 x 1072 (0) | -1.414 (0.9155) x 1072 | 9.374 (9.374) x 107}

*Exact values are given in parentheses.

Figure 6. Orthogonality check for the improved model.




MEASURED MODES FIRST TWO MODES OF IMPROVED MODEL

-0.002586 + 0.52861 -0.002537 + 0.52861

-0.009155 + 0.9374i -0.01415 + 0.9374i

Le

0.1189-1.46E-4i
0.3401-3.99E-44
0.6808-6.54E-41
0.8913-6.34E-4i
0.9530-2.35E-41

Figure 7.

-0.2259-1.6E-51
-0.6364-4,2E-51
-0.9539-4,7E-51
-0.8762-3.9E-5i

-0.1879+9.0E-61 |

0.1189-1.29E-31
0.3400~3.49E-31
0.6807-5.58E-31
0.8913-6.59E-31
0.9530-3.81E-3i

Measured modes vs modes of improved model.

-0.2258-.791E-2i"
-0.6363-2.28E-2i
-0.9539-3.81E-2i
-0.8764-4.57E-2i
-0.1887-2.30E-2i_




CONCLUDING REMARKS

A method is developed to find the smallest changes 1n the analytical
model of a nonproportionally damped structure so that the improved model 1s
compatible with the test modal parameters. The only assumptions about the
system damping are that it is viscous and can be represented by a real symmet-
ric matrix. The reported procedure aims at applications to large structural
systems and has used methods which are numerically feasible.

The following conclusions can be drawn from previous discussion:

1) Given an incomplete set of modal parameters and an analytical model
of a structure, application of this procedure will lead to an 1mproved model.
Changes between two models serve as a useful guideline for the validity of the
original model being a good representation of the structure. The engineering
Jjudgement required using this approach 1s to establish acceptable levels of
change. This procedure 15, therefore, efficient and objective.

(2) A numerical experiment using arbitrary perturbations in modal param-
eters found no numerical sensitivities.

(3) The improved stiffness matrix obtained from the present procedure,
although better than the original one, is considered not completely satisfac-
tory since M and C satisfy the orthogonality relationship, Eq. (6a), but M and
K do not exactly fit the orthogonality relationship, Eq. (7a). Further
research is required to overcome this deficiency.

(4) The improved matrices are filled using the present procedure and may
imply non-existent coupling. This effect may be insignificant 1f the resul-
ting coupling terms are small. Additional constraints are required and fur-
ther research 1s necessary to keep this problem of a solvable size.
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APPENDIX
Explicit Function Forms of Coefficients in Eq. (14)

(Ey1)ikeg = (Br1dikey * (1-8p) (eg1)ig;

(Ey2dikes = (B12)ke5 * (1-8ya) (e12)504;

(Epp)ikeg = (Ba1)ikay * (1-8,0) (e9) gy
(Epp)dikgs = (22)ikag * (1-8kg) (ep)igy,
(e10)qkey ~
- (Medik Mugdeg = Mgy (Mpydgg + (Mpgdie Myydas + (Maydyy (Mg

+

= Mgp)ie Murd s = Mudie (Mepl g + Mg (Mypd gy + (Myy) gy (Mgpdy,

+ Mspdik Muydog * Mo) i My gy = Mggdye (Myy)gg = Mgy gy (Moyd s

MRk Musd oy + Mygdig (Mrgd e = (Mygdyy (Mygday = (Myydyy (Msgdy;

- (Cordik (Crrleg * (Crs)ik (Csp)ay * (Csp)ik (Cpsley = (Css)ik (Css)y,
(e12)iksy =

- (Merdik Myydgs = (Meydii Maydeg = (Megdspe (Myydeg = My Mgyl

- Mypdie Mypday = (Mygydiy (Mepd gy = (Mygdyp (Myplgg = (Myydgy (Mgp) s

+ Mep) i Myydgg + (Mgydgp (Maydgg + (Msgdyy (Myydgs + (Mgydgy (Mgy) 5

+ (M) (Mygdag + (Myydgy (Mpgdag + Myg)y Mys) gy + (Myyd gy M)y

- (Cordik (Csplag = (Cgdik (Cprley + (Coplik (Css)og * (Css)iy (Cpslyy
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(e21)iklj =

(Mep) i (Myy)og + (M

+ (M

-+

+ (M (M

sp)ik (Myy) e

* Mgl Mygdey + My (M

+ (C C - (C

rr) ik (Crs)yy

(e22)ik2j =

(Merdik (Myydeg *+ (Mpydy (M

+

+ (Mgl (Myg)e

+

(M

+ (Mep) iy Myydgg + Moydipe (Mpylyy

+

(M

+ Mgrdik (Mysdag + (Myydie (Mgl

+

+ (Cpr)ik (Css)y;

where
le = Dirac delta function
and for P, Q denoting R, S, U, or V,

T,~2

Mpq = Py~ Q

C T

_ -2
Note that M., = MT and Cy, = CT
PQ QP PQ qQp’
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rutik MRyl
)ik (Myrdey + (Mygdgp (Mep)y,
sudik My
RS 23

Rs) ik (Css)ej

RV)lj

(Myy) ik (Mpp) e

(Cas)ik (Crslyj

- (M

- (M

- (M

- (M

+ (C

+ (M

+ (M

+ (M

+ (M

+ (C

Rs)ik (Myy)eg -

vs) ik (Mygdey -

sstik (Myy) e

Mav) ik (Msy)gy

(Myy) i (Mop) g

= (Moyd i Mgyl

us)ik (Mysley -

C

sr)ik (Crr)aj

(Muv)g\]

RS ik
vs)ik (Mup)e,

Mou?s;

ss)ik
us)ik Mys)ey

sr)ik (Csplej

- (C

+

-+

+

+

Myy) i (Mgs) a5

¢

ss)ik (Csr)e;

(M (M

o1k Msydey

Myydie (Msp) e

M)i Mgy,

My) g (Mss) e

(Css) i1 (Crple;
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