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STOCHASTIC PARTICLE ACCELERATION IN SOLAR FLARES

W. DrSge, R. Schlickeiser
Max-Planck-lnstitut f_r Radioastronomie

Auf dem HHgel 69, 5300 Bonn I, FRG

ABSTRACT

We propose that particles during the second phase of solar

flares are accelerated by stochastic resonant scattering
off hydromagnetic waves and first-order Fermi acceleration

in shock waves generated in the impulsive phase of the
flare. Our solutions allow arbitrary power law momentum
dependences of the momentum diffusion coefficient as well
as the momentum loss time. The acceleration time scale to

a characteristic energy _ 100 keV for protons can be as short
as 5 s. The resulting electron spectra show a characteristic

double power law with a transition around 200 keV and are

correlated to the proton spectra evaluated under equal

boundary conditions, indicating that electrons and protons
are accelerated by the same mechanism. The correlation
between the different spectral indices in the electron

double power law and between electron and proton spectra
are governed by the ratio of first-to second-order accel-
eration and therefore allow a determination of the Alfv_n
Mach number of the shock wave.

I. Introduction. We propose that the combination of first- and second-

order Fermi acceleration is the mechanism responsible for second-phase
acceleration in solar flares. This model has a number of distinct advan-

tages over previous models, in that it gives a natural explanation for

the various observed time delays between first and second phase as well
as for the dependence of the particle spectra to the strength of the flare
and the correlation between electron and proton spectral indices.

2. Theory. Parker and Tidman (1958) have pointed out that Fermi accel-

eration is an zntrinsic property of any sufficiently agitated plasma of
energetic particles. The effects of second-order Fermi acceleration due

to irregularly moving magnetlzed fluid elements, first-order Fermi ac-

celeration off strong shocks as well as loss and escape processes can be

incorporated into a transport equation in phase space (Ramaty 1979)

_f I _ _f I _ f

[p2 D(p) _] -_-_ _p [p2 (_G+ _L) f] + T--_ = Q(p,t) (I),_t p2

where p is the particle momentum, N(p) = 4_ p2 f(p,t) the number of par-
ticles per unit momentum and unit volume, and Q(p,t) represents sources
and sinks of particles. Using the concept of the age distribution
(Schlickeiser and Lerche 1985) the effects of spatial diffusion, convec-

tion and catastrophic losses have been combined in a momentum-dependent

escape time T(p) = To p-b.

In a plasma with a strong MHD turbulence both the momentum diffusion

coefficient D(p) and the spatial diffusion coefficient along the mean

magnetic field K,(p) are governed by the turbulence simultaneously. By
using quasi-linear theory K.(p) can be related rigorously to the spectrum
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We propose that particles during the second phase of solar 
flares are accelerated by stochastic resonant scattering 
off hydromagnetic waves and first-order Fermi acceleration 
in sho~k waves generated in the impulsive phase of the 
flare. Our solutions allow arbitrary power law momentum 
dependences of the momentum diffusion coefficient as well 
as the momentum loss time. The acceleration time scale to 
a characteristic energy'" 1 00 keV for protons can be as short 
as 5 s. The resulting electron spectra show a characteristic 
double power law with a transition around 200 keV and are 
correlated to the proton spectra evaluated under equal 
boundary conditions, indicating that electrons and protons 
are accelerated by the same mechanism. The correlation 
between the different spectral indices in the electron 
double power law and between electron and proton spectra 
are governed by the ratio of first-to second-order accel­
eration and therefore allow a determination of the Alfven 
Mach number of the shock wave. 

1. Introduction. We propose that the combination of first- and second­
order Fermi acceleration is the mechanism responsible for second-phase 
acceleration in solar flares. This model has a number of distinct advan­
tages over previous models, in that it gives a natural explanation for 
the various observed time delays between first and second phase as well 
as for the dependence of the particle spectra to the strength of the flare 
and the correlation between electron and proton spectral indices. 

2. Theory. Parker and Tidman (1958) have pointed out that Fermi accel­
eration is an ~ntrinsic property of any sufficiently agitated plasma of 
energetic particles. The effects of second-order Fermi acceleration due 
to irregularly moving magnet~zed fluid elements, first-order Fermi ac­
celeration off strong shocks as well as loss and escape processes can be 
incorporated into a transport equation in phase space (Ramaty 1979) 

of 0 2 of 1 0 2·· f at - p2 op [p D(p) op] -{;Tap [p (PG+PL) f] +T(p') Q(p,t) (0, 

where p is the particle momentum, N(p) = 4np 2 f (p,t) the number of par­
ticles per unit momentum and unit volume, and Q(p,t) represents sources 
and sinks of particles. Using the concept of the age distribution 
(Schlickeiser and Lerche 1985) the effects of spatial diffusion, convec­
tion and catastrophic losses have been combined in a momentum-dependent 
escape time T(p) = To p-b. 

In a plasma with a strong MHD turbulence both the momentum diffusion 
coefficient D(p) and the spatial diffusion coefficient along the mean 
magnetic field K .. (p) are governed by the turbulence simultaneously. By 
using quasi-linear theory KII(p) can be related rigorously to the spectrum 
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of the magnetic field fluctuations (Jokipii 1977). Assuming a power law

spectrum for the magnetic irregularities W(k) = Wo k-q we may write

K,,(p) = 6 v(p) p2-q = Kpq (2)

(6,K = const.) and

V_ p2 (3)
D(p) = _2

(VA: Alfv&n speed, _2: constant). As galn process, we consider quasi-
continuous momentum gain by acceleration at a shock wave moving through

the plasma with speed VS. The momentum gain by first-order Fermi accel-
eration at a single shock wave has been determined by Drury (1983)

PG = _I _ p (4)

(_z: constant). Mbbius et al. (1982) pointed out that for condltions in
the flare site the rate of systematic acceleration exceeds the rate of

momentum loss. Thus we assume that PG >> PL at least at all momenta of
interest. Using (2), (3) and (4) in equation (I) and consldering the

steady-state case (_f/_t = 0) yields

I d [p4-q df 3-q] b
7 _ d-_- a p - Xp = Q(p) (5)

(a_ =_.V_/K, a_ =_V_/K, a=a_/a_, % = I/a2T_). We assume that the in-
jection _akes piace_a_ some momentum Q(p) = qo _(P-Po ) and we find for the
steady-state particle number density N(p) =4_p2 f(p) (see DrSge and
Schlickeiser (1985) for details):

q-a+1 q+a+l K ]q+b I ) I -'_"_ p
P<Po

8_ qo 2 2

a2 [q+b[ 2_112

I lq+bI Po )K_;_lq+bl p 2 P>Po

_)= l(3+a-q)/(q+b)l. In the limit q+b+0 solution (6) approaches a power
law distribution

)_ (3+a_Q)2 I
4 +X

Q-a+1 Q+a+l (P/Po P < Po
2_ qo 2 2

N(p) = 41 ! (7)

_ (3+a_N) 2 , Po P (3+ q)2
--'_ _---- +_

a2 4 + % (P/Po) P > Po

Equations (6) and (7) are generalizations of the solutions of Ramaty
(1979; b =0, a =0, q =0,1), Barbosa (1979; a =0), Pikel'ner and Tsytovich

(1976; a =0, b =0). The solutions (6) and (7) allow arbitrary momentum
power law dependences of the spatial diffusion coefficient (q) and the

escape time (b). The parameter a = (_l/_2)(V$/V_) = (_l/_2)M_ is of the
order of the square of the shock's Mach number and describes the ratio of
first- to second-order Fermi acceleration. In the case of no Fermi ac-
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of the magnetic field fluctuations (Jokipii 1977). 
spectrum for the magnetic irregularities W(k) = Wo 

Assuming a power law 
k-q we may write 

KII(p) <5 v(p) p2-q Kpn (2) 

(O,K = const.) ann 

2 
VA 2 
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2 

-- p 
K" 

D(p) (3) 

(VA: Alfven speed, a 2 : constant). As ga1n process, we consider quasi­
continuous momentum gain by acceleration at a shock wave moving through 
the plasma with speed VS' The momentum gain by first-order Fermi accel­
eration at a single shock wave has been determined by Drury (1983) 

V§ 
P

G 
= a - P (4) 

1 KII 

(al : constant). Mobius et al. (1982) pointed out that for cond1tions 1n 
the flare site the rate of systematic acceleration exceeds the rate of 
momentum loss. Thus we assume that PG » PL at least at all momenta of 
interest. Using (2), (3) and (4) in equation (1) and cons1dering the 
steady-state case (af/at = 0) yields 

1 d [4-n df 3-n] , b --r- - p --ap -I\P 
P dp dp 

Q(p) (5) 

(a l =alv~/K, a 2 =a2 vl/K, a=al /a2 , 
jection takes place at some momentum 
steady-state particle number density 
Schlickeiser (1985) for details): 

A = 1/ a 2 T ). We assume that the in­
Q(p) = qo g (p-po) and we find for the 
N(p) = 4'TT p2 f(p) (see Droge and 

N(p) 

8'TT q n-a+1 n+a+1 
o -2- -2-

------- Po p 
a2ln+b I 

(
21..1/2 n;b) (21.. 1/2 n;b) 

K --p I --p 
V In+bl 0 V In+bl 

(
21..1/2 n;b) (21.. 112 n;b) 

I --p K --p 
V In+bl 0 V In+bl 

p<p 
o 

p>p 
o 

(6) 

V = 1 (3+a-n) / (n+b) I. In the limit n+b + 0 solution (6) approaches a power 
law distribution 

j(3+a
4
- n )2 +1..

1 

p<p 
2'TT q n-a+1 n+a+1 (p/po) 

0 

N(p) 0 
-2- -2-

(7) = Po p _1 (3+~-n) 2 + AI 
a 21 (3+a-n) 2 + A 

I 

4 (p/po) p>p 
0 

Equations (6) and (7) are generalizations of the solutions of Ramaty 
(1979; b=O, a=O, n=O,1), Barbosa (1979; a=O), Pikel'ner and Tsytovich 
(1976; a=O, b=O). The solutions (6) and (7) allow arbitrary momentum 
power law dependences of the spatial diffusion coefficient (n) and the 
escape time (b). The parameter a = (al /a2) (V~/Vl) = (al /a?) Ml is of the 
order of the square of the shock's Mach number and descr1bes the ratio of 
first- to second-order Fermi acceleration. In the case of no Fermi ac-
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Fig. 1: Normalized steady-state Fig. 2: Normalized steady-state
electron number density. Parti- proton number density. Particles

cles are injected at Eo =50keV. are injected at Eo = 10 keV.
At ET=200 keV a transition
from solution (6) to (7) occurs.

celeration at shock waves (a =0) (6) and (7) reduce to the solutions of
previous models as quoted above.

3. Discussion. The energy spectra of electrons accelerated in large

flares exhibit a characteristic double power law with a break around ET
200keV (Lin et al. 1982). From this we conclude that for nonrelativistic

kinetic energies (E<E T) the Bessel function solution (6) holds, which

for small arguments is approximately a power law, whereas for E > ET the
particles are relativistzc (p =mc _E=200 keV for electrons) and the

distribution function approaches the power law solution (7) (cf. Fig. I).
We take spatial diffusion along the mean magnetic field as the relevant
escape process. The escape time then is T(p) =L2/K,, = (LZ/K) p-n, whereL
is the length scale of the system and q=b =0 in the relativistic and

n =b = I in the nonrelativistic case. Thus we may consider the evolution
of the particle spectra in the hard-sphere approximation (cf. MSbius et
al. 1982), which gives us

_ I
K,,(p) 3 v(p) _ (8)

v(p) is the velocity and _ the momentum independent mean free path of the

particles. For comparison with data we transform (6) and (7) into energy
space where N(E) =N(p) (I/v) and E= (pZc2+mac_)ZZZ-mc 2 is the particle

kinetic energy. An "effective power law" exponent can be calculated (E>Eo)

a a+2 _I 4xz 2E |

d IgN(E) - _ + _ Vl + (a+2)2 mc 2 p < mc (9)
Yeff(E) d Ig E

a+l a+3 _1 4x 2 |

--2"-+T V I + (a+3)2 p > mc (10)
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Fig. 1: Normalized steady-state 
electron number density. Parti­
c les are inj ected at Eo = 50 keV. 
At ET = 200 keV a transition 
from solution (6) to (7) occurs. 
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Fig. 2: Normalized steady-state 
proton number density. Particles 
are inj ected at Eo = 10 keV. 

celeration at shock waves (a = 0) (6) and (7) reduce to the solutions of 
previous models as quoted above. 

3. Discussion. The energy spectra of electrons accelerated in large 
flares exhibit a characteristic double power law with a break around ET~ 
200 keV (Lin et al. 1982). From this we conclude that for nonrelativistic 
kinetic energies (E < ET) the Bessel function solution (6) holds, which 
for small arguments is approximately a power law, whereas for E > ET the 
particles are relativistl.c (p = mc ~ E = 200 keV for electrons) and the 
distribution function approaches the power law solution (7) (cf. Fig. 1). 
We take spatial diffusion along the mean magnetic field as the relevant 
escape process. The escape time then is T(p)=L2 /K II =(L2/K) p-n, whereL 
is the length scale of the system and n = b = 0 in the relativistic and 
n = b = 1 in the nonrelativistic case. Thus we may consider the evolution 
of the particle spectra in the hard-sphere approximation (cf. Mobius et 
al. 1982), which gives us 

1 "3 v(p) ~ (8) 

v(p) is the velocity and ~ the momentum independent mean free path of the 
particles. For comparison with data we transform (6) and (7) into energy 
space where N(E) =N(p) (l/v) and E = (p 2c 2+m2c'+)1/2 -mc 2 is the particle 
kinetic energy. An "effective power law" exponent can be calculated (E >Eo) 

d IgN(E) 
dIg E 

a a+2 1/1 4x
2 

2E I _ (9) 
- 4 + -4- Y + (a+2)2 mc 2 p < mc 

a+1 a+3 ---+--2 2 ~1 + 
4x2 

(a+3)2 
p > mc (10) 



5

SH 1.1-4

_ I _ I , ,
5

3 - -

2

3 .
1 -  j-";zo

2
I = J I

1 2 _ 2 3 _ lp

Fig. 3: Correlation between elec- Fig. 4: Correlation between YI
tron spectral exponent below 200 and proton spectral exponent

keV YI and exponent above 200 keV above 10 MeV as a function of a

YII as a function of a

x = %c/L VA is a free parameter which may have different values for elec-
trons and protons and for different flares. Equations (9) and (10) allow
us to determine the correlation between the mean spectral index below 200

keV YI and above 200 keV YII for electrons (Fig. 3) as well as the cor-
relation between YI and the proton spectral exponent above 10 MeV YD
(Fig. 4) as a function of a. The curves obtained from (9) and (10)-are

in excellent agreement with the measurements of Lin et al. (1982), indi-

cating that the strongest shock waves have an Alfv_n Math number MA _ 4,
corresponding to a_30 (see DrSge and Schlickeiser (1985) for details).

4. Conclusions. Combzning first- and second-order Fermi mechanism in
solar flare second-phase acceleration successfully explains the observed

ion and electron energy spectra. The model correctly accounts for the
sometimes very short delay times, and reproduces quantitatively the cor-
relations of nonrelativistic with relativistic electron spectral indices,

and the correlation of nonrelativistic electron with proton indices.
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Fig. 3: Correlation between elec­
tron spectral exponent below 200 
keV YI and exponent above 200 keV 
YII as a function of a 

Fig. 4: Correlation between YI 
and proton spectral exponent 
above 10 MeV as a function of a 

x = 9vc /L VA is a free parameter which may have different values for elec­
trons and protons and for different flares. Equations (9) and (10) allow 
us to determine the correlation between the mean spectral index below 200 
keV YI and above 200 keV YII for electrons (Fig. 3) as well as the cor­
relation between YI and the proton spectral exponent above 10 MeV Yp 
(Fig. 4) as a function of a. The curves obtained from (9) and (10) are 
in excellent agreement with the measurements of Lin etal. (1982), indi­
cating that the strongest shock waves have an Alfven Mach number MA ~ 4, 
corresponding to a ~ 30 (see Droge and Schlickeiser (1985) for details). 

4. Conclusions. CombLning first- and second-order Fermi mechanism in 
solar flare second-phase acceleration successfully explains the observed 
ion and electron energy spectra. The model correctly accounts for the 
sometimes very short delay times, and reproduces quantitatively the cor­
relations of nonrelativistic with relativistic electron spectral indices, 
and the correlation of nonrelativistic electron with proton indices. 
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