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QUANTITATIVE ANALYSIS OF FLARE ACCELERATED ELECTRONS
THROUGH THEIR HARD X-RAYAND MICROWAVE RADIATION

K.-L. Klein and G. Trottet

UA 324, Observatoire de Paris, Section d'Astrophysique de Meudon,
DASOP, F-92195 Meudon C_dex, France

I. Introduction. A key question of particle acceleration during solar
flares is whether electrons and ions are accelerated by a single physi-

cal process, or whether a second, distinct step of acceleration must be
invoked for the high particle energies attained in some flares. Infor-

mation on the particles can be inferred from an analysis of their elec-

tromagnetic radiation by means of model computations. As far as elec-
trons are concerned, the most direct information is furnished by their
hard x-ray (hv > 30 keV) emission (electron-ion bremsstrahlung), which

has been shown /l, 2, 3/ to vary in close temporal correlation with

microwaves, although these are produced by a different mechanism (gyro-
synchrotron radiation). This correlation is generally interpreted in
terms of a common electron distribution /I, 2, 4/ continuously injected

into sources at different heights (e.g. /5/). It gives the possibility
to test, if the results inferred from hard x-rays are consistent. Gyro-
synchrotron radiation does, however, not directly reflect the electron

distribution because of various processes of suppression and absorption
at low frequencies /6/. Quantitative investigations of the correlation

have been carried out by many authors (e.g. /2, 4, 7, 8, 9/). However,
on the one hand the radio radiation was often treated in a homogeneous
configuration, whereas the gyrosynchrotron mechanism depends strongly

on variations of the magnetic field. Furthermore, analytical simplifi-

cation has often been used, by which the low frequency effects cannot
be treated consistently. On the other hand, the analyses were mostly
restricted to the instant of peak flux, and no information on the tem-

poral evolution of the injected electrons could be inferred.

Our purpose is to present hard x-ray and microwave modelling .
that takes into account the temporal evolution of the elctron spectrum

as well as the inhomogeneity Of the magnetic field and the ambient
medium in the radio source. We illustrate this method for the June 2g

1980 10:41UT event and discuss briefly the implication on the process

of acceleration/injection.

2. Method of analysis. The model of the x-ray source has been described
by Trotter and Vilmer (/10/ and references therein). The radiation is

assumed to be produced by non thermal electrons injected continuously
with an injection function

q(E,t) = qo E-Y f(t) (0 < t _< to, O elsewhere), (I)

with y being kept constant during each injection. Precipitation is con-
sidered in the limits of weak (collisions) and strong (waves) diffusion.

Electrons are assumed to loose energy through collisions with ambient
electrons. From this model, the injection function, the source density
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- 0 
(1) 

with Y being kept constant during each injection. Precipitation is con
sidered in the limits of weak (collisions) and strong (waves) diffusion. 
Electrons are assumed to loose energy through collisions with ambient 
electrons. From this model, the injection function, the source density 
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and the total number of energetic electrons are deduced.

The microwve source is represented by a collection of dipolar
field lines in an ambient medium with a hydrostatic density model /II/.

The electron distribution is composed of a Maxwellian and a non thermal
part resulting from the injection function (]).

3. Analysis of the 29 June 1980 flare. The flare has been observed with
several SMM and ground-based instruments /12, 13/. Its temporal evolu-

tion is shown for a high-energy x-ray

['_/'/_Hx.ss_s_ channel and one radio frequency in fig. ].
It has been shown in /10/ that the ener-

,02 getic phase of the event between ]O4130 UT

I°3 and 1043 UT can be decomposed into five
[ successive electron injections, whose para-

_ iIfill meters are listed in table 1 of /IO/. The

4 hard x-ray source is found to be a high

" density medium, from which most of the
radio frequencies cannot escape. The micro-

_02 wave and hard x-ray sources are then notcospatial. We assume the structure of the

_I/ microwavesourceto be identicalwith the
_I/. spatially resolved x-ray source below_2 '_ 30 keV (HXIS observations, /12/). Two

uT_9_/_,_9 magnetic loops of different sizes are ob-

Fig. ! : Temporal evolution served. The geometric parameters of the
of the observed hard x-ray loops, the x-ray inferred density /12/

and microwave fluxes and the assumed magnetic field strengths
at the top and in the feet of the loop

are listed in table 1. In the following we assume the temperature to be
identical in both loops, although slightTable !

differences are reported in /12/. As

Loop A Lopp B the event is a limb flare, we consider

height (hm) 6-108 5.!09 in the following magnetic loops in the
plane of the sky. They are supposed

volume (cm3) 1.1-1027 2.1.1028 homogeneous along the line of sight.

temp. (K) 5.]O7 5.107 Following the hypothesis of /!2/, we
suppose that a quarter of the electron

dens. (cm3) 7.10lO 2.109 number inferred from hard x-rays is

Btop (G) 175 21 injected into each of the two arches.We compute the microwave spectrum from

Bfeet (G) 240 240 a simplified form of (|), considering
a parabolic f(t) (t =2 tmax). Further-o

more, the electrons are assumed to be perfectly trapped during each

injection, but no particles from previous injections are retained.

4. Results. Fig. 2 shows gyrosynchrotron spectra computed at two

instants during the injection where the fluxes are greatest, together
with microwave observations at four discrete frequencies (5.2 GHz,
8.4 GHz, I1.8 GHz, 19.6 GHz; Bern University, courtesy A.Magun), inte-

grated over 2 s. Because of absorption in the terrestrial atmosphere
the measured 19.6 GHz flux represents a lower limit.Both the low and
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temp. 

dens. 
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(K) 
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(G) 

(G) 
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identical in both loops, although slight 
differences are reported in /12/. As 

the event is a limb flare, we consider 
in the following magnetic loops in the 
plane of the sky. They are supposed 
homogeneous along the line of sight .• 
Following the hypothesis of /12/, we 
suppose that a quarter of the electron 
number inferred from hard x-rays is 
injected into each of the two arches. 
We compute the microwave spectrum from 
a simplified form of (1), considering 
a parabolic f(t) (t =2 t ). Further-o max . more, the electrons are assumed to be perfectly trapped dur~ng each 

injection, but no particles from previous injections are retained. 

4. Results. Fig. 2 shows gyro synchrotron spectra computed at two 
instants during the injection where the fluxes are greatest, together 
with microwave observations at four discrete frequencies (5.2 GHz, 
8.4 GHz, 11.8 GHz, 19.6 GHz; Bern University, courtesy A.Magun), inte
grated over 2 s. Because of absorption in the terrestrial atmosphere 
the measured 19.6 GHz flux represents a lower limit.Both the low and 
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the injection the computed curve fits the observations. Afterwards elec-

tron losses through precipitation are revealed by the observed flux de-

creasing faster than that computed for perfectly trapped particles. The
low frequency peak lags that at high frequencies by several seconds both

in the model and in observations. This is because growing electron den-
si=y during the injection increases emission and self absorption. While

the latter does not affect high frequencies, it diminishes the low fre-

quency flux, which peaks only in the late phase of the injection, when
the instantaneous number density has gone down.

At the very beginning of the event, the computed flux is not

compatible with the observated spectrum, which peaks at higher frequen-

cies than afterwards when the flux has grown. This microwave phase m_ght
be dominated by thermal electrons, but then a temperature of some IO- K
is required /14/.

5. Discussion. The analysis of the 29 June 1980 flare has shown that in

the most energetic part the hard x-ray inferred injection function and

total number of electrons are compatible with microwaves. A long lasting
controversy existed, because various authors had claimed the number of

radio emitting electrons to be up to four orders of magnitude smaller
than that producing hard x-rays (review in /21, recent discussion in /9/).

Account for suppression and absorption, source inhomogeneity and for

energy losses during a continuous injection of particles solves this
discrepancy and explains spectra and temporal evolution of radiations.

The discussed event is compatible with several electron in-
jections, during each of which the spectral index remains constant. This

lends strong support to a single step acceleration process.
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