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A DOMINANT ROLE FOR PROTONS AT THE ONSET OF SOLAR FLARES

G.M.S_mnett

Department of Space Research, Unlvers_ty of Blrm_ngham, U.K.

ABSTRACT

We suggest that recent observatlons have cast conslderabledoubt on the

generally accepted explanation that non-thermal electron beams transfer most of

the flare energy durlng the onset of solar flares. In thls paper we argue that

non-thermal protons in the energy reglon 102-103 keV are a more probable energy

transfer mechanlsm. An important consequenceof this hypothesls is that the

hard X-ray burst must be thermal.

l.Introduct_on It was shown many years ago(l) that the energy released in a

solar flare was consistent wlth the total energy in non-thermal electrons above

20 keY, assumed to be responsible for the hard X-ray burst vla non-thermal

bremsstrahlung in a thlck target. Since that tlme support for thls hypothesls

has grown to the extent that many regard It as an establlshed fact. For

example, it has recently been stated(2) that to account for many large flares

no slgnlflcantenergy input, other than electrons> 25 keV, needs to be Invoked.

In another recent paper(3) it was argued that over 1036 electrons.s -I were

requlred durlng the impuls_ve phase of the 1981 April 24 flare.

We belleve that improved observations made during the last solar maximum

have cast doubt over thls interpretatlonof the impulslve phase of flares.

Among the more slgnlficantobservatlons are the followlng:

a) The hlgh plasma turbulence seen in heavy ions, eg CaX-_, prlor to the onset

of the hard X-ray burst, _ncludang in some cases s_gnlflcantmass upflows(2,4).

b) The presence of hlgh energy protons at the onset of the impulslve phase of
some gamma ray flares(5,6).

c) The complete absence of metrlc/declmetrlcradlo emlss_ons durlng many large

flares Includlng the impulsive phase of the 1981 Aprll 24 flare(7).

When the energy inputs requlred for a) and b) are taken into account, together

wlth the energy in the whole electron spectrum, the total flare energy budget

becomes heavily oversubscrlbed. In addltlon, If the efflclencles of the

acceleratlon processes are also consldered,which are qu_te probably less than

50%, the sltuatlon is even worse. Thus another slgn_flcant polnt is:

d) When the energy in the pre-_mpulslve phase plasma turbulence and upflows is

added to the energy _n the non-thermalelectrons and ions, together w_th an

efflclency factor, the flare energy budget appears to be exceeded.

To overcome these problems an alternative hypothesls _s suggested, namely
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that the prlmary energy release results In the coronal acceleratlon of non-

thermal protons whlch have the bulk of thelr energy in the 102-103 key reglon.

We shall show that thls offers an attractlve alternatlve to both the non-

thermal electron hypothesls dlscussed above and the alternatlve thermal models

suggested recently(8,9). Our model is essentlally a non-thermal proton model

which results in excesslve heatlng of the chromosherlc plasma to produce the

hard X-ray burst by thermal bremsstrahlung.

2.The Non-Thermal Proton Hypothesls We now conslder the four polnts a)-d)

mentloned above in more detail.

a) The plasma turbulence and upflows observed before the onset of the hard X-

ray burst cannot be caused by the impact of electron beams on the chromosphere

wlthout produclng X-rays. As soon as an electron beam _s accelerated a reverse

current will be set up to avold charge separatlon. Emslle(10) has shown that

when reverse current losses of the beam are taken Into account the electron

energy must exceed 460 keY to penetrate below the transltlon zone for any

reasonable atmospherlc model. Theory has shown(ll) that energy must be dumped

below the transition zone for slgnlflcant mass to be ablated.

Protons in the reglon 102-103 keY can do thls readlly. Dependlng on the

atmospherlc model the threshold energy for penetration to the top of the

chromosphere from the corona is 400_150 keY, wlth the lower l_mlt probably more

approprlate to the onset of a flare. Reverse current losses are largely

ellmlnated by havlng accompanylng electrons of the same veloclty as the protons.

The energy content of SUCh electrons is negllglble compared wlth the protons.

b) Gamma ray productlon at the flare onset is accounted for by a sl_ghtly more

efflclent acceleratlon process whlch ralses the h_gh energy tall of the proton

energy spectrum. Thls need only have a mlnor effect on the total energy of the

accelerated protons, whlch explains in a natural way why many gamma ray flares

are opt_cally small, wlth relatlvely low total energy. On the conventlonal

model, If the typlcal flare is domlnated energetlcally by non-thermal electrons

then the gamma ray flares must invoke a proton acceleratlon process whlch

suddenly becomes important. We belleve such a scenarlo _s unattractlve.

c) Radlo emlsslon is an Important electron signature. In a magnetlc fleld

relatlvlstlc electrons emit gyrosynchrotron radlatlon, which in the flare

s_tuat_on appears in the m_crowave region. An electron beam w_th a veloclty

dlstrlbutlon increaslng towards hlgh energles will emlt plasma radlatlon; such

beams are frequently observed as type III bursts and only _i029 electrons >20keV

are requlred for these to be detectable by modern radlo-telescopes. Correlatlon

of mlcrowave bursts wlth hard X-rays is very hlgh; vlrtually 100% for bursts

> 1000 counts.s -I detected by the Hard X-Ray Burst Spectrometer on SMM. Yet 15%

(7) of the same flares have no metrlc/declmetrlc radlo em_sslon.

It mlght be argued that the requlred veloclty dlstrlbutlon in the electron
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beam builds up too slowly for a type Ill burst to be produced. However,

observatlons(12)of very fast (_ is) hard X-ray fluctuataonsargue 3ust the

opposite, namely that the release must be impulsave unless the accelerataon slte

is very close,_103km, to the chromosphere. Hard X-ray imagang observataons from

SMM suggest that such small dastances are unlikely in a typical flare (13).

The impulsave phase of the whlte-laght flare on 1981 April 24 had 35 GHz

emissaon of--5000.104 Jy(3). Macrowave emission at this level occurred in only

nane flares durang 1979-82, so thas as truly a ma3or event. However, it produce,

no metric/decametrlc emission untal the onset of the gradual phase some 5m after

the ampulsave phase maxamum. On the non-thermal electron hypothesls over 1036

electrons.s-I are requared to produce the X-rays and the impulsave phase lasts

for over 100s. It as very surprislng that durlng this time enough electrons to

produce a type III burst - 1029 - did not escape into the corona.

d) It has been proposed recently(2) that electrons>25 keV may provade the

energy for the entlre flare. This, however, neglects the energy an electrons

<25 keV and there is no basis from observatlonsto suggest that these electrons

are neglagable. In fact, to the contrary. Llnet al(14)made high spectral

resolutaon observations of a flare which showed that the electron spectrum

extended to 13 keV (the low energy cut-off of the measurement) wathout a change

an spectral andex. As the spectral andex was -4.5 thas implaes an order of

magnatude ancrease an energy content goang from 25 keV to i0 keV. We have no

way of estimating the proton energy spectrum at the Sun below _ 5 MeV. However,

analysas of the 1972 August 4 flare(15) indicated over two orders of magnatude

more protons than electrons at 5 MeV and extrapolataon of the spectrum produced

equal numbers of protons and electrons at 40 keY. While there as no basas in

thas flare for such an extrapolation,at shows proton energy should not be

dasregarded. The accelerator is presumably<100% efflcaent at producang non-

thermal particles. Even af we assume 50% efficiency, it appears that we would

have no daffaculty an estimatang a total energy which is a factor of 20-40

hagher than that contaaned an electrons above 25 keV.

From the above there as no doubt that the arguments for the total flare

energy residang an non-thermal electrons >25 keV are weak and that there as

substantaalevadence agaanst thear existence an any energetically-domanantform

at all. It now remaans for us to show that non-thermalprotons can explaan the

phenomena better. Protons of a few 100 keV can readaly drive the plasma

turbulence and ablataon wathout producang hard X-rays. They are necessary for

the gamma rays, and they can easily heat the chromosherac plasma to produce the

soft X-ray emassaon. The principal daffaculty wath a proton beam as an hard X-

ray generataon. To do this there must be rapad heating in a way that produces

electron temperatures sagnificantly above ion temperatures. Such a mechanasm

has been suggested an the context of Tokomaks(16),which anvokes plasma

anstaoalataes in fane-scale falamentarystructures where electron temperatures
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have no d~ff~culty ~n estimat~ng a total energy which is a factor of 20-40 
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From the above there ~s no doubt that the arguments for the total flare 
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at all. It now rema~ns for us to show that non-thermal protons can expla~n the 

phenomena better. Protons of a few 100 keV can read~ly drive the plasma 

turbulence and ablat~on w~thout produc~ng hard X-rays. They are necessary for 

the gamma rays, and they can easily heat the chromosher~c plasma to produce the 

soft X-ray em~ss~on. The principal d~ff~culty w~th a proton beam ~s ~n hard x­
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~nstao~l~t~es in f~ne-scale f~lamentary structures where electron temperatures 
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are enhanced by 102 or more. While this is probably not directly appllcable to

the flare situation, it indicates that anomalous effects are llkely in plasmas

with high beam currents and that extremesin temperaturemight occur.

In terms of energy, thermal hard X-ray production is_30 times more

efficient than a non-thermalprocess(17). In addition our model only requires

one accelerationmechanism to be operating to account for all flares. There are

other important observations, such as the insensitlveway O__emlssion correlates

with hard X-rays and the negative results from polarization studies that also

argue against non-thermalelectron dominance(18,19).

3.Conclusions.We have shown that there is considerable evidence agaanst non-

thermal electron beams as the dominant energy transfer mechanasm during the

impulsive phase of Solar flares. Instead we suggest that non-thermal protons an

the energy region 102-103 keV are a more likely energy carrier. The advantages

of protons are that they can account for the plasma turbulence and upflows seen

before the hard X-ray burst, they can produce gamma ray emission from optically

weak flares and they can account for the lack of metric/decimetricemission in

many large flares. In addition, only one acceleration process need be advocated

to account for all flares provided it is approximately velocaty dependent. Such

a process is the MHD shock, which certainly has all the right propertaes when

observed in interplanetaryspace. An important consequence of our model as that

the hard X-ray burst must be thermal in the _mpulsive phase.
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are enhanced by 102 or more. While this is probably not directly appl~cable to 

the flare situation, it indicates that anomalous effects are likely in plasmas 

with high beam currents and that extremes in temperature might occur. 

In terms of energy, thermal hard X-ray production is-30 times more 

efficient than a non-thermal process(17). In addition our model only requires 

one acceleration mechanism to be operating to account for all flares. There are 

other important observations, such as the insensit~ve way oy em~ssion correlates 

with hard X-rays and the negative results from polarization studies that also 

argue against non-thermal electron dominance(18,19). 
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thermal electron beams as the dominant energy transfer mechan~sm during the 

impulsive phase of solar flares. Instead we suggest that non~therma1 protons ~n 

the energy region 102-103 keV are a more likely energy carrier. The advantages 

of protons are that they can account for the plasma turbulence and upf10ws seen 

before the hard X-ray burst, they can produce gamma ray emission from optically 

weak flares and they can account for the lack of metric/decimetric emission ~n 

many large flares. In addition, only one acceleration process need be advocated 

to account for all flares provided it is approximately ve10c~ty dependent. Such 

a process is the MHO shock, which certainly has all the right propert~es when 

observed in interplanetary space. An important consequence of our model ~s that 
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