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OBSERVATIONSOFSOLARFLAREGAMHA-RAYSANDPROTONS
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Department of Physics, Rikkyo University,
Toshima-ku, Tokyo 171, JAPAN.

ABSTRACT

Solar flare gamma-rays (4 - 7 MeV) and protons (8 - 500 MeV) were
simultaneously observed from six flares on 1 Apr., 4 Apr., 27 Apr. 13 Hay 1981,
1 Feb. and 6 June, 1982 by the Hinotori and GMSsatellites. The relationship
between 4 - 7 MeVgamma-ray fluences and peak 16 - 34 MeVproton fluxes for
these flares are analyzed. It does not reveal an apparent correlation between
these two parameters. The present result implies that the protons producing
gamma-rays and the protons observed near the Earth do not always belong to the
same population.

1. Introduction
The particle acceleration mechanism in solar flares has been studied

through observations of radiowaves, X-rays, gamma-rays, neutrons and flare
particles. The energetic photon observations provide a clue on the particle
acceleration through interaction processes in the flare region. On the other
hand, the particle observations provide the clue through propagation effects in
the corona and interplanetary space. Hence, we need simultaneous observations
of the photons and the particles to understand deeply the particle acceleration
mechanism and the photon emission processes in solar flares. To study the
acceleration of nuclei, it is important to investigate the relationship between
the particles producing gamma-ray lines and the particles observed near the
Earth. This investigation provide diagnostics for the following question: Are
these two kinds of accelerated particles the same population ? In__addition, it
provides the clue on the interaction model (thin-target or thick-target
interaction model), together with observations of fragments such as deuterons,
tritons and He-3 nuclei.

The gamma-ray observations were successfully performed during the solar
maximumperiod from 1981 Feb. to 1982 June by the Hinotori satellite (Yoshimori
et al., 1983). The Hinotori satellite observed 8 gamma-ray line flares during
the above period. On the other hand, the GMS(Geostationary Meteorological
Satellite) observed 23 solar proton events during the same period. Several
observations of solar particles associated with gamma-ray line flares have been
reported so far by the ISEE-3 (Pesses et al., 1981) and the IMP-8 (McGuire et
al., 1981) satellites. These observations indicated that the solar proton
fluxes were not always correlated with the gamma-ray line fluxes. Furthermore,
Cliver et a1.(1983) showed a lack of correlation between the peak 10 MeVproton
fluxes and the 4 - 8 MeVgamma-ray excesses for western hemisphere flares.

In this paper, we analyze the relationship between flare-associated
gamma-ray lines and interplanetary proton events observed from Apr., 1981 to
June, 1982. The gamma-raydata are from the gamma-rayspectrometeron board
the Hinotori satellite.The protondataare from the solidstateSi detector
on boardthe GMS.
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2. Gamma-Ray and Proton Observations
The flares in which gamma-rays and protons were simultaneously observed

are listed in Table 1. The flare date, maximum time, location, Ha importance
and GOES X-ray class are presented there. The detailed characteristics of
these flares were described by ¥oshimori(1984).

The time histories of gamma-ray count rate in the 4.0 - 6.7 MeV band were
observed for the 1 Apr., 4 Apr., 27 Apr., 13 May, 1981, 1 Feb. and 6 June, 1982
flares. The 4.0 - 6.7 MeV gamma-rays are mostly dominated by prompt nuclear
deexcitation lines of C-12 at 4.44 MeY and of 0-16 at 6.13 MeV (Yoshimori,
1984). A few additional gamma-ray lines were reported for these flares. Of
these flares the Feb. 1, 1982 flare did not reveal an apparent gamma-ray
emission. The corresponding time histories of proton fluxes in the 8 - 500 MeV
bands were observed.

The 1 Apr., 1981 flare showed the gradual time history with a long duration

of 26 min. The 4.0 - 6.7 MeV gamma-ray fluence and the peak 16 - 34 AeV2proton
flux were (20 ± 4) photons / cmz and (2.5 ± 0.3) protons / cm s sr,
respectively. This flare is considered to be magnetically well-connected to
the Earth; this flare occurred within the so-called preferred connection

hello-longitude range. Protons with high energies of 200 - 500 MeV also were
observed (Yoshimort, 1985). These 200 - 500 MeV protons revealed a fast rise
and fall time history.

The 4 Apr., 1981 flare showed the impulsive time history with a short
duration of 80 s. The 4.0 - 6.7 MeV gamma-ray fluence and the peak 16 - 34 MeV
proton flux were (25 ± 5) photons / cm_ and (3.4± 0.4)protons / cm_ s sr,
respectively. This flare is also considered to be magnetically well-connected
to the Earth.

The 27 Apr., 1981 flare showed the gradual time history with long duration
of 25 min, but the Hinotori satellite was eclipsed by the Earth at 0815 UT.

This flare revealed the intensive gamma-ray line emission (Chupp, 1982, 1983;
Yoshimori et al. 1983). However, this flare did not reveal the apparent proton
increase in the 8 - 500 MeV band, in spite of the magnetically well-connected
flare. Further, three large proton events which occurred in the same sunspot
were reported on 24, 26 and 28 Apr., 1981. These results may imply that
protons accelerated in the 27 Apr. flare could not escape into interplanetary
space. The 4.0 - 6.7 MeV gamma-ray fluence is (30 £ 5) photons / cmz, and the
upper limit of the peak 16 - 34 MeV proton flux is 3 protons / cm2 s st.

The 13 May, 1981 flare showed the gradual time history with long duration
of 18 min. This flare revealed a small increase of gamma-ray emission, but did
not reveal the increase of proton flux. The absence of the apparent increase
of proton flux maybe due to the bad propagation condition in interplanetary
space; this flare did not occur within the preferred connection helio-longxtude
range. The 4.0 - 6.7 MeV gamma-ray fluence is (50 ± 9) photons / cm2 , and the
upper limit of the peak 16 - 34 MeV proton flux is 2 protons / cmz s st.

The 6 June, 1982 flare showed the impulsive and multi-peak time history with
duration of 6 min. The proton flux revealed the very gradual increase and the
peak reached on 9 June. In addition, protons with energies above 68 MeV were
not observed with statistical significance. It implies that protons could not
be accelerated to energies above 70 MeV during the flare. The 4.0 - 6.7 MeV
gamma-ray fluence and the peak 16 - 34 MeV proton flux are (35 £ 6) photons /cm #
and (6.0 i 0.7) protons / cmz s sr, respectively.
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An unusual event was the 1 Feb., 1982 flare, an which intensive proton
flux was observed, but gamma-ray line emission was not significant. The 16 -
34 MeVpeak proton flux is (80 ± 9) protons / cmz s st, and the upper limit of
4.0 - 6.7 MeV gamma-ray fluence is 13 photons / cm2 This flare shows an
opposite trend to the 27 Apr., 1981 flare, although this flare is also
considered to be magnetically well-connected to the Earth.

3. Discussion

As shown in the previous section, the Hinotorl and GMSdata do not always
reveal the apparent _orrelat_on between the gamma-ray line fluences and the
peak 16 - 34 MeV proton fluxes. The scatter diagram of the 4.0 - 6.7 MeV
fluence versus the peak 16 - 34 MeVproton fluxes is shown in Fig. 1 to see the
correlation between these two parameters. The most of the 4.0 - 6.7 MeV
gamma-rays consist of the C-12 line at 4.44 MeVand of the 0-16 line at 6.13
MeV. The 16 - 34 MeVprotons should contribute greatly to the production of
these prompt gamma-ray lines. As shown in Fig. 1, there is no compelling
evidence for the correlation for both eastern and western hemisphere flares.
It is easily understood that there is not good correlation for the eastern
hemispher flares of 13 May, 1981 and 6 June, 1982. It is because the bad
propagation condition in interplanetary space. Furthermore, the correlation is
neither always found for the western hemisphere flares, which occurred within
the preferred connection hello-longitude range. The present result is
consistent with the Cliver et al's result (1983). These results seem to
suggest that the protons producing the gamma-ray lines _n the flare site and
the protons observed near the Earth do not always belong to the same
population.

Two gamma-ray line production models (thtck- and thin target _nteract_on

models) have been proposed (Ramaty et al., 1975). If the gamma-ray lines are
produced from the thin-target interaction, the gamma-ray l_ne fluence should be
nearly proportional to the 16 - 34 MeVproton flux. On the other hand, the
thick-target model should predict that there is not always apparent
correlation, because the gamma-ray lines are produced by the accelerated nuclei
streaming down to the denser chromosphere and photosphere. The thick-target
model is also supported from the absence of spallation products such as
deuterons, tritons and He-3 nuclei (McGuire et al., 1977; Mewaldt et al.,
1983). In the thick-target model, the spallation products that accompany the
production of gamma-ray lines, are slowed down in the denser solar atmosphere
and hence are not expected to be observed in Interplanetary space.

The scattering diagram suggests that the directivity of accelerated nuclei
in the flare s_te varies from flare to flare. The directivity may depend on
the configuration of magnetic field of the flare region. If the direct_vity is
isotroplc, both gamma-ray lines and accelerated nuclei should be observed.
However, if most of the accelerated nuclei stream down to the chromosphere,
only gamma-ray lines will be observed. For example, the 27 Apr., 1981 flare
showed the significant gamma-ray line fluences, but did not show the apparent
solar proton flux. No increase of solar protons associated with this flare was
interpreted in terms of some particle confinement mechanism (Sakurai, 1983).
This confinement mechanism asserts that most of accelerated nuclei were trapped
for long time in the acceleration region and were little released into
interplanetary space. On the contrary, if most of the accelerated nuclei move
upward, only solar particles will be observed. For example, the 1 Feb., 1982
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flare showed the appreciable solar proton flux, but did not show gamma-ray line
emission. Another similar result was reported from the 9 Dec., 1981 flare
(Cliver et al., 1983). These two flare data may indicate that the upward
moving protons are so dominant that gamma-ray lines are not observed. Much
more data of solar gamma-rays and protons are needed to establish the detailed
relation between the gamma-rayline fluences and the peak solar proton fluxes.

The authors wish to acknowledge the Heteorological Satellite Center for
providing the solar proton data. The authors thank Dr. T. Kohno for his
analysis of solar proton fluxes.
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