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ABSTRACT

The observedcharacteristicsof the energeticparticles
associatedwith the solary-ray eventsof 3, 21 June 1980
and 3 June 1982differin severalimportantaspectsfrom the
typicalsolarpartlcleincreases. They haveflat energy
spectra,are electronrich and have smallprecursorincreases
that beginsome hoursbeforethe impulsiveflare increase.

I. Introduction.Solar flarey-rays and neutronsprovidea direct
means of determlningthe flux and energyspectraof thoseenergetic
particlesacceleratedby the flareswhich impactthe lowercoronae
and photosphere(Ramatyet al., 1982, 1983;Chupp,1984). The y-ray
time histories,when comparedto thoseof x-rays,establishlimits
on the time requlredfor particleacceleration.The flux and energy
spectraof thoseflareacceleratedparticleswhich escapefrom the
Sun can be determned by interplanetaryobservations.Comparingthese
two complimentaryparticlepopulationsprovidesfurtherunderstanding
of the particleaccelerationand transportprocessesin the flare
region.

The SolarMaximumMissionGamma Ray experimentof Chuppand his
co-workershavemade detailedobservationsof a numberof solary-ray
events (cf Chupp,1984). Threeof these flareincreasesare of special
Importance: 3 June 1982and 21 June 1980whichare large intense
y-ray events that also produceda detectableflux of solarneutrons
at l AU (Chuppet al., 1982, 1983);the 7 June 1980event was more
moderatein size,was accompaniedby a small Ha flare,but the near
slmultanietyof the onset of y-ray and soft x-rayemissionimplies
that the particlesare acceleratedon a time scaleof lessthan 2
seconds.

The HeliosI spacecraftwas in a favorablelocationat the time
of eachof theseflares (Tablel). The small heliocentricdistance

TABLE 1
FLARELOCA-PEAKTIME IELIOSI HELIOLONGITUDEPROTON ELECTRON/

_OLAR EVENT TION & H_ FLARE IMPUL- IELIOCENTRIC SEPARATION (2) SPECIRAL PROTON Fe/O He/H 3He/He4
CLASS SIVEPHASE(I))ISTANCE INDEXT

June 1982 S09 E72 1143 5 0 57 AU 3° 1 2 I 2 5± 5 132 02_-014

2B (3-200 MeV) (3-6 MeV)

71 June 1980 N19 W88 0118 0 54 AU 33° 2 6 0 25 ) 9_-02 29 03± 013
IB (8-200 MeV) 3-6 MeV)

June 1982 N12 W74 0312 0 37 AU 14° 2 3 0 7 _OT 4 < 02
IB (3-30MeV) (I-2MeV) DBSERVEC

(I) Earth Observed Time

(2) Hellolongltude Separatlon Between Hellos I and Nomlnal Field Line
(Based on measured plasma veloclty) Connectlng to the Reglon of the Flare Site
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ABSTRACT 

The observed characteristics of the energetic particles 
associated with the solar y-ray events of 3, 21 June 1980 
and 3 June 1982 d1ffer 1n several important aspects from the 
typical solar part1c1e increases. They have flat energy 
spectra, are electron rich and have small precursor increases 
that begin some hours before the impulsive flare increase. 

1. Introduction. Solar flare y-rays and neutrons provide a direct 
means of determ1ning the flux and energy spectra of those energetic 
particles accelerated by the flares which impact the lower coronae 
and photosphere (Ramaty et a1., 1982, 1983; Chupp, 1984). The y-ray 
time histories, when compared to those of x-rays, establish limits 
on the time requ1red for particle acceleration. The flux and energy 
spectra of those flare accelerated particles which escape from the 
Sun can be determ1ned by interplanetary observations. Comparing these 
two complimentary particle populations provides further understanding 
of the particle acceleration and transport processes in the flare 
region. 

The Solar Maximum Mission Gamma Ray experiment of Chupp and his 
co-workers have made detailed observations of a number of solar y-ray 
events (cf Chupp, 1984). Three of these flare increases are of special 
1mportance: 3 June 1982 and 21 June 1980 which are large intense 
y-ray events that also produced a detectable flux of solar neutrons 
at 1 AU (Chupp et a1., 1982, 1983); the 7 June 1980 event was more 
moderate in size, was accompanied by a small Ha flare, but the near 
slmultaniety of the onset of y-ray and soft x-ray emission implies 
that the particles are accelerated on a time scale of less than 2 
seconds. 

The He1ios I spacecraft was in a favorable location at the time 
of each of these flares (Table 1). The small heliocentric distance 

TABLE 1 
FLARE LOCA- PEAK TIME ~ELIOS I liE LI OLONG !TUOE PROTON LECT'lON/ 

SOLA'l EVENT TION & H Q FLA'lE IHPUL- ~ELIOCENTRIC SEPARATION (2) SPEC1RAL ROTaN Fe/a He/H 3He/He4 
CLASS SIVE PHASE (1) PISTANCE INDEX r 

3 June 1982 S09 El2 1143 5 a 57 AU 3° 1 2 1 ~ 5± 5 132 02. 014 
2B (3-200 HeV) (3-6 HeV) 

21 June 1980 N19 W88 0118 o 54 AU 33° Z 6 o 25 P 9± 02 29 031 013 
lB (8-200 HeV) (3-6 HeV) 

7 June 1982 N12 W74 0312 o 37 AU 14° 2 3 o 7 ~OT 4 < 02 
lB (3-30 HeV) (1-2 HeV) PBSERVEC 

(1) Earth Observed TIme 
(2) Hel1010ngltude SeparatIon Between HellOS I and NomInal FIeld lIne 

(Based on measured plasma velOCIty) ConnectIng to the 'leg1On of the Flare SIte 
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betweenthe spacecraftand the flaresite significantlyenhancesthe
observationsof the sourceregioncharacteristics.The detailedobserva-
tionsof the energeticparticlesassociatedwith thesey-ray flareevents
by the Goddardcosmicray experimenton HeliosI are presentedin the
followingdiscussionalongwith their implicationfor the acceleration
process. Thispresentstudybuildson the previousreportsbased on
both ISEE-3and HeliosI energeticparticledata (Evenson,et al., 1980;
Pesseset.al.,1979;von Rosenvingeet al., 1981;McDonaldand Van
Hollebeke,1985).

Z i;_ I *' ..........• _ t _ _ t _ w _ alev_ROTONS2 Helios-IEnerBeticParticle 'r ""

Observations•Both the 3 June _ "_\ .- 'oI_ ' _1982 and 21 June 1980proton "_-_._-- -_,,\

and electrondataexhlbita -i' "_ : _ _
"classicalform"w_th a rapid
rise to peak Intensityfollow-{*r ' _'_"__ I , .
ed by a relativelysmooth "'_ -.',_'.,.,

exponentlaldecay (Fig.l). "'LJI!_.!'!J_ I 'I,'_i".oThe peak fluxesat 50 MeV of , _ .LI1
IO.5and 0.3 MeV protonsmark *_ _ _ ';_...................;_,
theseas moderatesized in- r "_',, _ _.............._"/_!_.........
creases. For both events , ', ; I ?, .........
there is a deflniteprecursor ., "-
increasethat beginssome 3 i.'r _ _._, r-..

hoursbeforethe major flare o. ,_v _ _ _""_(McDonaldand Van Hollebeke, .... •..........,..................;i
_o s Jul_19eo

The time historyof the * ' ' \ _
7 June 1980event is remark- _'I _ _ 1
ably differentfrom thoseof i'I 1 i
the other two increases(F_g o.,..._,.._..............._..................._ ___I
2). The solarenergetic ' ' -.-,' _ " -._ "
particletime historiesare
complexand the peak intense-_ Energeticparticlet_me histories.
t_esare small (Fig.2). The Verticallinesw_th arrowsrepresentflare
I-2 MeV electronsarrive on-settimes.The top insertshowsthe
promptlyat _0307 (Helios separationbetweenHeliosl and the nominal
time),havea step increase fieldl_ne connectingto the flare site
at _0400 and there is a new based on the measured plasma velocity.

_njectionat _0715. The
integralelectronchannelfor electrons> 250 keV is a s_ngleparameter
measurementwhich also respondsto x-raysand y-rays. The time history
of theseelectronsindicateflareactivityat _ Ol20, 0307 and 0715. The
dashedlineat 0300 (Heliostime)is beforethe onset of the H_ flare
producingthe gamma-raysobservedby SMM. The 1.25-6and 3.7-21MeV
protonchannelsboth showa precursorevent in progressat
the timeof the flare (Fig. 2a, 2b). Unlikethe MeV electrons,the
onset timefor protonsappearsto be delayeduntil_04OO (thetransit
time is _17 minutesfor 15 MeV protonsand 31 m_nutesfor 3.6 MeV
protons). The sharpdecreasethatoccursin all protonchannelsbetween
0400 and 0500 appearsto be producedby a changein declinationof the
interplanetarymagneticfield of_22°. The protonanisotropiesfrom
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between the spacecraft and the flare site significantly enhances the 
observations of the source region characteristics. The detailed observa­
tions of the energetic particles associated with these y-ray flare events 
by the Goddard cosmic ray experiment on Helios I are presented in the 
following discussion along with their implication for the acceleration 
process. This present study builds on the previous reports based on 
both ISEE-3 and He1ios 1 energetic particle data (Evenson, et a1., 1980; 
Pesses et.al., 1979; von Rosenvinge et a1., 1981; McDonald and Van 
Hollebeke, 1985). 

2. Helios-I Energetic Particle 
Observations. Both the 3 June 
1982 and 21 June 1980 proton 
and electron data exhlbit a 
"classical form" wlth a rapid 
rise to peak lntensityfollow­
ed by a relatively smooth 
exponentla1 decay (Fig. l). 
The peak fluxes at 50 MeV of 
10.5 and 0.3 MeV protons mark 
these as moderate sized in­
creases. For both events 
there is a deflnite precursor 
increase that begins some 3 
hours before the major flare 
(McDonald and Van Ho11ebeke, 
1985) . 

The time history of the 
7 June 1980 event is remark­
ably different from those of 
the other two increases (Flg 
2). The solar energetic 
particle time historles are 
complex and the peak intensl­
tles are small (Fig. 2). The 
1-2 MeV electrons arrlve 
promptly at ~0307 (Helios 
time), have a step increase 
at ~0400 and there is a new 
lnjection at ~0715. The 
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~ Energetlc partlcle tlme histories. 
Vertlcal lines wlth arrows represent flare 
on-set times. The top insert shows the 
separation between Helios 1 and the nominal 
field 11ne connectlng to the flare site 
based on the measured plasma veloclty. 

integral electron channel for electrons> 250 keV is a slngle parameter 
measurement which also responds to x-rays and y-rays. The time history 
of these electrons indicate flare activity at ~ 0120, 0307 and 0715. The 
dashed line at 0300 (Helios time) is before the onset of the Ha flare 
producing the gamma-rays observed by SMM. The 1.25-6 and 3.7-21 MeV 
proton channels both show a precursor event in progress at 
the time of the flare (Fig. 2a, 2b). Unlike the MeV electrons, the 
onset time for protons appears to be delayed until ~0400 (the transit 
time is ~17 minutes for 15 MeV protons and 31 mlnutes for 3.6 MeV 
protons). The sharp decrease that occurs in all proton channels between 
0400 and 0500 appears to be produced by a change in decllnation of the 
interplanetary magnetic field of~22°. The proton anisotropies from 
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3-20 MeV and 6-20 MeV are remarkably high -_ .ct,o_"_ ', "-_---_--]
I [L[CTRO_S

from 0300-0900 so the observed proton •,on,__,-,,Ys
intensities are very sensitive to the field _o .,-2,,vELECTRO,S.._ 3
direction. Fortunately the IP magnetic . o_o /',

activity is usually quiet for this period li_i °_ :
and the fleld is in the plane normal to _ °" _'"

the spacecraft spin axis except for this i _°_ _

devlation. There is also a new injectlon o_/,_%o_#_.ff#+_+.._of 1.2-20 MeV protons at _0720. o

These three y-ray events (Table II_ _ _ 4[
I) have flat-energy spectra, are electron
rich, have high Fe/O ratios, no clear pattern
for H/He but two contain modest amounts oo_ o_ _ ,mo
of 3He. Prevlous studies have shown that TJUNE,geO a

a slgniflcant fraction of the accelerated '°I 'HEU_,:' ."".;
ions are confined at the flare site and _* 125-6MeVPROTONS

I i • •

have noted the hlgh e/P ratlo (Evenson ', -"
et al., 1979, 1983; von Rosenvinge et al., " "
1979; Pesses et al., 1979; McDonald and _ i _: _ " ._

Van Hollebeke, 1985). All three events _ !
are preceded by precursors some hours before _

the maln event. In general, these precursor _,_ ,,,.,
eventslAU. would not have been observable at _T ! _I i_II

i(__ i ' __
0000 0400 0800 1200

3. Discussion. For the 3 June 1982 event 7_u,_8o b
the precursor can be identlfled w_th a ,o ..,.o_..' ' '
flare in the same active region producing ,,-_....._o_o,_,._,

o io _ MeV PROTONS e•

the primary event and extended to energies
> 60 MeV as well as MeV electrons. The , '. '

time history for the precursor event is +, _
very different from that observed in the _ .o-' .'. ,_

_mpuls_ve phase of the main event. Since _ _!
the particle intensity and anisotropy are_ I,

still increasing at the onset of the large _ I_ /_lflare and in v_ew of the short transit _ I ' I_ I ,!
time of the 1.5 MeV electrons, it is unlikely _,o'_ i I !l
that there were significant changes in . _

the interplanetary propagation conditions liT I _ I ibetween the precursor event and the large _

event at II:34. The slow continuing _ncrease I!___j_____iin energetic particles between 8:40 and ,o'_ , ,
11:30 must reflect the effects of leakage oo_ o_oo o_'_' ,_oo! JUN[ _980

from a coronal source region. For the c
June 21, 1980 event, the t_me history or Fig.2 Energetic particle
the precursor proton i'ncreaseis remarkably time histories for 7 June
similar to that of 3 June 1982. The 7 1980 events. The DASHED
June preflare increase resembles a pulse-like line represents the flare
injection feature, on-set t_me

The precursor events described here imply that MeV ions (with

energies extending to above 60 MeV along with MeV electrons in one
case) are present in the corona prior to the onset of the main flare.
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the primary event and extended to energies t 

> 60 MeV as well as MeV electrons. The 
time history for the precursor event is 
very different from that observed in the i ,0- ' 

1mpuls1ve phase of the main event. Since ~ 
the particle 1ntens1ty and anisotropy are:; ~ 
still increasing at the onset of the large ~ r 
flare and in V1ew of the short trans1t r 
time of the 1.5 t<leV electrons, it is unlikely lol 
that there were significant changes in 
the i nterpl anetary propagat10n condi tions 
between the precursor event and the 1 arge 
event at 11:34. The slow continu1ng 1ncrease 
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in energetic particles between 8:40 and 10' 

11: 30 must reflect the effects of leakage 
from a corona 1 source regi on. For the 
June 21, 1980 event, the t1me history or 

, JUN£ 1980 c 
~ Energetic particle 
time histories for 7 June 
1980 events. The DASHED 
line represents the flare 
on-set t1me 

the precursor proton i'ncrease is remarkably 
similar to that of 3 June 1982. The 7 
June preflare increase resembles a pulse-like 
inJection feature. 

The precursor events described here imply that MeV ions (w1th 
energies extending to above 60 MeV along with MeV electrons in one 
case) are present 1n the corona prior to the onset of the main flare. 
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The presence of these energetic particlesallows the consideration
of modelswhere the impulsivephaseand the resultingshock both further
accelerateand precipitatethis existingreservoirof storedenergetic
particles. The possibilityof a continualaccelerationprocess over
the 3 hrs. prior to the main flarecannotbe ruledout.

The problem of the storage of ions in magnetic loops has been
examinedby Zweibeland Haber (1983). They found that particleswith
small pltch angles at the top of the loop, i.e.,particlesthatmirror
closer to the photosphere,will be lost much more rapidly. Using
their calculations,it is found that an average electron density,
ne < lO8 cm-3 is required if 5 MeV protons,mirroringnear the top
of the loop, are to lose < 2 MeV in 2 hr. On this timescale,particle
drifts become important but may be reduced by twisting the loop.
The shock accelerationof these particlesin a closed loop structure
will preferentiallyincrease the velocitycomponentalong the field
lineand lead to enhancedparticleprecipitation.
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The presence of these energetic particles allows the consideration 
of models where the impulsive phase and the resulting shock both further 
accelerate and precipitate this existing reservoir of stored energetic 
parti cles. The possi bil i ty of a continual acceleration process over 
the 3 hrs. prior to the main flare cannot be ruled out. 

The problem of the storage of ions in magnetic loops has been 
examined by Zweibel and Haber (1983). They found that particles with 
small pltch angles at the top of the loop, i.e., particles that mirror 
closer to the photosphere, will be lost much more rapidly. Using 
their calculations, it is found that an average electron density, 
ne < 108 cm- 3 is required if 5 MeV protons, mirroring near the top 
of the loop, are to lose < 2 MeV in 2 hr. On this time scale, particle 
drifts become important but may be reduced by twisting the loop. 
The shock acceleration of these particles in a closed loop structure 
will preferentially increase the velocity component along the field 
line and lead to enhanced particle precipitation. 
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