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ABSTRACT. The solar flare of 1984April 24 produceda largeY-
ray fluence with energy >2MeV. The time profile of the
interplanetaryprotonfluxfrom thisflare indicatesthe presence
of decayingsolarneutrons. Thismakes a totalof three neutron
flaresso far observedby thismethod. The threeflaresare used
to place constraints on the fluence and spectra of neutrons
emittedby the sun.

I. INTRODUCTION.Neutronsemitted from the sun by large solar flares
have been observedby two methods;directdetectionas the neutronspass
the earthi-3 and detectionof protonswhich resultfrom the decay of the
neutrons 4,5 The first unambiguousidentificationof decayprotonswas
made duringthe 1982 June3 event_. More recently,on 1984 April 24 at
2354 UT, another solar event occurredshowinga similarbehaviourthat
fully confirmsthe earlierinterpretation.This flarewas locatedon the
sun at S12 E43 and had the largest gamma ray fluence(>2MeV)thusfar
detectedby ISEE-3. A thirdneutronflareoccurredon 1980June 215.

In this paper, we use the decay proton method to interpret
datacollectedfrom the University of Chicago experiment onboard the
ISEE-3 spacecraft. The energy of the decayprotonsis essentiallythe
sameas thatof the parentneutrons. Thus,we can obtainpreciseneutron
energy spectra near 1AU in the range 25-138MeV. These resultsyield
informationon the propagationof chargedparticlesin the inner helio-
sphereas well as the fluenceand spectrumof emittedneutrons.

2. MEASUREMENTS.The signatureof neutronproductionis a flux enhance-
ment prior to the expectedarrivalof the flare protons. Neutronstravel
in straightlinesfrom the flare site,hence theirtraveltime is simply
distance divided by velocity. Protonsare influencedby the solarand
interplanetarymagneticfield. On a scalelargecomparedwith the proton
gyro radius, their motion appears diffusive resultingin significant
traveltime delays. In flareswhich are poorlyconnectedmagneticallyto
the spacecraft these delayscan be on the orderof severalhours. This
is evidentfor the flaresof 1984April 24 (located at E55 relative to
ISEE-3)and 1982June 3 (locatedat E72). The measuredprotonratesfrom
25.7-47.5MeV for these two flares are in figures 1 and 2. In both
flares we observe a largeinitialgammaray burst followedby a rise in
the protonflux approximately20-30minuteslater- the expecteddelay
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ABSTRACT. The solar flare of 1984 April 24 produced a large y­
ray fluence with energy >2MeV. The time profile of the 
interplanetary proton flux from this flare indicates the presence 
of decaying solar neutrons. This makes a total of three neutron 
flares so far observed by this method. The three flares are used 
to place constraints on the fluence and spectra of neutrons 
emitted by the sun. 

1. INTRODUCTION. Neutrons emitted from the sun by large solar flares 
have been observed by two methods; direct detection as the neutrons pass 
the earth 1-3 , and detection of protons which result from the decay of the 
neutrons 4,5. The first unambiguous identification of decay protons was 
made during the 1982 June 3 event 4

• More recently, on 1984 April 24 at 
2354 UT, another solar event occurred showing a similar behaviour that 
fully confirms the earlier interpretation. This flare was located on the 
sun at 512 E43 and had the largest gamma ray fluence (>2MeV) thus far 
detected by ISEE-3. A third neutron flare occurred on 1980 June 21 5. 

In this paper, we use the decay proton method to interpret 
data collected from the University of Chicago experiment onboard the 
ISEE-3 spacecraft. The energy of the decay protons is essentially the 
same as that of the parent neutrons. Thus, we can obtain precise neutron 
energy spectra near 1 AU in the range 25-138 MeV. These results yield 
information on the propagation of charged particles in the inner helio­
sphere as well as the fluence and spectrum of emitted neutrons. 

2. MEASUREMENTS. The signature of neutron production is a flux enhance­
ment prior to the expected arrival of the flare protons. Neutrons travel 
in straight lines from the flare site, hence their travel time is simply 
distance divided by velocity. Protons are influenced by the solar and 
interplanetary magnetic field. On a scale large compared with the proton 
gyro radius, their motion appears diffusive resulting in significant 
travel time delays. In flares which are poorly connected magnetically to 
the spacecraft these delays can be on the order of several hours. This 
is evident for the flares of 1984 April 24 (located at E55 relative to 
ISEE-3) and 1982 June 3 (located at E72). The measured proton rates from 
25.7-47.5 MeV for these two flares are in figures 1 and 2. In both 
flares we observe a large initial gamma ray burst followed by a rise in 
the proton flux approximately 20-30 minutes later - the expected delay 
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for the arrivalof neutrons. The initial rise in the proton flux is
rapid, corresponding to the time when the expandingshellof neutrons
passesthe instrument.This is followedby a slowdeclinein flux as the
decay protonsdiffuseaway. Protonsproduceddirectlyby the flarecause
the flux to riseagainabout 4 hoursafter the initialgamma ray burst in
the 198/+flare, 16 hours in the 1982 flare, and only I houT in the
neutronflare of 1980June 21 (not shownhere). The solid line in these
two figures is a result of modeling proton propagation in the inner
heliosphereusing a mean freepath of 0.3AU and an isotropicemissionof
neutrons.

Figure I Figure 2

The intensityat the onsetof the decay protonflux dependsonly on
the number of neutronsemittedin the directionof the spacecraft.This
flux is determinedby decayprotonswhichwere produced in the vicinity
of the spacecraft. In figure 3 we show the spectrumof decayprotons
collected from 30 to 90 minutes after the initlal gamma ray burst.
During this time the flux of decay protonsis expectedto vary by less
thanabout 30Z from its initialvalue. Most of the protons have under-
gone several scatterings and are nearlyisotroplcin theirpitch angle
distribution.

3. DISCUSSION. We consider two models which both are able to describe
the profile of the decay proton fluxes. In one model, the neutrons are
emitted from the sun isotropically in all directions . The sun blocks
all downward moving neutrons. The remaining neutrons form an expanding

hemispherical shell. In the other model, the neutrons are all emitted in

the plane parallel to the local horizon at the flare site, half of which
escape the sun. The models are referred to as the isotropic and the

pancake model. For both models, we assume that the neutrons are produced
impulsively at the time of the gamma ray burst. As they move outward
they decay to form energetic protons in the inner heliosphere. We assume
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for the arrival of neutrons. The initial rise in the proton flux is 
rapid, corresponding to the time when the expanding shell of neutrons 
passes the instrument. This is followed by a slow decline in flux as the 
decay protons diffuse away. Protons produced directly by the flare cause 
the flux to rise again about 4 hours after the initial gamma ray burst in 
the 1984 flare, 16 hours in the 1982 flare, and only 1 hou~ in the 
neutron flare of 1980 June 21 (not shown here). The solid line in these 
two figures is a result of modeling proton propagation in the inner 
heliosphere using a mean free path of 0.3 AU and an isotropic emission of 
neutrons. 
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Figure 2 

The intensity at the onset of the decay proton flux depends only on 
the number of neutrons emitted in the direction of the spacecraft. This 
flux is determined by decay protons which were produced in the vicinity 
of the spacecraft. In figure 3 we show the spectrum of decay protons 
collected from 30 to 90 minutes after the initlal gamma ray burst. 
During this time the flux of decay protons is expected to vary by less 
than about 30% from its initial value. Most of the protons have under­
gone several scatterings and are nearly isotroplc in their pitch angle 
distribution. 

3. DISCUSSION. We consider two models which both are able to describe 
the profile of the decay proton fluxes. In one model, the neutrons are 
emitted from the sun isotropically in all directions. The sun blocks 
all downward moving neutrons. The remaining neutrons form an expanding 
hemispherical shell. In the other model, the neutrons are all emitted in 
the plane parallel to the local horizon at the flare site, half of which 
escape the sun. The models are referred to as the isotropic and the 
pancake model. For both models, we assume that the neutrons are produced 
impUlsively at the time of the gamma ray burst. As they move outward 
they decay to form energetic protons in the inner heliosphere. We assume 
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that these protons rapidly become isotropzc 20 ........ ,
in pitch angle. Propagation is treated
using a spherically symmetric diffusion
model with negligible cross field I0 "_-

diffusion. -_

The rate of decline in the decay _ -_
proton flux dependsprimarilyon the scat- %
tering mean free path for protons along the _ "_-_
direction of the solar magnetic field. We _ _
find that the same mean free path fits our u

data in both models and that it is impos-
sible to distinguish between them on the i
basis of our measurements alone. Described E I

physically0 the number of neutrons moving _ • 1984Apt !

outward falls exponentially with distance _ iiiilJ_ii_iTT I

from the sun. In both models0 the density "6
of decay protons is greatest at the Inner o_

most exposed portion of the magnetic field
line connected to the spacecraft.

For both models we calculate the num-

ber of neutrons required to fit our
measuredfluxes. These results are shown 1 ........ I10 200

in figures 4 and 5 for the isotropic and Energy (MeV)
pancake emission models respectively. We
indicate the spectral index of the Figure 3

power law that best fits the data in both figures. The calculated

neutron f luence differs by a factor of 2.3 depending on which of the two
models is used.

Isofrop,c :_ Pancake

_+_ .

1020 _ __

> >
¢J a)
_E

t'- [Z 102#

o I. °o • !z a z _ 3 Jun 1982 __
7= -19

• 24 Apr 1984 T * 24 Apr 1984

lo'a y= -1 4 _ y= -1 3
I i I I I i i II 1027 I t I i i i i il

10 200 10 200

Energy (MeV) Energy (MeV)

Figure 4 Figure 5

132 

that these protons rapidly become isotroplc 
in pitch angle. Propagation is treated 
using a spherically symmetric diffusion 
model with negligible cross field 
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power law that best fits the data in both figures. The calculated 
neutron fluence differs by a factor of 2.3 depending on which of the two 
models is used. 
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Figure 6 relates the neutron
fluence (25.7-47.5 HeY) to the gaenna ray • ; ..... , .......
fluence (E >2MeV). We have not observed

neutronemission from small gamma ray _9e2. ,_ge,
1029

flares. Results from all large gannna
ray flaresare included in this figure >v
except for one when the proton back- _
groundwas very high due to a previous c
flare. The 1983flareoccurredat 2217 ot.
UT on May 7.

® 1o2. "s_Ii

z
4. CONCLUSION. All three neutron flares 1sea
have similar neutron emission spectra.
Neutrons, along with y-rays, result from

L I j I I IIAI I I * I I t j

a primary population of particles ac- Io_ 1o' Ios
celerated in the flare which most llkely Gamma ray fluence at I AU
interact in the solar corona 7. Since

the neutrons result mostlyfrom higher Figure6
energy particles than the 7-rays,
the correlation in figure6 is relatedto the shapeof the primarypar-
ticlespectrum. Our resultssuggestthatthe shape of this spectrum is
relatively invariantin the threeflaresthoughpossiblysomewhatharder
in the largerflares.

The scattering mean freepath of protonsin the inner heliosphere
does not depend strongly on the isotropy of the neutron emission.
Therefore, the 1982 and 1984 neutron flares offer a uniqueand clean
chance to study charged particle propagation in the inner heliosphere
without being affected by phenomena that occur near the sun. A mean free
path of roughly 0.3 AU fits the decay proton profile in both flares quite
well suggesting this value may be applicable to other propagation
problems too.

5. REFERENCES.

1. E. L. Chupp,D. J. Forrest, 3. M. Ryan, 3. Heslin, C. Reppin, K.
Pinkau, G. Kanbach, E. Rieger,and G. H. Share,1982,Ap. J., _,
L95

2. H. Debrunner, E. Fluckiger, E. L. Chupp,D. Jo Forrest,1983,18th
ICRC (Bangalore), 4, 75

3. E. L. Chupp, D. J. Forrest, G. H. Share, G. Kanbach, H. Debrunner, E.
Flueckiger,1983,18th ICRC (Bangalore),I_0,334

4. P. Evenson,P. Meyer,K. R. Pyle, 1983,Ap. J., 27___4,875
5. P. Evenson, R. Kroeger, P. Meyer, D. M_ller, 1983, 18th ICRC

(Bangalore), 4, 97
7. R. J. Murphy and R. Ramaty, Advances in Svace Research, Proc. of the

Solar Maximum Analysis Symposium, COSPAR, Graz, Austria, (1984)

133 

Figure 6 relates the neutron 
fluence (25.7-47.5 MeV) to the gamma ray 
fluence (E >2MeV). We have not observed 
neutron emission from small gamma ray 
flares. Results from all large gamma 

> ray flares are included in this figure Q,) 

except for one when the proton back- ~ 
ground was very high due to a previous ~ 
flare. The 1983 flare occurred at 2217 e 
UT on May 7. -; 

4. CONCLUSION. All three neutron flares 
have similar neutron emission spectra. 
Neutrons. along with y-rays. result from 
a primary population of particles ac­
celerated in the flare which most likely 
interact in the solar corona 7

• Since 
the neutrons result mostly from higher 
energy particles than the y-rays, 

Q,) 

z 

SH 1.4-2 

1982 + 
.1984 

-

1983 II 
1980 

103 10. 105 

Gamma ray fluence at 1 AU 

Figure 6 

the correlation in figure 6 is related to the shape of the primary par­
ticle spectrum. Our results suggest that the shape of this spectrum is 
relatively invariant in the three flares though possibly somewhat harder 
in the larger flares. 

The scattering mean free path of protons in the inner heliosphere 
does not depend strongly on the isotropy of the neutron emission. 
Therefore, the 1982 and 1984 neutron flares offer a unique and clean 
chance to study charged particle propagation in the inner heliosphere 
without being affected by phenomena that occur near the sun. A mean free 
path of roughly 0.3 AU fits the decay proton profile in both flares quite 
well suggesting this value may be applicable to other propagation 
problems too. 
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