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DI_USION-CONVECTION FUNCTION OF COSMIC RAYS
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ABSTRACT

This paper presents the fundamental properties
and some numerical results of the solution of the

diffusion equation of an impulsive cosmic-ray point
source in an uniform, unbounded and spherically
symmetrical moving medium.

!. INTRODUCTION The diffusion-convection(D-C_ function is
an elementary composite function of the solution of the D-G
equation for the particles injected impulsively from a diffu-
sive point source into a uniform, unbounded and spherically
symmetrical medium. It is the analytic solution derived by
the dimensional method for the propagation equation of solar_e
cosmic rays in the heliosphere, i.e. the interplanetary space.
Because of the introduction of convection effect of solar

wind, a nonhomogeneous term appears in the propagation equa-
tion, it is difficult to exuress its solution in terms of
the ordinary special functions. The research made so far has
led to a solution containing only the first order approxi-
mation of the convection effect. Undoubtedly it is insuffi-
cient to study only t_le propagation of the particle wi_1 not
too high energy. The solution we get with the dimensional
method, up to date, is the most general solution of propa-
gation equation in a uniform, unbounded and spherically sym-

metrical medim,,. It includes the higher orders of approxima-
tion for the convection effect, and has been used in discus-
sing various kinds of propagation effects of solar cosmic
ray, making propagation corrections and evaluating the equi-
valent diffusion coefficients$ '_ The solution raay also have
its value for reference in the discussion of the diffusion
in _he ordlnary moving medium.

It is necessary to ooint out that this solution is
valid only in the case of a constant K. For the low energy
particles, the energy of particles and also their diffusion
coefficients change as a result of the adiabatic expension
loss and other processes. In this case, such limitations
can be retrieved by the equivalen_ diffusion coefficient
reflecting the average nature of pl.opagation space.

Th_ diffusion equation in a uniform, unbounded and
spherically sy_maetrical medium is

m-_U r_U __ Vr_aU ,+ 2CVr

where U is the number density of diffusing particle, C is a
constant relating to the energy spectrum index. In the space
far from the source, the solution satisfyin£ condition
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~ .. U t:lU r'.}U _ V r 2 au r Ll ( I. , ) 
r

1 ~'f1 -+:ar ar - " a-ti -. "" ~r ,+ K 
whore U is tHe number density of diffusinG particle, C is a 
constant relating to tho energy spectrum index. In the space 
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U(r,t=o)=,_A/-__--_..(r-r._and Eq. (I.i_ist'_

U (r,%)- (_, ),& 4 _%
where € is tdiffusion-convection function I which the paper
is going to discuss in detail. It can be expressed as a func-
tion of two dimensionless parameters as follows: Diffusion
parameter Z- rZ_(4Kt), Convection parameter for time

x=(2c-l_V_t_K):_._ Disregarding_,solutio_(1.2_isllk_
a kind of the diffusion caused by a source moving outward
with the convective velocity V. The equation of 4 is

-- r ++ p, +" _.<I,. ')_ 4 )

In case of no convection, V=O and_-----l,solutlon(l.2_ is a
function of a single parameter Z. When convective effect is
not too strong, $ can be expanded into a cower series of

power series of parameter X: _(X,Z_ _X_F(I,Z _, (t4)
F(1,Z_ is called the 1-th order influence functlon of con-

vection, and its equation is

Seeing that the solution must be finite at the origin, Z_O,
expression of F(1,Z_ can be taken as

_ t,__.£._-,.7_._,..._ _ ' ,.,,,, ,,-,,,, _,.+,>

If. MAIN HETHODS A(n,m,k) is a multiple series relating
to m,and k, the lowest recurrence values for m and k are
all zero. For the derivation of the general recurrence
formula of A(n,m,k), it is instructive to evaluate first
from the lower-order coefficient A(n,m-l,k_ the next one
_(n,m_k_ byrecurring k. Then, the general formula of A(n,m,k_
can be yielded as:

[++L,IA_.,,, ,_) - A(.,) a.(,, - ) -_[.}.[_,

• a(o,,oj-.-I

S(,..._)-Z _+,3)

S(n,m.,_)=l,_:% .,_,--.,_--o, n_o, _o--I,n-o,(_-4)

whore oooffioien_ A(n) is de_orminod by the initial con-
dition.

The multiple series s(n,m,k% can be transformed into
a series composed of the higher-order I" function (function
_snd G).

From the initial condition at t_ o and the as]nnptotic
value (± _ ) of function as Z_- , the recurrence formula of
coefficient A(1) can be yielded :

_' "_z'..._._-_)_')C_)" "_+.",-) _+A¢+_(-_)_'' s(o, i,) --o, ,:_--,, A(,.I (."_)
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U(r,t=o)= /'/b(r-r.' and Eq. (1.1' ist
'1 

~ L 

U(r,t)=(:"lJ/Z lJ/;telC,r-~~~) J '*(1,1), (1.2,) 

where ~ is 'diffusion-convection function' which the paper 
is going to discuss in detail. It can be expressed as a func~ 
tion of two 'dimensionless parameters as follows: Diffusion 
parameter Z = rZ ,<4Kt).. Convection parameter for time 
X=(2C - l')V(tiK): • Disregarding4>, solution (1.2) is likA 
a kind of the diffusion caused by a source moving outward 
with the convective velocity V. The equation of ~ is 

r2'a
1

';' +r~·(2_L)_L~4- == (2C_ 1) Vr 4 
~ ,,' ~ yo let K -:at K 

In case of no convection, V = 0 and4> = 1, solution(1.2\ is a 
function of a single parameter Z. When convective effect is 
not too strong, 4> can be expanded into a nower series 01' 

power series of parameter X: c:P(X, 7,\ = !X"F(l,Z', (1.4) 

F{l,Z) is called the I-th order influence function of COD-
vection, and its equation is ~ 

f " ( 1,) l ) "" [ - I l' -i r'J 1=' (l, 'l ) - ii-If( l. i) == i r H L-I J ~ ) (t. 5" ) 

Seeing that the solution must be finite at the origin, Z - 0, 
expression of F(l,Z' can be taken as 

f(l,'i),.t.'l ... ,·flt<. ••• ,\C.)l'" n."~-"". 
Ma. t--- ' 

II. MAIN l1ETHODS A(n,m,k) is a multiple series relating 
to m,and k, the lowest recurrence values for m and k are 
all zero. For the derivation of the general recurrence 
formula of A(n,m,k), it is instructive to evaluate first 
from the lower-order coefficient A(n,m-l,k\ the next one 
~(n,m,k) byrecurring k. Then, the general formula of A(n,m,k) 
can be yielded as: ..q.. "" 

A(ft, .. ,~) _A(II)(t<'II,,,,q[ "~l, ~11< ~<,I\~ 'M,,\<) ('2.1) 

t~)", a(\\\-I) \ 
') • n~Oj 1.\.(0,"'1= (~,,",) J"'~O; ('1.1) 

(l"Cl,'" = (M+I)! 
ll(o,O) =, 

k 'fa' II, ... -I J "-d 
S ( 1\, ... , ~) ,. ~ WI 

"' .. (-\ ~Io\-I""~')('"'i'+"") 

s(n",\t\,.I¥.) 1:' J 1<= 0" IJ 3. ..... , ,"0: 0 ) n~oJ ,"0.:1./ r\:.o, (2.4) 

where coefficient A(n) is determined by the initial con­
dition. 

The multiple series s(n,m,k) can be tl->ansformed into 
a series composed of the higher-order~ function (function 
'" and G). 

From the ini tial condition at t - 0 and the asymptotic 
value (1 T ) of function as z~ - I the recurrence forLnula of 
coefficient A(l) can be yielded! 

h' A <. " ) .. I L-t ) ) 6', .. 1: -'L (t) ':)<'''J __ ) .... 1\(0)(') S(OI ~ =0 n:l.-""J A(6)_, (2." 
.... l'(,;;) } 
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The hig_B(_rorder coefficient A is difficult to express
in a sim_le form. floweret, it is quite convenient to calcu-
late A(1 _ with the recurr(Bnce formulae (a._ and (z.5) by
computer. It can be show_ that A(1) is an alternative seq-
uence, and its absolute value decreases when 1 increases.

Formula ( I._ ) is a nonhomogeneous equation. Its non-
homogeneous terms are composed of the same functions of lower
order. The formula of function Ftl,Z) can be derived from
formulae (t 6 ) and (2.t):

The asymi_totic value of f(n,m,Z) when t = o or Z_-is

Therefrom the recurrence formula ( :2.5 _ of coefficient A(l_
can be formulated.

III. DIFFUSION-_0NVECTION FUNCTION _(X.Z)
For convenience of discussion, function @ can be re-

written as

where Y is another dimensionless parameter, namely, the con-

vection parameter for space: y_ (2C - 1)-_-Vr _ XZ_ (_ _

Fig. 1. illustrates the value of n for calculation of
as a function of Y and T, when the relative magnitude of

the last term os less than l0 . It can be seen that the
term number of converEence increases with the value of Y
and T. _unctlon _ is probably divergent as X > 3._oo. So, we
often restrict our discussion to propagation problem within
the range X _ 3.oo.

30 2S

Abee_s_a is the d_mensionless time r, ordinate _ 30
is the number o_ terms summing up the funvt_on

o os Io 1._ o _5
D_memmnle_ 11m€ T

IV, VARIATION OF D_NSI_ U Variation of _-C function
_ith 'the 'convection p_eter for space Y and thedimenston-
less time _(-----4Kt/r*) have already been shovm in Fig. i.
ofEz] . Plotted here is the variation of diffusing particles
density U with T under the different conditions of solar
wind convections (Fig. 2.). A set of curves on the left
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A(l) 
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side are the results calculated by Formula (t.Z), taking
2C - 1- 4, or the differential-momentbu_-spectrum index of
oarticles to be 5.5. quch case corresponds to that of the
isotro_)ic propagation. But in fact, propagation of cosmic
rays particles in interplanetary space is anisotropic,the
diffusion coefficient along the magnetic line K,/ is diffe-
rent from the transverse one K_ . In this case, propa_a-
tlon equabion becomes

(€'0

where is the magnetic azimuth of observation point from

Vr (4,)
the source, and H is the modulation parameter, H-- 2N_
Substitute k,, for K when Z is calculated.

Solution (4.1) of the anisotroDic propagation equa-
tion is drawn by a set of curves of the right side of Fig2
when e = o'. It can be shown that the intensity of diffu-
sing particles decreases and the maximum time moves uo as
the convection effect intensifies. Besides, the time scale
of the isotropic D-_ prooagation is longer than that of
the anlsotropic one._Hence, it is possible to form an over
estimation of equivalent diffusion coefficient if obser-
vational data is fitted merely by the former. However, bet-
ter results can be got by using the model of anisotropic
propa_ation, oo _o 2o 30 oo os _o _.s 20

ISOtTOpIC dt|_USlOlt-cohvec(lo- [ Anmotropl¢ dl_u41on-€ol[IveCtlOn

10° 1 10'
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(a) Iso_pie D-C (b)aniso_opM D.-C

[ 11 Zhang,Gongliang, (1978), HTGI{ _TERGY =HYSICS AND NUC-

LEA PHYSICS, 200.
[2_ Zhm_g, Gongliang, S_,IENTI_ STNICA, 22(1979), 934.
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U - N i !i/. "" {~)t ~'A' C l (I. ~ ~' ~ . e'lbt 11-.ti J ci'>('(,~) ('-I) 
- (41ff' )5/1 1< ... \:Sw,8 I L 1c..L'! I U 

where is tho masnetic azimuth of observation point from 
the source, and H is the modulation parameter, H = yr (4.1) 

2K." 
Substitute k q for K when Z is calculated. 
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