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DRIFT AND OBSERVATIONS IN COSMIC-RAY MODULATION. II.

M.S. Potgleter
Space Sclence Center, Unlverslty of New Hampshire,

Durham, NH 03824 USA

i. Introductlon

In Part 1 (SH4.2-4) we have quantltatlvely shown that our drlft
model can slmultaneously flt the observed 1965-66 and 1977 electron and
proton spectra, in contrast wlth spherlcally symmetrlc models. We
interpret thls result as evldence of a charge-slgn dependent effect due
to partlcle drlft. Uslng the same set of parameters, we could also
simulate a shlft in the phase and amplltude of the diurnal varlatlon in
the cosmlc-ray (CR) intenslty by reverslng the polarlty of the
interplanetarymagnetlc field (IMF).

In thls paper, agaln uslng the same set of parameters, we show
that drltt can cause signlficant dlfferences in the radlal and latitu-
dlnal dependence of cosmic rays for consecutlve solar mlnlmum perlods.
We also searched the llterature for addltional modulatlon features
related to the IMF polarlty reversal and therefore relevant to deter-
mlnlng the role of particle drlft in the modulatlon of cosmic rays.

2. Model Calculatlons

Oslng the parameters of Part i, we calculated the radlal and latl-
tudlnal dependence of the i00 MeV proton intenslty for two consecutlve
solar mlnlmum perlods. The radlal dependence, wlth the radlal gradlent
G in %/AU, is shown in Fig. la. The latltudlnal dependence, wlth the
l_tltudlnal gradlent G In %/degree, is shown for 1 AU and 20 AU In
Flg. ib and Flg. ic _espectlvely. For the D(+) perlod (1976), G
remalns almost constant for most of the hellosphere wlth a fapl_
increase near the boundary, and G almost _dentlcal at 1 AU and 20 AU.
For the D(-) perlod (1965), G i_ overall larger and decreases towardr
the boundary, whlle G dlffers slgnlflcantly for the two dr_ft cases at
1 AU, and at 20 AU. 0(Note the dlfference in the intenslty for the two
dr_ft solutlons at 1 AU and 20 AU). The general behavior of the
density gradients displayed in Flg. la-c is a feature of all drlft
models.

One of the best manlfestatlons of the effect of drlft becomes

apparent when the transport equation Is solved uslng 8-(polar angle)
dependent Gausslan spectra at the outer boundary Instead of the full 8-
independent interstellar spectrum. By shlftlng these spectra (half-
wldth of i0°) consecutlvely in i0° intervals from the hellospherlc
poles to the equator, the results shown in Fig. 2 were obtazned.
Protons reachlng Earth from a partlcular reglon on the outer boundary
are expressed as percentage of those that would have reached Earth if a
full interstellar spectrum was used. The calculatlons were repeated
for increaslng values of the parallel dlffus_on coefflcient K,,wlth
other parameters unchanged. Solution (b) in F_g. 2 corresponds to the
solutlons in Fig. la-c. (Note that (K.) is a constant _n the expres-
sion for K, given by Potgleter and Mortal, 1985). These results show,
in contrast with the no-drlft case, that drift causes posltively
charged partlcles reachlng Earth to predominantly come from the outer
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equatorlal reglons durlng a D(-) perlod (1965), but from the outer
polar reglons when the IMF changes polaraty. A factor 3 increase in K,,
extends thls reglon to include mid-latltudes, while the sltuation
remalns vlrtually unchanged for the D(-) period. In general these
calculations show that oppositely charged partlcles should traverse
dlfferent regions of the hellosphere (Part i). Another ampllcation is
that the (ant_) correlatlon between variations in the CR _ntens_ty and
solar actlvlty parameters should exhibit a 22-year cycle.
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Fig. 1: (a) The radial dependence Fig. 2: The calculated percentage
"inthe equatorial plane (8 = 90°), of 1 GeV protons reaching Earth
(b) the latitudinal dependence at 1 from a partzcular reglon at the
AU and (c) at 20 AU, of the i00 MeV outer boundary for the two drlft
proton intenszty. (The dlfferen- cases compared to the no-drlft
tlal gradlents are in %/AU; -latl- sltuatlon. The equatorial ,plane
tudinal gradients are in %/degree). is at 8 = 90°.

3. D_scusszon of Results and Observatlons

Fzg. la-c show that drzft can cause signlflcant dlfferences zn
the radlal and latitude dependence of cosmic rays durlng consecutive
solar m_n_mum periods. Compared to our results, the observed integral
lat_tudlnal gradient (Decker et al., 1984) is as yet _nconclus_ve about
the role of dr_ft. Joklpzl (1984), however, by carefully slmulatzng the
exact observatlonal condlt_ons near the neutral sheet uslng a
three-d_menszondrlft model, found excellent agreement wlth the results
of Newk_rk and Flsk (1985), who studzed the statistzcal dependence of
CR lntenszty on the distance from the neutral sheet.

Less encouraglng are observed integra! radlal gradients recently
reported by Webber and Lockwood (1985) and McKibben et al. (1985). The
radlal gradient seems to decrease s_nce 1981, which ls not expected
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Fl.g. 1: (a) The radl.al dependence 
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Fl.g. 2: The calculated percentage 
of 1 GeV protons reaching Earth 
from a partl.cular reglon at the 
outer boundary for the two drl.ft 
cases compared to the no-drl.ft 
Sl.tuatl.on. The equatorial plane 
is at 8 = 90°. 

3. D1SCUSSlon of Results and Observatl0ns 

Flg. 1a-c show that drlft can cause signl.fl.cant dl.fferences l.n 
the radlal and latltude dependence of cosmic rays durl.ng consecutlve 
solar mlnlmum perl0ds. Compared to our results, the observed l.ntegral 
latl.tudl.nal gradl.ent (Decker et al., 1984) is as yet l.ncOnCluslve about 
the role of drlft. Jokl.pl.l. (1984), however, by carefully sl.mUlatlnq the 
exact observatl.onal Condl.tl0ns near the neutral sheet USl.ng a 
three-dlmenSl.On drl.ft model, found excellent aqreement wl.th the results 
of Newklrk and F1Sk (1985), who studled the statistlcal dependence of 
CR lntenslty on the distance from the neutral sheet. 

Less encouraglnq are observed lntegral radlal gradlents recently 
reported by Webber and Lockwood (1985) and McKibben et ale (1985). The 
radlal gradlent seems to decrease Slnce 1981, WhlCh l.S not expected 
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from a drlft polnt of view. It also appears that our model predlcts
the radlal gradlent too small for the 1976 solar mlnimum period.
Since both the radlal and latltudlnal gradlents are rather insensltlve
to parameter varlatlons in drlft models, these observatlons may become
an interestlng challenge to these models. It is also a compllcatlng
factor in explalning the role of drlft concernlng the anomalous compon-
ents. However, the near constancy of the integral radlal gradlent
observed before 1980, despite large changes in solar actlvlty (Webber
and Lockwood, 1985), is conslstent with our model, but not wlth
tlme-lndependent spherlcally symmetrlc models. In these models a
dlrect relatlon exists for var_atlons in K,,and the radlal gradlent.

Potgleter et al. (1980) calculated neutron monltor dlfferentlal
response functlons from latitude survey data for 1954, 1965 and 1976,
and found that the 1965 response functlon devlates slgnlflcantly from
those for 1954 and 1976. Uslng the parameters of Part i, whlch flt the
low-energy 1965-66 and 1977 proton and electron data, we could not
slmulate the observed large dlfference between the correspondlng
response functlons, although we obtalned a spllt in the rlght dlrec-
tlon. The compllcatlng factor here is that the low-energy proton
fluxes were hlgher in 1976-77 than in 1965, while the neutron monltor
countlng rates were lower In 1976-77 compared to 1965.

Another relevant observatlon is the change in dlrectlon of the
annual wave vector, derlved from the yearly varlatlons in CR intens_ty,
in 1958-59 and again in 1968-69 (e.g., Antonuccl et al., 1978; Nosaka,
et al., 1984). Whether drlft effects are the predomlnant cause of thls
observatlon, is not yet clear and has to await more detailed studles.

From 1972-77 the CR intenslty was an extended, rather flat plateau
preceded by a fast recovery over 2 years In 1970-72. (See the
correlatlon study of Akasofu et al., 1985 regardlng thls perlod).
Durlng the 1965 solar mlnlmum the Intenslty was peaked, preceded by an
extended recovery perlod of _ 7 years. This behavlor is conslstent
wlth the feature of drlft models that the proton intenslty is less
sensltave to varlatlon In modulatlon parameters durlng a D(+) cycle
(1970-80) compared to the ll-years before and after th_s perlod
(Joklpll and Thomas, 1981; Kota and Joklpll, 1983; Potgleter and
Moraal, 1985).

Shea and Smart (1981) found a correlatlon coefflclent of -0.86
between the geomagnetlc aa-lndex - a measure of dlsturbance in the
ecllpt_c plane - and the CR intenslty for the years around 1965. For
thls perlod Aldagarova et al. (1979) found that the CR intenslty cor-
relates best to coronal green llne (CGL) intenslty in the -20° to +20°
hellolatltude range. However, for the years around 1976, Shea and
Smart found a correlatlon coefflclent of +0.28 and Aldagarova et al.
the best correlatlon for +30° to +50°, and to a lesser extent for -20°
to -30° hellolatltude. In comblnatlon these observatlons indlcate that
durlng a D(+) cycle (1976), varlatlons in the CR intenslty correlate
better w_th solar act_vlty parameters _n a much wlder hellolatltude
range compared to a D(-) perlod (1965) when cosmlc rays are predomln-
antly transported to the inner hellosphere vla the equatorlal reglons.
(see also Joklpll, 1981). The same concluslon can be reached from the
observatlons of Nagashlma and Morlshlta (1980), Pandey et al. (1983)
and Vernov et al. (1983), desplte dlfferent data and technlques used by
them. These observatlons are conslstent wlth our calculatlons shown in
Fag. 2 and the drlft velocities shown in Part i.
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4. Summary and Conclusaon

In Part 1 we dascussed two key observataons relevant to
determlnlng the relatlve amportance of drlft in cosmlc-ray modulatlon.
In the present paper, uslng the same set of parameters, we have
111ustrated the slgnaflcant effect of drift on the radlal and
latatudlnal dependence of cosmac rays for consecutlve solar mlnlmum
peraods. Compared with the integral radlal gradient observed in 1976
(Webber and Lockwood, 1985), the calculated value seems too small. A
detaaled comparlson wall however have to await the forthcomang solar
manamum. The same applaes to the latltudinal gradient whlch is as yet
inconcluslve about draft effects.

Searchlng the literature for observataons related to the IMF
polarity reversal (in addltlon to Part I), we found dastanct dafference
an neutron monator response functaons for consecutlve solar mlnlmum
peraods, and also In the annual varaataons of cosmic rays observed
before and after polaraty reversals. Whether drlft as the predomlnant
effect as however not yet clear. We also found several reports whlch
Indlcate better correlatlon between varlataons an the cosmac-ray
antenslty and solar actavity parameters (e.g., the corona green llne
intensaty) over a much wader range of hellolatltude during 1970-80
compared to before thas peraod. These observataons are consastent wlth
draft models accordlng to whlch cosmlc ray protons primarily come vaa
the polar reglons during a D(+) perlod (1970-80),but prlmaraly vla the
equatorlal regions during D(-) periods. The observed peak vs. plateau
an cosmac-ray intensity for the years around 1965 and 1976 respectavely
as also conslstent wlth the general feature of drlft models accordlng
to which the proton intensity as more sensitive to changes in
modulatlon condltions durang 1970-80 compared to before 1970.
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before and after polar1ty reversals. Whether dr1ft 1S the predom1nant 
effect ~s however not yet clear. We also found several reports wh1ch 
1nd~cate better correlat~on between var1at~ons 1n the cosm1c-ray 
1ntens1ty and solar act~vity parameters (e.g., the corona green 11ne 
1ntens1ty) over a much w1der range of hel~olat~tude during 1970-80 
compared to before th1s per10d. These observat1ons are cons1stent w1th 
dr1ft models accord1ng to wh~ch cosm1C ray protons primar~ly come V1a 
the polar reg10ns dur1ng a D(+) per10d (1970-80), but pr1mar11y V1a the 
equator~al reqions during D(-) periods. The observed peak vs. plateau 
1n cosm1c-ray 1ntens1ty for the years around 1965 and 1976 respect1vely 
1S also cons~stent w~th the general feature of dr1ft models accord1ng 
to wh1ch the proton 1ntens1ty 1S more sens1t1ve to changes 1n 
modulat1on cond~tions dur1ng 1970-80 compared to before 1970. 
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