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ABSTRACT. We investigatethe nature of instabilitiesin cosmic ray
shocks by using two distinct models for the shock wave. For wavelengths
which are short relative to the thickness of the shock wave, the shock is
treated as a smoothly decelerating flow, and an appropriate JWKB type ex-
pansion is used to describe the perturbationsto the flow. In this, the
short wavelength regime, the presence of "squeezing" and an effective "g"
renders strong cosmic ray shocks unstable in a way which is similar to
instabilities in other supersonic flows, such as in de Laval nozzle flow
or a heat conduction dominated shock wave. In the long wavelength limit,
where the shock is treated as a discontinuous transition, we derive a
"stability function" which, if negative, corresponds to unstable dis-
turbances growing exponentially in time. In this case, we find that if
the cosmic ray fluid is relativistic (Yc =4_) and the background plasma
ideal (y = _), then strong shocks are unstable.

I. INTRODUCTION. We examine the stability of cosmic ray shocks (Axford
et al [1977], Drury and V_Ik [1981], Axford et al [1982], V_Ik [1984],
Drury [1984], Dorfi [1984]) in both short and long wavelength regimes.
The short wavelength instability in the two-fluid description of a cosmic
ray shock may be shown to be similar to the instabilities in other super-
sonic decelerating flows. Erpenbeck, [1962], established that discon-
tinuous transitions (shocks) are always stable for ideal fluids. We
generalize his results, and show that the relativistic two-fluid model
considered here is unstable.

2. THE GOVERNING EQUATIONS. The equations which describe the self-
consistent interaction between a background thermal plasma and a
relativistic cosmic ray fluid are given by

8p + div (pu) : O; (continuity) (2.1a)
@t

Du + V (p + pc) = O; (momentum) (2.1b)P_

8 (½pu + P ) + div [pu (½u2 + y P) +Yc pcu- S___Vpc]= O,
_-t -_-I Y--ZTP Yc-I Yc-l

(energy) (2.1c)

where p, p, Pc, and u denote gas density, gas pressure, cosmic ray pres-
sure and gas veloci_ respectively,and K an effective cosmic ray
diffusion coefficient. These equations are supplemented by the cosmic
ray energy equation

8 (2.2)_-t(_Pc--) + i__ div [ycPcu - KVpc] = u. V Pc'Yc-I _'c-I
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which, together with 2.1(a,b), enables 2.1(c) to be expressed in the
adiabatic form

°5D--t( ) = O, (2.3)

where B-_= _tt+ u.V is the convective derivative. The derivation
and discussion of these equations may be found in, for example, Drury,
[1983].

A perturbationanalysis of (2.1), (2.2) and (2.3) shows that short
wavelength perturbations propagate at the plasma sound speed, c, where

c = V_, (2.4)

and hence decouple from the cosmic ray fluid. Conversely, long wave-
length disturbances propagate at the mixed sound speed,

/ac2 + c2_ = /(YcPc + Yp)/P , (2.5)

Ptsukin, [1981], ac _ cosmic ray fluid sound speed.

A discussion of the shock structure problem may be found in Axford et al,
[1982], and Drury and V61k, [1981], McKenzie and V61k [1982], V61k et al
[1983].

3. THE SHORT WAVELENGTH INSTABILITY. For the sake of completeness we
present a brief modified account of the instabilitydiscussed by Drury
[1984]. By consideringwaves whose wavelengths are short relative to
the thickness of thejshock wave, one may treat the transition as a
continuous deceleratingflow. If one views the decelerating flow as an
"effective gravitational force", the stability problem has the character
of a "generalized Rayleigh-Taylor"type problem for a disturbance
propagating through the system. The introductionof compressive pertur-

bations _ = (p, p, Pc u) on the background state @Owenables equations (2.li and (2.3) to be linearized. ; (Po, Po, Pco, Uo)introduce a shock

thickness parameter L, related to the decelerating flow uo, by defining

! = -]__duo
L uo dx '

duo
where _ is the flow velocity profile. On either side of the shock,

uo is constant, and hence_. O. By using the steady state conservation
laws (2.1) and (2.3), one _a_ express the gradients of the remaining
background variables Po, Po, Pco, as functions of L and the Mach number
of the flow. We restrict the analysis to velocity profiles which vary
slowly in space, and thus need only consider tems which are 0(_). This
is tantamount to performing a WKBJexpansion in space. The useLof this
expansion, and the search for plane wave solutions whose amplitudes
vary harmonically, reduces (2.1) - (2.3) to the following dispersion
equation;
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_i_o2 i i_' + iu___o= k2(ac 2 + (M2-1)) - iUo2(k + [) + Fo2k 2 (I + kL),

c_o)iU , iY_oiKk2 + _0) L (_' + (_ + -- )L I

(3.2)

where _' = _ - uok in the Doppler shifted frequency, and k the wave num-
ber. In the absence of a shock, the dispersion relation reduces to

_' = O; co' = ±cok. (entropy-vorticity; sound waves)

A perturbation analysis of (3.2), about these frequencies, indicates
that in the presence of a decelerating flow,

Im _, = _ _OL ' (3.3)

for an entropy wave, and for a sound wave

ac2
c--Q2[M2- (y+l) M - I], (3.4)_m _' = _-_ " 2L

which, since we consider solutions of the form expi_t, implies insta-
bility for sufficiently large Mach numbers M.

4. THE LONGWAVELENGTHINSTABILITY. In this section we generalize
and extend the results of D'lakov, [1958], Erpenbeck, [1962 a,b], and
McKenzie and Westphal, [1968] to include the effect of a cosmic ray
fluid. We derive the transmission coefficient of an acoustic wave
incident on an oblique shock, and examine the singularities of this
transmission function. In the case of a supersonic-subsonic transition
it is straightforward to show that, if the shock is perturbed, then
three waves diverge from the shock (and thus the problem is well posed).
After perturbing the generalized Rankine-Hugoniot boundary conditions

[pu n] = O; (continuity) (4.1a)

[P + Pc + PUn ] = O; (normal momentum) (4.1b)

[ut ] = O; (tangential momentum) (4.lc)

[½Un2 + Y _ + Y_G_cPc] = O, (energy) (4.1d)
Y-1 P Yc-1 P

where n and t represent directions normal and tangential to the shock,
one may derive the transmission coefficient for an acoustic wave,

uk
_P2 _(I - -_I_Y_)NI + B3BIN2 + B3N3 , (4.2)

6pI _3(1 - Uyky) DI + _3_2D2 - B3D3

where (_:,Bi) denote the cosine and sine of the angle between k and the
x-axis, _nd Ni, Di are suitable generalizations of the functio-_s presen-
ted in McKenzie and Westphal, [1968]. The singularities of the.
function (4.2) correspond to the dispersion equation.
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On defining the variables

a 2 y-I a 2 1 R2

"R2 : 1 + _ Cz-, R* : 1 + Y--_--I _gI-, _ : MS2, MS __-gas Mach number,

the stability function, Fs, may be written as

(4.3)

for waves propagating with the flow, and where the subscript I(2)
indicates ahead (behind) the shock. In the cold plasma approximation,
cosmic ray shocks are unstable for all supersonic - subsonic transitions.
In the alternate approximatioh of a tenuous cosmic ray gas ahead of the
shock, it may be established that shocks are unstable for all Mach
numbers > 1,3. The growth rate of these instabilities (for strong
shocks) is of the order the compression ratio (Pj) x kul.

Pl
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