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1,Introduction, It is well known that the ratio of secon-
dary to primary nuclei in the wvTosmic radiation 1is a de-
* creasing functiom of energy for ER 2 GeV/n. This fact has
to be interpreted in terms of c.r. propagation and acceler-
ation model., An important problem is whether these two
processes are separated in time (and in space) or cap occur
simultaneously, Assuming the leaky box model, Cowsik®showed
“that the decreasing sec/prim ratio is in a strong disagree=
ment with an effective acceleration taking place in the IS,
predicting an increasing sec/prim ratio with energy. Howev=-
er it seems that there is still some confusion whether this
conclusion is applicable to other models of c.r, propaga.=.i
tiom or it is true for the leaky box model only$*

In this paper we give a general formula for the sec/prim
ratio, independently of any details of the propagation and
acceleration model, In the 1limit of equal fragmentation
paths for primaries and secondaries, this ratio at a given
momentum nucleon is proportional only to the mean path of
the observed primaries at that momentum., We. shall show
(basing partly on this formula) that it is unlikely to get
a decreasing sec/prim ratio with energy if an acceleration
process takes place during particle propagation in the IS,

2.General formula, Let us denote by f£(p,t) the vacuum time
distripbution of primaries observed at the Barth -with the
momen tum/nucleon D rqai 1€ nqmper of the observed primaries 1is
of course m‘(p)zJ -f(p,t)e mdt , Wwhere T 1is their mean
life time against fragmentation., ( We _shall keep in mind
that "time" means "path length" in gf/cem*). Particles arriv-
ing with age t have produced secondaries, which must propa-
gate and be accelerated in the same way - as their parent
particles, if we adopt a reasonable assumption that these
processes depend on p only (which is not changed by fragmen-
tation), So they come to the observation point with  the
same<mom7¥tum/h and their number is
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Of course it has been well- known for a long tvime <hat the
peq/brlm ratio depends on the path length dlutrlbutlon but
we would like: to stress here +that eq. (2) holds for any
model of the Galaxy and for any assumptions about the ac~
celeration or deceleration processes ? rovided they depend
on p only). For 04 (T,~T )/‘1‘4“1 eq. ?2) gives

rc P="kIEq )+ 44 éf(?) (T,-Ta)/ T4 (3)

where t(p)=-f. ( t/‘r"tﬂ-/ fl(p,‘t) et "clt (and similarly for
t (p)) i he mean time (Path length) of the observed pri-
mary partlcles at a given p. Thus the sec/prim enercy de-
pendence is practically equivalent to the energy dependence
of the mean pro ation time of the observed particles (for
Tz-T44<t and %ﬁ %), but not of the mean vacuum time.

3.,Examples, First we shall consider a situation when p 1s
a unique function of t. This could oécur if, for example,
ceIs were produced with a constant p and then accelerated

according to dpfdt = h(p)> O. %%} is reduced to
#(t) where map(pddp - FLHGdtC )€, B 20 s orim
"atlowwe have ‘i‘(ngom :s'Pp =k%(e (o248 Q)WLth -E(p) e&u/h(u/) (4)

S0 Ny/ny is a vrow1ng function of p, For the Prirst order
Permi process, when dp/dt =PBp (ﬁDO), we get

~(p)= AL (/p0y M- 1] 2, b U0 P (5)

If particles are produced with a alstrlbutlon of vprimary
momentym p then f(p,t)dt = £(p,that! Vhere tV'= t + ¥ with

/hw) d
T s, = ST . SFopre ™ Ty e

so a4 (p I a=[r(p )M]e" 3 hence r(p)> (). 7
Here % is 1ndependent of t but it is not a necessary condi-
tion for r(p) to grow. r(p) will also grow if £(p,t)  for
higher p is effectively shifted to lonﬁer times so that,
for example, f(p,t)dt = f(ﬂ,tﬁdt with t = t +C(v,p,t) ond

T > 0. One would expect that to be rather mnatural when
the acceler on t fes place, Growing of r(p) is seen from
(6) since =>e for any t for Te> T4, which is -the
. case for»second%rles oeing lighter.

Let us next consider a second order Fermi acceleration

- when p is not a unigue function of time, In particulaor we
shall asgume that its behaviour with time correswonds to a
uniform diffusion along the loz p axis . Iioreover we adovt
a T=dim. model of the Galaxy, the dimension x being perpen=
dicular to the Galactic plane. C.r. nuclei are produced in
the region 0Lz 41 at a constant rate g (per unit length)
with a single momentum pe. They diffuse, are accelerated
and frapment a2t the same time, leaking out of the Galaxy at
x =0 and ¥ = 1, Pirst we shall consider a case of a con-
stant opat1a1 dlfPuulon coelflclent D. ¥or that cese it is
easy to find,the function £(

f(p’c)dp (4TKE) " exp-Uni(p/pe )/uKt]% Ezéc-g.msm'“m -expl-( (*TFpt] (o)

. since partlcles with age, t nave a saussian o%9tf1butlon\o$
7= 1n(n/pe )+ Denoting f‘f'(Pt)e Mg Ty we find
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It is evident that r(p) increases with momentum for T&>Ih§
In the 1imit psee , when the first term in the series dom-

inates, we get T(P)-é (Eﬁk)d&z-1 , (ﬂO)

A4,0ther solutions. It is sometimes difficult to find ana-
lytically f(p,t). In particular one would be interested in
finding £(p,t) in the above described model if the spatial
diffusion depends on p but this does not seem %o be, an easy
task. So we shall treat this problem considering the equi=-
librium equations, We assume a second order acceleration oc-
curing, for example, as a result of particle collisions with
Alfven waves in the ISM, This corresponds +to a particle
diffusion in the 3=-dimensional momentum space with a momen-
tum dependent coefficient K(p), The equation for primary
particle density in the phase space ( Fq(x,p)- 4Wptdpdx =

dng(x,n)) is ) 25F 1F. F _

g 4 s )=

, 22T (K(P)PTP‘)‘*D(P){# m,*%J(P p)=0 (11)
Let us first neglect the term with fragmentation P/ T x)
As it is usually done we look for solutions in the Form
24(x,p) = FH(p)-#¥(x). Assuming further K(p)= B.p®  and
D(p)= A-p* e set for p>jp.' A

: 1 -1 1

qu?"“‘pi + (g+2) p %_1‘:;_ -2 =0 - (12)
> shall look for power law spectra and this implies that
=2 +&, (lowever, for a consistent picture of acceleras:
ion and spatial diffusion due to Alfven waves both diffu-
ion coefficients are related by K(p)eD(p)~ p*for relativ-
stic particles, but this does not lead to experimentalls
bserved power low spectra). With P(p)ap ¥we have from §12
. §:()=7 (3+a L {(BFRF +HAATB) 13)
where #!' (p)~ p ¥ for D> Do and P(p) ~p™ %  for PL Do
M)~ sin(Wx), with = A=(MW/L?* and n = 1,3,5,443 hence

ﬁéx,p) = Z Gmson(ST) [ () ¥ Q(pep+( Do) O(p-ps)]  (14)

here D = Pa) is a step function. Substituting (14) to
\ . o= P .
1) (with no fragmentation; we get 1 :
= L VR OTRN b 1
Gn=2q; [nT&p"™(xi-¥n)] (15,

. . T PRV, v
At high p the momentum spectrum behaves as g;“..4(rp*, S0
independently of the spatial distribution: of +the sources
vWhich influences only Gy,

We shall find now the secondary particle spectrum, Let
T3 (xasx,p) denote the phase space density of secondaries
observed at x with p, produced at x4, Then we have

Fu (ko X,P) = K Q) J Fite)-Fopi X, I (16).

vhere ¥yp(,,%yp) is the solution to the eq. (11) (T, oo
with the logt bern @d(p-De ) substituted by qéYz—x,&J(p—* R

Thig polution <iffers from (14} only by different coeffi-
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cients Gu(x,), the dependence being the same. Solving (16)
we get for P> Dy F,_%A,,y,p) = I+ I, whe

T- Keffe 3 Gints B3 6 it 0 i}
- £ 3 G, (D9 Z Gosnlelg- v o

For sir pllClty we have put Dy,= Dee L4 (Ig) corresponds to.
the secondaries that have been produced with momenta small-
er‘_(larger) than p. To find Fp(x,p) we have to integrate
f FH(Xe X, p)dXo Dbut its momen&um depel}gegce is_aidveady seen
ofrom (17). The terms with p and p®*oninate for P D,
so the sec/pr:m ratio increases with p as 1-(PA ) y Practi-
cally indevendently of the gas density dlstrl%’ution g(x)
For Q(x) = const. ande&= 0,6 FpfF4 (for p/p,= 10) reaches
~830% of its maximum value, ,
Taking now into account the fragmentation term in (11)
we look, as before, Tfor solutions in he form F.,( 'D) =
F(p)F%xs, if T4 (x) = const., For F(p)~p~ we get

[5(§+4)- x(q+2.)]‘>’l’ ~(AA/B) p% - 4/BT, = O (18)
This can only be fulfilled at p-» e and it can be seen that
then the fragmentation term does not play any r8le. In par- .
ticular,if M- 2 =&, ¥ has the same form as in (13). If we
assume +hat the secondary spectrum has a form ~7p~F for
p » e then we get

[P(ren) - T (qs2] P -QA/B)p" - 4/6T, 1k P =0 (19)

This can only be fulfilled at high momenta if P =y , So at
p > o® the sec/prim ratio ~»consts even if we take 1nto ac=
count fragmentation. -

,.Concluolonu. We conclude that, contrary to some sugges=
tions , & gimultaneous acceleration and propaga‘tlon in the
ISK would lead to the sec/prlm ratio increasing with momen-—
tum {tending in some cases to a constent for p»e ). That
is in a strong discrepancy with observation, The logarithm=
ic rise, stressed by Cowsik ™, is obtained for some partic-
wlar cases only. Horeover the shape of the particle spectra
nt pwer does not depend on the spatial distribution of
their sources, :
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