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I. Introduction. The application of the coded aperture mask to high en-

ergy y-ray astronomy will provide the capability of locating a cosmic y-

ray point source with a precision of a few arc-minutes above 20 MeV (I).

Recent tests using a mask in conjunction with drift chamber detectors

have shown that the expected point spread function is achieved over an

acceptance cone of 250 (2). A telescope employing this technique differs

from a conventional telescope only in that the presence of the mask mod-

ifies the radiation field in the vicinity of the detection plane. In

addition to reducing the primary photon flux incident on the detector by

absorption in the mask elements, the mask will also be a secondary radia-

tor of y-rays. In this paper we consider the various background compo-

nents in a CAMTRAC(Coded Aperture Mask Track Chamber) telescope and com-

pare Monte-Carlo calculations with recent measurements obtained using a

prototype instrument in a tagged photon beam line. This instrument is

described elsewhere in this conference (3).

2. Secondary Background Production in a Mask. There are several mech-

anisims by which photons may be generated in a mask. Charged particles

may generate _-rays via bremsstralung, _°-production or spallation in the

mask material. By using veto counters, in front of and behind the mask,

it is estimated that the contribution due to these components will be

< 10-Sy's per incident particle, and therefore they can be neglected.

Neutron interactions in the mask may produce secondary y's through neut-

ron capture or inelastic scattering. Butler et al. (4) have shown that

this component is negligible, being < 10-6 y's per incident neutron for

photon energies above I0 MeV. Gamma-rays incident on a mask may Compton

scatter,or produce pairs within the mask material,that generate secondary

photons by bremsstralung of the first generation electron(s), or (if an

electromagnetic cascade is induced) by the secondary electrons. This

component is potentially the most troublesome since in some of _hese
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interactions none of the electrons will reach the veto counters.

3. Monte-Carlo Calculations. Monte-Carlo calculations have been carried

out using the EGS electron-photontransport code of Ford and Nelson (5).

Mono-energetic photons were allowed to fall normally on lead slabs of

various thicknesses and the secondary photon and electron energy and

radial distributions recorded. These distributions were found to agree,

within statistical uncertainty, with those derived using the calculations

of Messel and Crawford (6) and the experimental data of Darriulat et al.

(7) In Fig. 1 we consider the various components that emerged from a

2.73 RL tungsten slab as a function of incident photon energy. A second-

ary photon threshold of 12.5 MeV was assumed in the calculations, this

value being representativeof the
I0°

lower limit of our telescope The z _.._• 0

0
various contributions arise as =

follows; F1 is the transmitted
e__(E)t =

component (i.e. F1 = where _
_(E) is the linear attenuation co-

efficient of the mask material and o

t is the mask thickness), F2 is the z

fraction of incident photons that

generated secondary y-rays F3 is, i01 102 I0 _

the fraction of incident photons in
ENERGY(MeV)

which secondary y-rays were also Fig. I The fraction ofthevarious classes ofevents

accompanied by an electron with a emittedfroma 2.73RLtungstenslabasafunctionof
incident photon energy. Refer to the text _r the

kinetic energy > 1MeV, and F4 is definitionofthes_bolsused.
the fraction of incident photons

that produced secondary y-rays and no electron _ 1MeV that left the slab.

Therefore F2 = F3 + F4. A scintillation counter placed immediately be-

hind the slab will veto component F3, and thus F4 represents the in-

trinsic secondary background due to the mask. The energy spectrum of

the unvetoed secondary component, integrated over 2_ steradians, was

found to be well represented by the empirical function;

dN(E,E) = 3.79 x 10-2 E0"96 E -a exp(-l.054 x 10-2E) (1)

x exp (-47.17 E E-I'55) dE y's / incident photon MeV
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0.843 + 3.6 x I0-3 E - 6.3 x I0"6 E2 20 < E < 400 MeVwhere a = 1.29, E > 400 MeV

and E and _ are the incident and secondaryy-ray energies respectively.

By comparison with Monte-Carlo data it is estimated that the average

error in dN(E,E), determined by Eq. l, is < 10% over the incident energy

range 20 to 600 MeV and secondary energies l < E < E.

In Fig. 2 we consider the case for a spectrum varying as E"2 nor-

mally incident on a mask consisting of equal open and opaque elements.

The various components are shown separately

integrated over 2_ steradians. The band l,._.=_de.t,,,ot,,m
2. _tai semondorims

in the Fig. encompasses single and multiple _.u,,s,o.d,....do,.°:a. Sinqlu + multiple photons

secondary photon emission. For any detection _o° b.Si.q,.p,oto,.

system placed immediately behind the mask _ _6' "\_
the true detector background would lie with- o,,-.<

in these bounds. It can be seen from Fig 2 _ 16' _'o.• ° \
that the unvetoed secondary component con- _ ,6' "_Y_.'_Ch_°"°_
stitutes < 5% of the incidenty-rays. _6_ _b_{/__\ <

o_
Further, since this component drops more .Eq.L "((7_ _.
rapidly than the incident flux (_E-3 as _6_ , , I '_ ..I04 I0 z I0 a

opposed to E-2) it can be neglectedfor ENERGY(MeV)
Fig. Z The vertous contributions to a detector

energies > 200 MeV. It should be noted _o,,tt.g_,e_,,r2,,e_t ....... Ny_.=td°,t

that for a practical telescope with a mask o._t_,,t°..,ko_t,_k,.,,2.73_L.

and a detection area of l m2, separated by l m, the measured unvetoed

background will be approximately a factor of 1.2 lower than that shown

at energies < 20 MeV due to the angular distribution of the secondary

y-rays. The median of this distribution ranges from about 15° to 3° for

secondary energies 10 MeV to 200 MeV. Since this is much greater than

the angular size of the unit mask cell at the detection plane, the second-

ary y-rays will not reproduce the mask pattern, and will therefore consti-

tute an almost uniform background level.

4. Experimental. It can be seen from Fig. I that the most efficient

production of unvetoed secondary photons occurs for incident y-ray en- "

ergies of _100 MeV. For this reason secondary y-ray spectra have been

measured at a range of incident photon energies ranging from 23 to 400

MeV using a CAMTRACtelescope at the tagged photon facility at CENSaclay,



OG 9.2-6

317

France. Here we report preliminary results for normally incident

y-rays of energies 27, 48, 90 and 108 MeV. The mask used during these

runs was a 2.73 RL _ungsten checkerboard of unit cell size 6.3 mm. A

counter in front of the mask vetoed charged particle induced events,

while a counter behind the mask tagged those events in which a secondary

y-ray was also accompanied by a charged particle that did not trigger the

detector anti-coincidence. A calorimeter located behind the track cham-

ber measured the photon energy with To,a, ..... dori .... M ...... d

Monte-Carlo

a typical energy resolution of 57% s....do,_e.._-(,>MeV,:_M ......d
Monte-C_rlo

FWHMat lO0 MeV. Fig. 3 shows the '_' 2TM,v 90,eV

total secondary spectra measured

at various incident energies. These _ _ _,,
were determined by comparing runs _ '°_|_-

with and without the mask in place.
m

For comparison the results of
164 ....

Monte-Carlo calculations are also _ _Me_ t_'Oe_e_V

shown from which it can be seen _ _\

there is reasonable agreement. Also _ ,_ =_
shown in Fig. 3 is the spectrum of o= .

events for which a charged particle _ _o
(> I MeV) was also detected in the ,_, ,,,

I0 :50 50 70 _0 50 90 130

counter behind the mask, from which SECONO,RYE,ERGY(,.V,

we conclude that the unvetoed Fig. 3 ExperimentalandMonte-Carlo
secondary y-ray spectra at various

secondary component produced in the incident y-ray energies.

mask comprises at worst _lO-Jy's per incident photon per MeV.
.%
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