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ABSTRACT

The new Buckland Park Air Shower Array has been producing

analysed shower data since July 1984. The array is

described and some preliminary performance figures are

presented.

1. Introduction. The Buckland Park array has recently been upgraded
with the addition of new scintillators with the result that its shower

size response has been extended to ~ i0_ particles at threshold. The

array now detects events at a mean rate of ~ 1/10s. The main purposes

of the new array are to continue the study of point sources of ultra

high energy gamma raysl, 2 in the southern hemisphere and the properties

of cosmic ray air showers with sizes less than 105 particles.

2. Array Description. The design considerations and predictions are

given in ref. 4. Briefly, the major considerations in optimizing the
rates of detection of small air

showers were the need to increase

N the ground area covered by
closely-spaced detectors and to
increase the individual detector

areas so as to minimize sampling
[]T,M_NG fluctuations.
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K. • • , The array consists of 27

scintillators arranged as shown

in figure i. New scintillators
L. M have been added to the old

array 3 to increase the density of

_j o o !x detectors near the centre where

_0 _ eight detectors AI, BI, C, DI,
[] Q m El, D, S and T have also been
T s _ increased in size from 1 m2 to

2.25 m2 .

The detectors are scintil-

lators of 50 mm thickness housed

G in pyramidal enclosures 4 which

are then housed in thermally

insulated galvanised iron huts.

All detectors contain a particle

Fig. 1 Array layout density measuring photo-multiplier (RCA 8055 general

purpose 120 mm tube or
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equivalent) which feeds a pre-amplifier at the detector before signal

transmission to the central laboratory. Saturation occurs at ~ 300

particle level Eleven of the detectors have, in addition, a fast timing

photo-multipller (Philips XP2040) which directly drives 50 ohm cable

(RG8) to the central laboratory. Fast timing detectors were added at

sites S and T to enable directions to be found for small showers falling

nearby and to improve the angular accuracy in the north-south plane for

medium and larger showers falling near the centre. Two further slow

detectors will soon be added as indicated in figure 1 and fast timing

introduced in X and W detectors to improve directional measurement of

showers in the east-west plane.

An event is recognized when any two of the 19 inner amplitude

measuring detectors trigger at the threshold of 2 particles, (each of

which has an individual rate ~ 0.5 Hz) and any two of the fast timing

detectors also trigger. (Their individual rates are ~ 100Hz). The slow

system thresholds are set well above those in the fast system to ensure

that, in most cases, the fast detectors trigger as closely as possible
to the start of the photomultiplier pulse and reduce timing

uncertainties associated with the fast system rise time (ot ~ 5ns). A
further result is that except for the smallest of showers, there are

normally many more than two fast detectors triggered and directions can

be found with timing redundancy. The final trigger rate is ~ 8000

events day -I.

The density measuring channels have final pulse shapes which are

quite long (rise ~ lOOns, fall ~ 5Bs) and these pulses are fed to CAMAC

Peak-sensing ADCs (LeCroy 2259A) which are gated by the array trigger.

The array data is calibrated and partly analyzed (for angles of

incidence) by a Nova minl-computer system. Output is presently recorded

on magnetic tape for later analysis and one 2400 foot tape lasts about

five days. The resolved single particle peaks of all detectors are

monitored regularly, normally when each tape is changed.

The relative times of arrival of the fast timing pulses are

measured with ~ i ns bit resolution using a CAMAC Time to Digital

Convertor (LeCroy 2228A). Our previous practice had been to start the

TDC off using a discriminator output from the central detector, the

others being delayed a fixed amount to act as stops. With our more

loose coincidence system we now do not specify any particular fast
channel to be the TDC start channel. Instead the fast coincidence

output triggers the TDC start. In order to ensure that all pulses will

be within the range of the TDC, there is a further monostable delay of
N 200 ns in each channel after the discriminator and before the TDC

stop. These delays appear to be inherently quite stable and do not

suffer from any bandwidth limitations of delay cable.

Any combination of fast timing detectors may trigger on a given

event. We need to find one timing detector which has been triggered and

calculate all usable (non-collinear) time differences after subtraction

of the known delays. It is then straightforward to calculate the zenith

and azimuth angles for the shower axis. At the same time, right

ascension, declination and Julian time are calculated for the event.

The chi-square fitting parameter for a planar shower front is consistent
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with a directional accuracy ~ 2.5/c0s 8 degrees where most detectors are

triggered. The worst cases wlll be for small showers triggering only

our inner 2.25 m2 detectors. In these cases, we have a detector spacing
of only 8m and directions are expected to have uncertainties > I0°.

3 Preliminary Results. The array detects showers wlth analysed sizes

down to I0_ particles and with our present preliminary shower analysis

we have a median shower size ~ 0.9x105 particles. Figure 2 shows a

preliminary graph of the size distribution for analysed showers over the

whole array and compares it to the performance of the old array. We are

beginning to develop our directional analysis system and Table 1 shows a

sky map with the accumulation Of events for several sidereal days in

which only showers with at least five measured times are used. The map

shows the extent of sky coverage available from Buckland Park.

w

= Flg. 2 Size Distribution for

1_8 all events accepted by whole_ array. The events are analysed
using the NKG function and

MINUIT 5 program package.
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TABLE 1

Sky map showing typical coverage of the southern sky.

The median shower size is 0.9XI0 5 particles.




