THE METHOD FOR THE STUDY OF THE INELASTIC CROSSSECTION FOR HIGH ENERGY PROTONS BY MEANS OF SHOWER ARRAYS WITH THE LARGE CALORIMETRIC AREA.

Danilova T.V., Erlykin A.D.
P.N.Lebedev Physical Institute, Leninski pr. 53, Moscon, 117924, USSR.

Proton initiated showers could be reliably separated from showers initiated by cosmic ray nuclei by means of arrays with large calorimetric area, using distributions of energy fractions for EAS electromagnetic muon and hadron components. Proton initiated showers penetrate deeper into the atmosphere and have relatively lower enerey fraction in muons. Distribution of that energy fraction is sensitive to the value of the proton inelastic cross-section. It is shown thet the analysis of this distribution let one distinguish between log $^{2} S$-rise and logs -rise of the cross-section at energies above $10^{15} \mathrm{eV}$.

Methods of the direct study of interactions stop working at energies above $10^{15} \mathrm{eV}$ since intensities of primary particles and particles in the atmosphere are smail at such energies. In connection with this future arrays for the study of interactions must be based on arbitrary methods, that is mainly on the study of EAS cores.

The absolute value and the energy dependence of hadron cross-sections determine the distribution of interaction points of hadrons in the atmosphere. This distribution determines the speed of the cascade development, if all other factors are identical. For the analysis of EAS detected at arrays with large calorimeter areas like ANI or AKENO it was proposed to use new classification parameters: the total energy of the shower E_{0} or its energy at the observation level $E_{z} / 1 /$ Here $E_{0}=E_{e \& \gamma}+E_{h z}+E_{\mu \nu}+E_{Q} \quad$ (1) for EAS where one succeeded to measure the Cerenkov light and by this way - the energy E_{Q}, lost by the shower in the atmosphere and $\mathrm{E}_{\mathrm{z}} \mathrm{m}_{\text {ely }}+\mathrm{E}_{\mathrm{h}}+\mathrm{E}_{\mu \nu}$ (2) for EAS without measurements of the Cerenkov light. Calorimeters with large areas let one measure rather accurately the energy carried by electromanetic $E_{e \& \gamma}$ and hadron E_{h} components in every individual shower. The measure of the energy for the muon and neutrino component $\mathrm{E}_{\mu \nu}$ is the total number of muons in the shower /1/.

In the paper / 1/ it was suggested to use the multidimenaional analysis of tetrahedron and triangle diagrams - dism tributions of $E_{e d \gamma}, E_{h}, E_{\mu \nu}$ and E_{Q} for the study of
primary mass composition. Such an analysis helps to analyse the crosa-section behaviour too, since
a) providing the good energy resolution it let better determine the energy of primary particles;
b)among primary particles with the given energy it let reliably separate proton induced showers; c) the analysis of the shape of distributions $W\left(\delta_{e}, \delta_{\mu}, \delta_{h}\right)$ or $W\left(\Delta_{e}, \Delta_{\mu}, \Delta_{h}, \Delta_{Q}\right)$, where $\delta_{i}=E_{i} / E_{z}, \Delta_{i}=E_{i} / E_{0}$ in "proton ${ }^{\text {" }}$ part of these diagrams is equivalent to the analysis of distributions for the speed of the cascade development of proton induced showers and finally, let one find the value of the cross-section at chosen energies.

Accuracy estimates for the energy determination of diffem rent EAS components at ANI array show that the shower energy at the observation level E_{z} will be measured with $\sim 11 \%$ accuracy. In the fig. 1 the distribution of $\mathrm{E}_{0} / \mathrm{E}_{0}$ ratio is shown for showers selected by E_{700} classification para- 2 meter from 100 up to 316 TeV at the mountain level $700 \mathrm{~g} / \mathrm{cm}^{2}$ (full line) compared with similar distributions for showers selected by the total electron number N_{e} in the interval ($1-1,58$) $\cdot 10^{5}$ (dotted inne) and the mion number $N_{\mu}(>5 \mathrm{GeV}$) in the interval ($1-1.58$) 10^{3} (dashed line). All distributions are obtained by means of the simulation program /2/ for EAS with zenith angles $\theta \leqslant 30^{\circ}$. Mass composition of primaries is similar to that at energies. $10^{11} \mathrm{eV} / 2 /$. It is seen that the total shower energy E_{\circ} may be determined by its energy at the observation level E_{700} with inaccuracy $\sim 19 \%$. It is better, than in the case, when the primary energy is determined by N_{e} or N_{μ}, where the error is $\sim(37-38) \%$. In the combination with the error of E poodetermination this distribu- $^{\text {dit }}$ tion gives on the average $\sim 22 \%$ error in the determination of E_{0} at ANI array when energies of three EAS components are measured. Measurements of the fourth component E_{Q} let one reduce the exror down to 8%.

Fig. I.

The triangle diagram in the fig. 2 demonstrates positions of gravity centres of $\delta_{e}, \delta_{\mu}, \delta_{h}$ distributions for primary particles of different masses, which induce showers with E_{700} $=31.6-100 \mathrm{TeV}$ and 100-316 TeV. Here stars indicate positions of gravity centres for mixed primary composition. It is seen that all centres are located at one trajectory. Their position is determined by the energy

and the mass of the primary particle, i.e. depends in fact on the speed of the shower development. From this point of view the trajectory marked by the letter I may be called "the speed line".

Showers which develop
faster are usually concentrated around points located at the right side of this line. In the left part on the average proton induced showers are concentrated which on the opposite, penetrate deeper into the atmosphere. The probability of such penetration and hence the $\delta_{e}, \delta_{\mu}, \delta_{h}$-distribution depends on the magnitude of the cross-section. The value of δ_{μ} varies most quickly along "the speed line", therefore δ_{μ}-distribution in the left part of the triangle diagram must be most sensitive to the proton cross-section $\sigma_{\text {pA }}^{\text {proc. }}$. The ideology of this method is aimilar to that suggested by Ellsworth et al. /3/ for $\sigma_{p A}^{p r o d}$ determination by the distribution of shower maximum depth in the region of large depths, i.e. again by showers with slowest development.

The analysis of diagrams $W\left(\delta_{e}, \delta_{\mu}, \delta_{h}\right)$ for primary particles of different masses demonstrates that proton induced showers may be effectively selected from the mixture corresponding to the normal mixed_composition, if to restrict the region by values $-\delta_{\mu}=\bar{\delta}_{\mu}-(0.1 \div 0.15)$. For example, for $E_{700}=100-316 \mathrm{TeV} \quad \delta_{\mu}=0,514$. The probability for the proton induced shower to hit the region $\delta_{\mu}<0,35$ is 0,492 , the same probability for helium induced shower is 0,155 . For other primary nuclei it is 0 . For the region $\delta_{\mu}<0,4$ these probabilities are $W_{p}=0,647 ; W_{\text {He }}=0,246$, $W_{M, H, V H}=0$. Taking into account that protons in the ordinary mixed primary composition are about twice as abundant compared with helium nuclei, one can say that in the region
$\delta_{\mu}<0,3586 \%$ of showers are proton induced and only 14% of them are helium induced. For $\delta_{\mu}<0,4$ these values correspond to 83% and 17%.

Shower distributions for different values of $\sigma_{p A}^{\text {prod }}$ and $\sigma_{r x}^{\text {prod }}$ differ most atrongly juat in the extreme left region of ${ }^{s} \delta_{\mu}$. In the fig. 3 distributions $W\left(\delta_{e}, \delta_{\mu}, \delta_{h}\right)$ are shown for proton induced showers with $\mathrm{E}_{0}=(1-3.16) 10 \mathrm{eV}$ and for two versions: with logarithmic ($\sigma_{\text {hiA }}^{\text {prod }} \log \mathrm{S}$) and maximum rising ($\sigma_{h}^{p r o g} \sim$ log$^{2} S$) cross-aection. The quantitative analysis of these bilateral diagrams made by means of Kolmogorov criterium shows that in the region $\delta_{\mu}<0.4$ these versions may be considered different with the probsbility to be wrong no more than 4\%. At the same time the analysis of similar diagrams, calculated with constant or rising inelasticity does not reveal such a sengitivity.

In the fig. 4 folded unilateral distributions $\Delta W / \Delta \delta_{\mu}$ are shown in the interval $\delta_{\mu}=0-04$. Essential difference in the shape of these distributions confirms above mentioned expectations and let one hope for the practical realizability of this method.

Fig. 3
Pig. 4

References.

1. Danilova T. V., Erlykin A.D. 18 ICRC, 1983, Bangalore,6, Preprint FIAN No155,1982.
2. Danilova T. V. et al. 17 ICRC, 1981, Paria, 6, 146. Preprint FIAN N• $14,15,1984$.
3.Ellsworth R.W. et.al. Phys.Rev. 1982, D26, 336
