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i. Introduction. The forward-backward charged multiplicity distribu-

tion P(nF, nB) of events in the 540 GeV pp collider has been extensively

studied by the UA5 Collaboration. It was pointed out that the distribu-

tion with respect to n = nF + nB satisfies approximate KNO scaling and

that with respect to Z = nF - nB is binomial [i]. The geometrical model

of hadron-hadron collision interprets [2] the large multiplicity fluctu-

ation as due to the widely different nature of collisions at different

impact parameters b. For a single impact parameter b, the collision in

the geometrical model should exhibit stochastic behavior. This separa-

tion of the stochastic and non-stochastic (KNO) aspects of multiparticle

production processes gives conceptually a lucid and attractive picture

of such collisions [3], leading to the concept of partition temperature

T and the single particle momentum spectrum to be discussed in detail
P

below.

2. Description of Model. Assuming the separation of stochastic from

non-stochastic aspects of collision to remain valid as n_, we expect

[i] that the distribution in the two-dimensional (nF/n)-(nB/n) plane

would become more and more concentrated in a narrow region. For 540 GeV

. pp collisions this region is in the form of an ellipse as shown in Fig.

l(a). When 5 becomes large, it becomes thinner and eventually collapses

into a line segment (Fig. l(b)). This line segment is a collection of

points, at each of which nF = nB and both nF and nB fluctuate only to

the extent of _ (i.e., like a stochastic distribution). For example;

if n = 2×106 , then nF could easily be as small as 0.5×106 or as large as

2×106 . But in either case, one can predict that nB = nF with fractional
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errors of the order (5)-½ _ 10-3 .

Accepting this picture for very high energies, we see that for fixed

nF, the distribution of nB is stochastic. How then is the energy parti-

tioned in the backward hemisphere? We shall assume that the energy par-

tition for each hemisphere for a fixed z = (nF + nB)/n is also stochas-

tic but subject to a number of conditions: (a) that the total energy of

all outgoing particles on each side is E0h , (b) Bloch-Nordsieck factor

d3p/E for each particle, and (c) transverse momentum (pT) cutoff factor

g(pT ). In other words, the probability distribution for central parti-

cles on each side will be taken as

(_ Ei-E0h) ._ (d3pi/E i)g(PTi } (i)
1 i

where E0 = _s/2, E0(l-h ) = total energy of all leading particles, and

i = 1,2,... ranges over all the particles (positive, negative, and neu-

tral) on one side minus the leading particles, h is a parameter that

describes the fraction of E0 that fragments into all particles in the

central region.

Now the mathematical problem (i) is well-known in statistical me-

chanics as describing a microcanonical ensemble. By the well-known

Darwin-Fowler method the single particle distribution of such an ensemble

is given by the canonical ensemble:

dn = K (d3p/E) g(pT) exp(-E/T ) (2)P

where T will be called the partition temperature and K is a normaliza-P

tion constant. Notice that all particles, positive, negative, and neu-

tral, kaons, nucleons as well as pions, share the same T .
P

3. Comparison with Experimental Angular Distribution at 540 GeV. As

Fig. l(a) SHOWS, at the 540 _p collider, the distribution is still an

ellipse. We shall nevertheless test the validity of (2) at 540 GeV by

evaluating the single particle angular distribution from it. We write

E0h
dn/d_ = 2_Ksin28 f p2(dp/E) g(psinS)exp(-E/T ) (3) -

0 P

where n = pseudo-rapidity, cosh _ = cscS, and

g(psinS) = exp(-_psin@). (4)
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Fig. 1 Schematic diagram for for-

ward-backward multiplicity distri-

bution at very high energies. (a)

The contour lines represent

P(nF, n B) at constant fractions of _0
its maxzmum value at _s = 540 GeV o ; _ _ __6

where n - 29. (b) The same contour

lines degenerate to straight lines Fig. 2 Calculated and experimen-

for extremely large n. tal dn/dq vs. q at _s = 540 GeV.

102 102_

._= 2 TeV Curve[ n : J_" = 40 TeVI 1_4o [
n I,oo I ]27o
III 78 _ II I 200

Iv I 62 _ zzz ( _5o
V J 47 ' IV i,_o

vIl3° _ I v ( _
/L------___ vIIl,5 ' 11 _ vll 5_

L :v_

: iv !_v_.

d__n.nv dn I vl

Vll

,!
r

lO-II i i i ,
,Co I 2 s _; .__7 0 i _ 3 _ s 6 _' 8 9 ,o

_7 _7

Fig. 3 Calculated dn/dn versus q at _s = 2 TeV and 40 TeV.
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We take e to be equal to 5.25(GeV/c) Only pious are included in this

calculation. The angular distribution is evaluated from (3) and compared

with the results [4] of UA5 in Fig. 2. It is found that the UA5 curve

for each multiplicity n is well fitted by (3) for one value of T We
p"

emphasize that there are no adjustable parameters in this computation,

the cutoff _ having been taken from experiments [5] concerning PT distri-

butions. The parameter h and normalization constant K are both deter-

mined from the curves themselves.

We conclude that the angular distribution (3) that results from (2)

is in excellent agreement with experiment. Furthermore, we believe (2)

would give a complete description of the single particle momentum dis-

tribution for central particles.

4. Extrapolation to Higher Energies. We made extrapolations of the

angular distribution to /ss = 2 TeV (Tevatron) and 40 TeV (SSC). The

assumptions made in these computations are as follows: (i) The values

-i
of e for these energies are taken to be 5.0 and 4.4 (GeV/c) , respec-

tively [5]. (ii) The parameter h is taken to be a function of the KNO

variable z = n/_ only. (iii) The values of rich for these energies are

taken to be 41 and 78, respectively, by extrapolation. The results are

presented in Fig. 3.
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