## A Test of the Feynman Scaling in the Fragmentation Region

at 
$$\sqrt{s} = 630 \text{ GeV}$$

- T. Doke<sup>5)</sup>, V. Innocente<sup>1) #</sup>, K. Kasahara<sup>2)</sup>, J. Kikuchi<sup>5)</sup>,
- T. Kashiwagi<sup>5)</sup>, S. Lanzano<sup>1</sup>, K. Masuda<sup>5)</sup>, H. Murakami<sup>3)</sup>, Y. Muraki<sup>2)</sup>
- T. Nakada<sup>4)</sup>, A. Nakamoto<sup>3)</sup>, T. Yuda<sup>2)</sup> and M. Haguenauer<sup>6)</sup>#
- 1) Instituto di Fisica, Univ. of Naples, Naples, Italy
- 2) ICRR, Univ. of Tokyo, Tanashi, Tokyo, Japan
- 3) Dep. of Physics, Rikkyo Univ, Toshima, Tokyo, Japan
- 4) SIN, Villingen, Switzerland
- 5) Sci. Eng. Lab, Waseda Univ., Shinjuku, Tokyo, Japan
- 6) CERN UA-4 collaboration
- #) Ecole Polytechnique, Palaiseau, Paris, France

( CERN UA-7 collaboration )

#### abstract

The result of the direct measurement of the fragmentation region will be presented. The result will be obtained at the CERN  $p\bar{p}$  collider, being exposured the Silicon calorimeters inside beam pipe. This experiment clarifies a long riddle of cosmic ray physics, "whether the Feynman scaling does violate at the fragmentation region or the Iron component is increasing at  $10^{15}$  eV".

### 1. Introduction

This experiment aims to measure the inclusive cross-section of neutral pions emitted into the very forward region in pp collision at  $\sqrt{s}$  = 630 GeV. Fig. 1 represents an experimental result<sup>1)</sup> which predicts the primary composition of cosmic rays is <u>either</u> proton dominat and Feynman scaling violates <u>or</u> iron dominant and scaling valid.

Until now, no direct measurement inside beam pipe of colliders was made due to a technical difficulty. We have developed a very compact silicon calorimeter with the tungsten target and they will be installed in the Roman pot of UA-4 at CERN

 $p\bar{p}$  collider. The direct observation of the energy of the secondary particles with  $X_F^{}=0.05$  - 0.5 gives rise to the final conclusion to a long riddle of cosmic ray physics and also gives a good data for the understanding of the forthcoming cosmic ray phenomena.

## 2. Geometry

The shower calorimeter consists of 20 layer of silicon wafers with diameter of 10 cm alternating with tungsten converters of thickness 3.5 mm and 7 mm. The total thickness of the calorimeter amounts to 21 radiation lengths.

All electrodes are segmented at the front and rear side of the silicon wafer into x and y electrodes with 5 mm pitch. The first layer of the silicon wafer is used to identify whether the incident particles are charged or photons. At the 8 radiation length from the front, 45° oriented u-chamber is installed to resolve the multi-hit events. Total number of electronics channel is 90 for one detector. The signal is recorded by Le Croy ADC 2281.

One chamber is located at 13 m from the interaction vertex and outside of beam pipe, while the other detector will be installed at 22 m away from the vertex inside the Roman pot (Fig. 2). The tracking chamber is also located to obtain the interaction vertex, which covers  $\eta = 4.4 - 5.6$ , in front of the silicon detector at 13 m. The properties of the silicon calorimeter has been published elsewhere  $^2$ .

# 3. Trigger and Detector resolution

The trigger is made by UA-4 trigger logic<sup>3)</sup>. The identification of the interaction vertex with use of tracking chamber is necessary for the single arm trigger (=single diffractive trigger) selects beam-beam collisions with 75 % probability. Even if the background rate becomes of the same order as the beam-beam collision for the triggered events, we could clearly find the pinote peak as in Fig. 3. For the double arm trigger

(double diffractive trigger) (  $3.0 < |\eta| < 5.6$ ), the beam-gas collision is selected with a rate of 2 %.

Under a typical low- $\beta$  run with a luminosity of L =  $1 \times 10^{28} \text{ cm}^{-2} \text{sec}^{-1}$ , and the exposure time of 2 minutes, 60,000 minimum bias events will be obtained which is already sufficient to measure the inclusive  $\pi^{\circ}$  and  $\eta$  production spectra but in order to obtain  $K_S^{\circ}$  and  $\eta'$ , we need further 20 minutes.

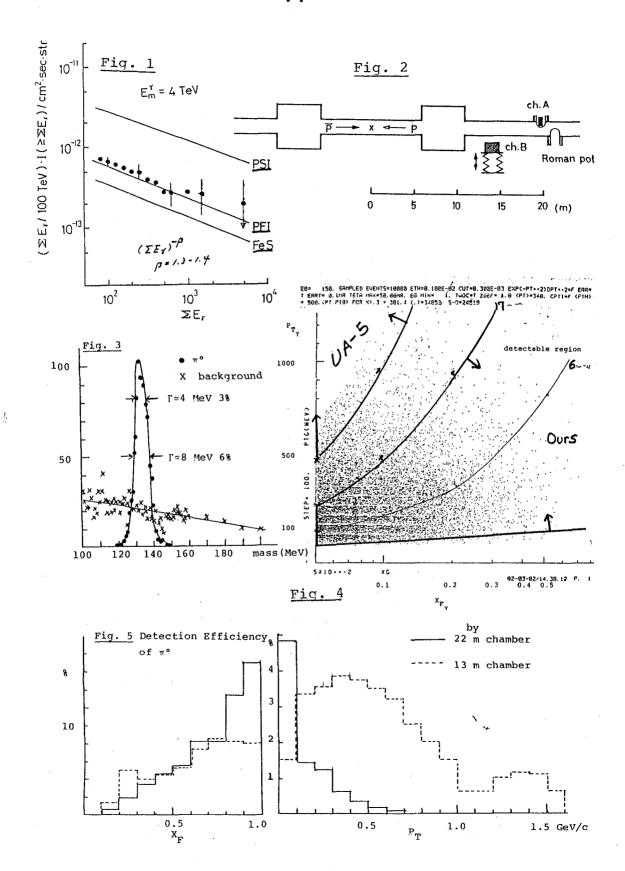
## 4. Energy calibration and Detection efficiency

The  $\pi^{\circ}$ -mass distribution can be determined with the accuracy of  $\Delta M \simeq 8$  MeV. The double photon mapping technique provides a good energy calibration for the photon detector with an accuracy of  $\pm 3$  % of its absolute value.

Fig. 4 represents the detectable region of photons by the present detector. Former UA-5 experiments observe the polar angle region greater than 30 m rad. Present experiment covers the polar angle between 0.5 and 17 m rad. Fig. 5 represents the detection efficiency of  $\pi^{\circ}$  by each chamber located at 13 m and 22 m.

### 5. Schedule

The test exposure will be made on Jul. 10 - 16th with the use of 3" silicon calorimeter. The preliminary results will be presented at this conference. The experiments with the use of two 4" Si-calorimeters will start this September.


# Acknowledgements

The authors would like to express their sincere thanks to Prof. G. Matthiae, sporksman of UA-4 collaboration, for his warm support and valuable suggestions.

We also thank to Prof. A. Staude for valuable discussions.

### References

- 1) Mt. Fuji emulsion chamber collaboration: Phys. Rev. <u>D24</u>(81)2353.
- 2) A. Nakamoto et al.: N.I.M. (1985).
- 3) CERN UA-4 collaboration: N.I.M. (1985) and CERN EP 84-156.

