ANGULAR DISTRIBUTION OF SHOWER PARTICLES PRODUCED
IN THE COLLISIONS OF $20-\mathrm{GeV} / \mathrm{c}$ AND $300 \rightarrow \mathrm{GeV}$ NEGATIVE PIONS WITH EMULSION NUCLEI*
C. O. Kim, S. N. Kim, I. G. Park, and C. S. Yoon

Department of Physics, Korea University, Seoul 132, KOREA

## ABSTRACT

For 435 accelerator-produced $\pi^{-}$jets of 20$\mathrm{GeV} / \mathrm{c}^{1}$ and $300 \mathrm{GeV}^{2}, 3$ in nuclear emulsion, $\langle\eta(\theta)\rangle$ 's have been individually calculated for each jet, where $\eta(\theta)$ is a kinematic parameter introduced by one of us in 1967 in order to approximate the LS(laboratory system) rapidity, $\eta=\operatorname{arctanh}(\beta \cos \theta) .4$ By taking further averages by dividing the samples into groupings of the LS energy $E_{\pi}=m_{\pi} \cosh \eta_{\pi}$, $N_{h}$, the number of heavy prongs with LS velocity $\beta<0.7$, and $n_{s}$, the number of charged shower particles with LS velocity $\beta \approx 0.7$, $\langle<\eta(\theta) \gg$ have been obtained. By use of the KNO (Koba-Nielsen-Olesen) scaling variable, $\xi=n_{s} /\left\langle n_{s}\right\rangle, 5$ we find good fit of our data to the regression function,

$$
\begin{equation*}
\left\langle\langle\eta(\theta)\rangle>-\eta_{\pi} / 2-\frac{1}{2} \ln \left(m_{\pi} / m_{p}\right)=A+B / \xi,\right. \tag{1}
\end{equation*}
$$

where $m_{p}$ is the proton mass.

1. Introduction. With the use of the samples of 3987 accel-erator-produced proton jets of $30-400 \mathrm{GeV}$, one of us reported that the regression function,

$$
\begin{equation*}
-\left\langle\left\langle\eta(\theta) \gg-\eta_{p} / 2=A^{\prime}+B^{\prime} / \xi,\right.\right. \tag{2}
\end{equation*}
$$

fits the angular data well, where the constants, A' and B' do not have any dependence on $E_{p}\left(=m_{p} \cosh \eta_{p}\right) .6$ In fact, Eq. (2) as well as Eq. (1) stem from the "scaling" asymmetry parameter $R$ by Tavernier:7,8

$$
\begin{equation*}
R \equiv m_{t} \sinh \left(\left\langle\eta^{\prime}\right\rangle-\eta_{t}\right) / m_{b} \sinh \left(\eta_{b}-\langle\eta\rangle\right), \tag{3}
\end{equation*}
$$

where $\mathrm{m}_{\mathrm{b}}, \mathrm{m}_{\mathrm{t}}, \eta_{\mathrm{b}}, \eta_{t}$ are masses and "initial" rapidities of beam and target, respectively. By putting, in the LS, $\eta_{t}=0$, $m_{t}=\nu m_{p},\langle\eta\rangle=\langle\langle\eta(\theta) \gg$, the RHS of Eqs. (1) and (2) become equal to $\frac{1}{2} \ln (R / \nu)$, which can be represented by the LHS of Eqs. (1) and (2). Thus, the present paper is the similar analysis to Ref $\frac{6}{3}$, with the samples of 318 jets ${ }^{1}$ of $20 \mathrm{GeV} / \mathrm{c}^{-} \pi^{-}$ and $117 \mathrm{jets}^{2}, 3$ of $300 \mathrm{GeV} \pi^{-}$.
2. Experimental Material and Methods. Two stacks of glassbacked plates of $\frac{1}{3}$ ford $K 5$ nuclear emulsion of the size, $7.5 \times 8 \times 0.06 \mathrm{~cm}^{3}$ (A stack, 21 plates; B stack, 20 plates)

[^0]were exposed "horizontally" to $300 \mathrm{GeV} \mathrm{x}^{-}$beam at Fermilab in 1978 with a track density of about $3 \times 10^{4}$ particles $/ \mathrm{cm}^{2}$. The along-the-track scanning method was employed in order to find 207 inelastic events in tracing 100.374 m of the primary tracks; this gives the mean free path of $300 \mathrm{GeV} \pi^{-}$in llford K 5 nuclear emulsion, $48.5 \pm 3.4 \mathrm{~cm}$. Among these events, by following the procedure taken by Refs. 2 and 3, 126 interactions, whose origins were located more than $50 \mu \mathrm{~m}$ away either from the air surface or from the glass furface inside the processed emulsion plates, were subjected the analysis of counting the numbers of tracks to obtain $\left\langle\mathrm{N}_{\mathrm{h}}\right\rangle=7.0 \pm 0.4$ and $\left\langle\mathrm{n}_{\mathrm{g}}\right\rangle$ $=13.2 \pm 0.6$. Further, we performed angular measurements to the charged shower particles of 117 interactions among the 126 interactions by applying the reference-track method of Ref. 6. The material and experimental procedure concerning the $20-\mathrm{GeV} / \mathrm{c}$ pion jets were reported in Ref. l.
3. Dependence of $\langle\eta(\theta) \gg$. The LS emission angles of the charged shower particles were converted to $\eta(\theta)$ (Ref. 4) and for each jet $\langle\eta(\theta)\rangle$ 's were calculated. Then, by grouping the 435 jets into subgroups, according to $E_{\pi}, N_{h}=0,1,2-4,5-8$, $\geq 9, \mathrm{n}_{\mathrm{s}}=1,2,3, \ldots, 9,10-14,15-19, \ldots,\langle\eta(\theta) \gg$ were calculated. As noticed in Refs. 1, 4, and 6, the trends shown in the values of $\left\langle\eta(\theta) \gg\right.$, as a function of $n_{s}$ and $N_{h}$, are:
(i) For $n_{s} \gg\left\langle n_{s}\right\rangle$ (i. e., $\xi \gg 1$ ), $\langle\eta(\theta)\rangle$ becomes unreasonably larger. (Small $\mathrm{x}_{\mathrm{T}}=\mathrm{pI} / \mathrm{m}$ effect.)
(ii) As $N_{h}$ increases, $<\eta(\theta) \gg$ becomes smaller. (Nuclear target effect.)
As shown in Figs. I (a) - (e) and the values of $A, B$ and $\chi^{2} /$ DF (and also $A^{\prime}, B^{\prime}$ and $X^{2} / D F$ for the 3987 proton jets of $30-$ 400 GeV in parentheses) in Table I, our angular data of 435 $\pi^{-}$jets fit Eq. (1) rather well. the solid-line curves show

TABLE I. The values of $A$ and $B$ obtained by the least-squares fits for the $435 \pi$ jets (and those for the 3987 proton jets to Eq. (2)).

| $\mathrm{N}_{\mathrm{h}}$ | $A^{\prime}\left(A^{\prime}\right)$ | $B\left(B^{\prime}\right)$ | $X^{2 / D F}$ |
| :---: | :---: | :---: | :---: |
| 0 | $-0.18 \pm 0.11$ | $0.35 \pm 0.09$ | 0.04 |
|  | $(-0.22 \pm 0.03)$ | $(0.22 \pm 0.02)$ | $(1.63)$ |
| 1 | $-0.08 \pm 0.28$ | $0.24 \pm 0.20$ | 8.26 |
| $2-4$ | $(-0.36 \pm 0.05)$ | $(0.27 \pm 0.04)$ | $(1.35)$ |
|  | $-0.38 \pm 0.08$ | $0.41 \pm 0.06$ | 1.39 |
| $5-8$ | $(-0.48 \pm 0.03)$ | $(0.27 \pm 0.03)$ | $(1.87)$ |
|  | $-0.53 \pm 0.21$ | $0.43 \pm 0.25$ | 2.55 |
| $\pm 9$ | $(-0.66 \pm 0.05)$ | $(0.34 \pm 0.06)$ | $(1.46)$ |
|  | $(-1.12 \pm 0.005$ | $0.75 \pm 0.004$ | 4.12 |
|  |  |  |  |
|  |  |  |  |



Fig. 1. Dependence of $\langle\eta(\theta) \gg$, according to Eq. (1) for the pion jets (solid-line curves) and to Eq. (2) for the proton jets (broken-line curves), for (a) $N_{h}=0$, (b) for $N_{h}=1$, (c) for $N_{h}=2-4$, (d) for $N_{h}=5-8$, and for $N_{h} \geqslant 9$.
the values of $\left\langle\left\langle\eta(\theta) \gg-\eta \pi / 2-\frac{1}{2} \ln \left(m_{\pi} / m_{p}\right)\right.\right.$ versus $\xi$, and the broken-line curves show the values of $\langle<\eta(\theta) \gg-\eta p / 2$ versus §for proton jets of $30-400 \mathrm{GeV}$.
4. Discussion and Conclusion. As E. Gibbs et al. 9 first noted, the $N_{h}$ dependence of $A$, listed in Table $\bar{I}$, can be fitted by the regression function,

$$
\begin{equation*}
A=\alpha\left(1+\gamma N_{h}\right) /\left(1+\delta N_{h}\right), \tag{4}
\end{equation*}
$$

where the results are $\alpha=-0.152 \pm 0.001, \gamma=0.520 \pm 0.004$,
and $\delta=0.020 \pm 0.005$ with $X 2 / D F=0.4 / 2.6$ And as in Ref. 6 , $N_{h}$-dependence or $B$, listed in Table $I$, can be fitted well by the regression function,

$$
\begin{equation*}
B=K+\zeta N_{h}, \tag{5}
\end{equation*}
$$

where the results are $K=0.33 \pm 0.05$ and $\zeta=0.025 \pm 0.03$ with $X^{2} / D F=0.4 / 3$. Altogether, with the use of the data of angular measurements of 435 accelerator-produced jets of $E_{\pi}=$ 20 and 300 GeV , we have obtained the empirical formula,

$$
\begin{aligned}
& \left\langle\langle\eta(\theta)\rangle-\eta \pi / 2-\frac{1}{2} \ln \left(\mathrm{~m}_{\pi} / \mathrm{m}_{\mathrm{p}}\right)=\right. \\
& \quad(-0.152 \pm 0.001) \frac{\left[1+(0.520 \pm 0.004) \mathrm{Nh}_{h}\right]}{\left[1+(0.020 \pm 0.05) \mathrm{N}_{h}\right]}+ \\
& {\left[(0.33+0.05)+(0.025 \pm 0.03) \mathrm{N}_{\mathrm{h}}\right] \xi^{2} .}
\end{aligned}
$$

We find the value of $\nu$ in Ref. 6 is almost in accord between the one obtained from the proton jets and the other obtained from the pion jets. But there exists some difference between the values of $R$ of Refs. 7 and 8 , which is indeed scaling, for proton and pion jets, reflecting the fact that pion jets do not have two surviving baryons but one.4,6

REFERENCES.
IE. R. Goza, S. Krzywdzinski, ©. O. Kim, and J. N. Park, Phys. Rev. 2, 1838 (1970).
$2_{\text {M. Jurić, Dj. Krmpotic, O. Adamovic, V. Gerc, L. Rak, J. Lory, }}$ D. Schune, Tsai-Chü, B. Willot, K. P. Hong, C. O. Kim, S. N. Kim, K. A. Moon, R. Schmidt, I. Otterlund, G. Baumann, M. Lopez Agưera, R. Niembro, A. Ruiz, E. Vilia, Z. Phys. C 22, 131 (1984).
${ }^{3}$ Lj. Simić, O. Adamović, M. Jurić, J. Lory, D. Schune, TsaiChü, B. Willot, K. P. Hong, C. O. Kim, and K. A. Moon, Nuovo Cimento 82A, 327 (1984).
4c. O. Kim, Phys. Rev. 158, 1261 (1967).
52. Koba, H. B. Nielsen, and P. Olesen, Nucl. Phys. B40, 317 (1972).
${ }^{6}$ c. O. Kim, Phys. Rev. D 31, 513 (1985).
${ }_{8}$ S. P. K. Tavernier, Nucl. Phys. B105, 241 (1976).
8S. P. K. Tavernier and M. Gijsen, Phys. Rev. D 16, 2818(1977). 9E. Gibbs et al., Phys. Rev. D 10, 783 (1974).


[^0]:    *Research supported partly by the Korea Science and Engineering Foundation (1984-87).

