243

JETS IN AIR-JET FAMILY

NAVIA O., C.E. and SAWAYANAGI, K. Depto.RC, IFGW, Univ. Estad. Campinas Cx.Postal 6165, Campinas-13100-SP, BRAZIL

ABSTRACT

The A-jet families of the Brazil-Japan Collaboration on Chacaltaya Emulsion Chamber Experiments are analyzed by the study of jets which are reconstructed by a grouping procedure. It is demonstrated that large-E_JR_J events are characterized not only by small number of jets and two-jet like asymmetric shape, i.e. the binocular events, but also by the other type. This type has a larger number of jets and more symmetrical shape in the p₊ plane.

INTRODUCTION

Event shape is examined by using the following two quantities;

a) energy-weighted distance from the center of a family of reconstructed jet, E_{IR} (TeVcm),

b) symmetry coefficient/l/ of jet, b_J, as defined

$b_{J} = (\Sigma E_{Ji} Y_{Ji}^2)_{min.} / (\Sigma E_{Ji} X_{Ji}^2)_{max.}$

The symmetry coefficient measures azimuthal symmetry, which will have a value of 0 for the case of in-line event and of 1 for the completely symmetrical azimuthal distribution. All the quantities with a letter of J are obtained after a grouping procedure to reconstruct jets. The energy weighted distance used is defined as $\chi_{,j}=R_{,i}E_{$

RESULT

To grasp gross features of the A-jet families, are used all the 218 A-jet families including hadron-rich and exotic events. After the jet-grouping, 215 events have more than one jet. Then $\overline{E_JR_J}$ and the symmetry coefficient are calculated for each event.

We can see from Fig.l that $\overline{E_JR}_J$ distribution has a peak at around 20 TeVcm and a very long tail over 300 TeVcm. On the other hand the b_J distribution is almost flat with a sharp peak at around b_J=0. This sharp peak should include the contributions of the binocular events/3/ and some excess

HE3.2-1

of the experimental can be seen at b near to 1, comparing with the tendency of the Monte-Carlo simulation/1/. While we can see the correlation between b and $E_{J}R_{J}$ exists, the dependence of b on $E_{J}R_{J}$ is shown clearly in Fig.2, in which b distributions are given separately for three intervals of $E_{J}R_{J}$. As increasing $E_{J}R_{J}$ the fraction of $b_{J}=0$ is rising. It means that large $E_{J}R_{J}$ is realized by two-jet like events, i.e. binocular-type events. We note that inspite of the very rapid decreasing of the fraction towards larger b_{J} 's there exist non-zero experimental data at b_{J} near to I even at the highest- $E_{J}R_{J}$ group.

larger b_J's there exist non-zero experimental data at b_J near to 1 even at the highest- E_JR_J group. The correlation between number of jet N_J and E_JR_J as given in Fig.3 shows that larger E_JR_J 's are shared by less number of jets. That is large E_JR_J region is occupied by binocular-type events. And also some events are found to have very large N_J even at the highest- E_JR_J group.

It may be concluded that there exist those A-jet families which have large and comparable E_JR_J with the binocular events, but which contain many jets so as to give rise to very symmetrical azimuthal distribution. The reconstructed jets with the use of the cut-off value $\chi_c=25$ TeVcm seem to have a jet-size less than the actual size of the two clumps, because the N_J distribution of the group $E_JR_J\geq 80$ TeVcm has a rather broad peak between 2 and 10.

ACKNOWLEDGMENTS

The author acknowledges financial supports by the local committee of the 19th ICRC and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq in BRAZIL.

REFERENCES

- /2/ SEMBA, H., Proc. Intern. Symp. on Cosmic Rays and Particle Physics, edit. OHSAWA, A. and YUDA, T., 1984, Inst. for Cosmic Ray Research, Univ. of Tokyo, p.211.
- /3/ LATTES, C.M.G. et al., Phys. Rep. <u>65(1980)</u>, p.151.

Fig. 2 The symmetry coefficient b_J distribution.

Fig. 3 The distribution of number of jet.