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i. Introduction. The information about energy spectrum of sea

level muons at high energies beyond magnetic spectrographs can

be obtained from the underground intensity measurements if

the fluctuation problems are solved. In the present paper we

recalculate the correction factor R for the range fluctuations

of high energy muons by analytical method of Zatsepin et. all{"

where most probable energy loss parameter are used. It is

shown that by using the R at great depth together with the

slope,A, of the vertical depth-intensity(D-I) curve in the

form of exp(-t/A), the spectral index,y, in the power law

energy spectrum of moons at sea level can be easily obtained.

2. Formulation of the correction factor R. The R is defined

as R = I0(t)/I(t) , I0(t) is the intensity without fluctu-

ations and I(t) is the intensity,taking fluctuations into ac-

count. In order to find I(t) the following diffusion equation

has to be solved:

5'_I/_t - B(Eu)_I/_E u = oW(Eu,v) [I(E /l-v,t)-I(N ,t)l.dv (1).

W(E ,v) = (N/A) 0B + NON
(N: AvogadrJs number, A: atomic mass number), where 0 B and

0N are the differential cross section of bremsstrahlung and

nuclear interactions, respectively. To get the solution of

eq. (i), we make two assumptions and introduce three dimension- °

less variables as follows:

(i) 8(E_) = a + bpE , (ii) f(v)/v = W/(bB+b N)

x = bpt, c = bpE /a, b = (bB+bN)/b p-

,where a is ionization loss and bp, bB and bN are energy loss
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parameters due to pair creation, bremsstrahlung and nuclear

interaction, respectively. Then eq. (i) becomes

_/_x - (e + l)_I/_e = b f(v)/v[I(e/l-v,x)-I(e,x)]dv (2)
O

In this notation the average energy loss may be written as

-de/dx = 1 + (i + b) e (3)

I0(e,x) is given by combining eq. (3) with the boundary con-

dition I(e,0) = Be -Y as

I0(e,x)= B.exp[-y(l+b)x] [e+(l-exp(-(l+b)x))/(l+b)] -Y (4)

By analogy of eq. (4)we take the solution of eq. (2) in the form

I (e, x) =B. exp [-y (l+xb) x] [e+ (l-exp (- (l+<b) x))/(l+<b) ]-¥

x exp[_ (_,x) ] (5)

From eqs. (4) and (5) we •get R for e = 0 in the following way

R(0,x) = [exp (b (×-<)x).(l+b)/(l+<b).[exp ((l+<b) x)-l]/

[exp ((l+b) x)-l] ]+Yexp [-_ (0,x) ] (6)

At a great depth(t >4000 hg/cm 2) and under the assumption

_(0,t._)=0, we get such a simple form as

R_[(bp + bf)/(bp + <bf)]_exp[-¥bf(l-x)t] (7)

,where bf = bB + bN.

3. Derivation of spectral index y. It is assumed that the

D-I curves are expressed by a unique exponential law of the

type I(t) = C.exp(-t/A) (8). Then combining eqs. (4), (7)

- and (8) we can obtain a relationship between y and A :

-i

= [A(bp + xbf)] (9)

Here the constant X is determined in such a way that _(_,x)

approaches zero as e._. By substituting eq. (5) into eq. (2)

X is given as

Jo'× = (l/y) f(v)/v[l-(l-v)Yldv (i0)
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For _B' CN we take the following formulae

#B=0.95e (2r0me/m u) 2Z (Z+_) (4/3+v 2- (4/3)v) (l/v) in (P/Q) (ii)

P=(2/3)k(m /me)Z -2/3,

Q= (k/-e-/2)(m_/meE _)- (v/(l-v) )Z-I/3 +
12 )

_N ctrc" °'rn" vl (v--l)+ t-v+-_- 1+

EZ_l -v) [I+ m_Yz 3) (12)

Ev

(OyN = 125 _b and A2 = 0.4 Gev 2)

We calculated the values of X as a function of y for

standard(Z=ll,A=22) and K.G.F(Z=I2.93,A=26.12) rocks at E =i,

10,100 TeV. The results are shown in Fig.l. We find from this

figure that the X and y has nearly a linear relation such that

X = mlY + m 2 (13)

In the case of E =i0 TeV we have mi=-0.1085, m2=0.9943 forU

S rock and mi=-0.i092, m2=0.9935 for K.G.F rock. Substituting

eq. (13) into eq. (9) we get the equation for 7.

mlbfy2 + (bp + m2bf)y -100/A = 0 (14)

(bp,bf are measured in units of 10 -6 cm-2g and A in units of
104 gcm -2 )

For bp, we use the expression taken from Bugae_s book4) :

bp=6.01o10-8Z(Z+l)/A[0.971n(Pl/Q l) + 2.15] (g-lcm 2) (15) *

Pl=183Z -I/3 , Ql=lS3Z-1/3m2/(2E me)__ + 1

In the following we apply this equation together with the A

of D-I curves for S rock and K.G.F rock to get y If we take

A=9.868.104gcm -2 (8000_t_9000 hgcm-Z)- for S rock, which is

derived from eq. (2) in ref. (5), and A=9.00-104 gcm -2 (t=104

hgcm -2) for K.G.F rock_ )
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The values of y thus obtained is as follows:

y = 2.70 (E_30 TeV) for S rock and

= 2.62 (E_50 TeV) for K.G.F rock.

The former is consistent with the value of 2.71 by Bergamasco

et al. 5)" and the latter is also consistent with that of 2.6

by Miyake et al.7), where fluctuations are treated by Monte

Carlo Method.

4. Conclusions. By using the approximate R at great depth,

can be easily obtained if the D-I curve has the form I(t) =

C.exp(-t/A). It is found that there is a discrepancy of y

between S rock and K.G.F rock in the same energy region.
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Fig.l Dependence of X on y.


