CHARGE $4 / 3$ LEPTONS IN COSMIC RAYS

Tomonori Wada and Yoshihiko Yamashita Okayama University, Japan
Kuninisuke Imaeda and Isao Yamamoto
Okayama University of Science, Japan

A cosmic ray counter telescope has been operated at zenith angles of $0^{\circ}, 40^{\circ}, 44^{\circ}$ and 60° in order to look for charge $4 / 3$ particles. A few million clean single cosmic rays of each zenith angle were analyzed.

For ($4 / 3$)e charged leptons, GUTs (Grand unified theories) propose some predictions ${ }^{1,2,3}$. Especially SU(5) proposed by H.Georgi and S.L.Glashow ${ }^{1}$ predicts the existence of fractionally charged vector boson ($\mathrm{X}_{4 / 3}, \mathrm{X}_{1 / 3}$) and the proton decay, but these boson mass must be greater than $10^{15} \mathrm{GeV}$. It is hard to produce these particles by accelerators. So one must detect relic fractionally charged particles from the "big bang" by a cosmic ray telescope.

A cosmic ray counter telescope at sea level has been operated and analyzed 4,5 in order to look for charge (4/3)e particles. Four RUNs were performed at different zenith angles as the following table.

A: RUN name	I	II	III	N
B: zenith angle (degree)	40°	0°	60°	44°
C: measuring time (days)	130	130	260	150
D: pre-triggers ($\times 10^{6}$)	8	16	8	8
E: pure (4/3)e zone events	15	16	22	31
F: single track in the	6	2	2	9
column ' E "				

Results under adaptation of strict selection rules are shown in fig.la, $\mathrm{lb}, 1 \mathrm{c}$ and 1 d . These figures show that data of zenith angles of about 40° are different from data of other zenith angles; single track events of $(4 / 3)$ e zone are rich at 40° and 44°.

If a point source of fractionally charged leptons exists, that momentum must be larger than $10^{21} \mathrm{eV} / \mathrm{c}$. The other side, our experimental trigger condition is $\beta \gamma>4.8$ and if some of these (4/3)e zone events at 40° and

Fig. 1a. Final results of RUN I.

Fig. 1b. Final results of RUN II .

Fig. lc. Final results of RUN III.

Fig. 1d. Final results of RUN N.
44° are $X_{4 / 3}$ vector boson,

$$
P=\beta \gamma M_{4 / 3} \simeq 5 \times 10^{15} \times 10^{9}=5 \times 10^{24}(\mathrm{eV} / \mathrm{c})
$$

The momentum, $5 \times 10^{24} \mathrm{eV} / \mathrm{c}$ is enough to pass through our Galaxy.
" Where did $(4 / 3)$ e leptons come from ? "
Single track events of (4/3)e zone at 40° and 44° are plotted in the equatorial coordinates; fig. 2 a and corresponding events of two particles zone at 44° are also plotted in the equatorial coordinates; fig. 2b. Points of fig. 2a. mostly separated into two groups, but those of fig. 2 b . were spread all over the map.

In this stage, the map of fig. 2 is not clear, so our observation has continued.

Fig. 2. Arrival directions of single track events for (4/3)e zone and two particles zone.

References

1. Georgi, H. and Glashow, S.L., (1974), Phys. Rev. Lett., 32, 438
2. Coldverg, H. et. al., (1981), Phys. Rev. Lett., 47, 1429
3. Li, L.-F. and Wilczek, F:, (1981), Phys. Lett. B, 107, 64
4. Yamamoto, I. et. al., (1982), Nuc1. Instrum. Methods, 201, 457
5. Wada, T. et. al., (1984), Lett. Nuovo Cimento 2, 40, 329
