
NASA Contractor Report 177967

FAULT-FREE BEHAVIOR OF RELIABLE
MULTIPROCESSOR SYSTEMS: FTMP
EXPERIMENTS IN AIRLAB

Ed Clune, Zary Segall, and
Daniel Siewiorek

CARNEGIE-MELLON UNIVERSITY
Pittsburgh, Pennsylvania

NASA-CR-177967
19860001381

I .,- t. , o!

Grant NAGl-190
August 1985

NJ\SI\
National Aeronautics and
Space Administration

Langley Research Cent.
Hampton, Virginia 23665

, ' ,

1111111111111 1111 111111111111111 11111 11111111
NF00717

1 Report No. I 2 Government Ac:ctuIon No 3 Rec:l~t's <:'tliog No

NASA CR-I77967
4 Title" Subtitle 5 Report Dete

Fault-Free Behavior of Reliable Multiprocessor Au_gust 1985
Systems: FTMP Experiments in AIRLAB 8 Performll'lg Organization Code

7 Author!s! Ed Clune, Zary Segall, and Daniel Siewiorek 8 Performll'l Organization Report No

10 Work Unit No
9 Performing Orlll'IIZ1tlon Name and Addr_

Carnegie-Mellon University
11 Contract or Grant No

Pittsburgh, PA
NAGI-190

13 Type of Report and ,od Covered

12 Sponsorlrlg Agency Name and Addr_ Contractor Report
National Aeronautics and Space Administration 14 SponSOl'I"9 Agency Code
Washington, DC 20546 505-34-13-32

15 Supplementary Notes

Langley Technical Monitor: George B. Finelli

16 Abstract

ThlS report descrlbes a set of experiments which were implemented on the Fault
Tolerant Multi-Processor (FTMP) at NASA/Langley's AIRLAB facility. These
experiments are part of an effort to formulate and evaluate validation
methodologies for fault-tolerant computers. This report deals with the
measurement of single parameters (baselines) of a fault free system.

The initial set of baseline experiments lead to the following conclusions:

1. The system clock is constant and independent of workload in the tested cases;
2. The instruction execution times are constant;
3. The R4 frame Slze lS 40mS with some variatlon;
4. The frame stretching mechanism has some flaws in its lmplementation that

allow the possibil1ty of an infinite stretching of frame durat1on.

Future experiments are planned. Some will broaden the results of these initial
experlments. Others will measure the system more dynamically. The
implementation of a synthetic workload generatlon mechani~m for FTMP is planned
to enhance the experlmental environment of the system.

17 Key Words {Su9!lftted by Author!s!! 18 Distribution Statement

Validation Fault-free Unclassified - Unlimited
Fault-tolerant Subject Category 62
Multiprocessors
Performance measurement
Synthetic workload
19 Securoty Oa.,f {of thIS report! 20 Securoty Cla .. f {of this page! 21 No of Pages 22 Proce

Unclassified Unclassihed 32 A03

"-305 For sale by the National Technical Information Service, Springfield Virginia 22161

Table of Contents

Abstract
1. Introduction
2. Background

2 1 Proposed Methodology
2.2 Experiment Environment

2.2.1 Stage 1 . Standalone
2 2 2 Stage 2 . Operating System (OS)
2.2 3 Stage 3 . Integrated Instrumentation Environment

2.3 Present and Future Experiment Environment
2.4 The Fault Tolerant Multl·Processor (FTMP)
2 5 Proposed Experiments

3. The Experiments

3.1 Clock Read Time Delay
3.2 Instruction Times
3.3 Measuring R4 Frame Size

4. Results
4.1 Read Time Clock Delay
4 2 Instruction Measurement
43 MeasUring R4 Frame Size

5. Summary and Future Work
6. Acknowledgment

2
3
5

5
6
7
7
8
9

10
12
14

15
16
16

18

18
19
20
26

27

ii

List of Figu res

Figure 2·1: System Evaluation List
Figure 2·2: Levels of Abstraction In Multiprocessor Systems
Figure 2·3: FTMP System
Figure 2·4: Frame Structure
Figure 2·5: Frame Stretch Mechanisms
Figu re 3·1: BasIC Experiment Task Algorithm
Figu re 4·1: Single Triad R4 Frame Distribution
Figure 4·2: Double Triad R4 Frame Distribution
Figure 4·3: Stretched Frame - 2000 Iterations
Flgu re 4·4: Stretched Frame - 3000 Iterations
Figure 4·5: Stretched Frame - 5000 Iterations
Flgu re 4·6: Frame Size (mSeconds) vs. Iteration Count

5
6

10
11
12
14
21
22
23
23
24
25

IIi

List of Tables

Table 4·1: Instruction Results
Table 4·2: Frame Measurement Results
Table 4·3: Frame Stretchmg Results

19
20
22

1

Executive Summary

This IS a report on research by Carnegle-Meilon University for NASA-Langley Research Center

under contract NAG-1-190 on the validation of fault-tolerant aVIOniCS multiprocessors This report

covers the Initial phase of experimentation.

In this period a series of basIc performance measurements were conducted on the Fault Tolerant

Multi-Processor (FTMP) as part of a process to evaluate validation methodologies. The results of

these experiments and proposals for future work are presented In this report.

A paper, based on this work, entitled "Validation of Fault-Free BehaVior of a Reliable Multiprocessor

System - FTMP: A Case Study" was presented at the American Control Conference In June 1984.

2

Abstract

This report descnbes a set of expenments which were Implemented on the Fault Tolerant Multi

Processor (FTMP) at NASA/Langley's AIRLAB facIlity These expenments are part of an effort to

formulate and evaluate validation methodologies for fault tolerant computers. ThiS report deals with

the measurement of single parameters (baselines) of a fault free system.

The Initial set of baseline expenments lead to the follOWing conclUSions:

1 The system clock IS constant and Independent of workload In the tested cases,
2 The instruction execution times are constant;
3 The R4 frame size IS 40mS with some vanatlon;
4. The frame stretching mechanism has some flaws In Its Implementation that allow the

pOSSibility of an infinite stretching of frame duration

Future experiments are planned. Some Will broaden the results of these Initial expenments Others

will measure the system more dynamically The Implementation of a synthetic workload generation

mechanism for FTMP IS planned to enhance the expenmental environment of the system.1

1Thls research was sponsored by the National Aeronautics and Space Administration. Langley Research Center under
contract NAG-1 190 The views and conclusions contained In thiS document are those of the authors and should not be
Interpreted as representing the offiCial poliCies, either expressed or Implied, of NASA, the United States Government or
Carnegie-Mellon Umverslty

3

1. Introduction

An aircraft of the 1990's will have computer systems that must function correctly for the aIrcraft to

fly Many studies have been performed on f.lult tolerant aVioniCS computers One such study by

NASA, m Its Aircraft Energy Efficiency (ACE E) program, reqlllres that an aircraft computer failure

probability shoull! be less than 10-10 per hour Systems have been bUilt with thiS goal In mmd (SIFT

and FTMP[5, 6, 11]) Techniques must be developed for measuring the performance and reliability of

these systems.

Since a probability of failure of 10 10 per hour translates to les<) than one failure per million years of

operation, It IS not feaSible to walt for enough accumulated operational hours to demonstrate

compliance with the goal prior to the release of the aircraft computer A comprehenSive validation

methodology can greatly reduce the amount of time reqUired to determine If a system meets lis deSign

goals. An overall validation methodology has many components Includmg theorem proving,

mathematical modeling, and phYSical experimentation. NASA has held several workshops to develop

a system validation procedure One workshop In particular [8] produced a detailed list of validation

tasks to verify a system In an orderly manner

Theorem proving and mathematical modeling are often bdsed on a SimplificatIOn and abstraction of

the phYSical system These Simplifications are required to reduce the comph:~xlty of the mathematiCs

to a tractable level Experimentation IS a key element In a validatIOn methodology since It serves to

validate the model and abstractions assumed In the mathematical treatments as well as to discover

unanticipated phenomena.

The foundations for an experimental validation methodology have been developed and are being

tested at the AVionICS Integrated Research Laboratory (AIRLAB) at the NASA Langley Research

Center AIRLAB IS a faCility for developing technologies and methodologies to evaluate and Integrate

aVIOniCS and control functions of future aIrcraft and to establish a store of performance evaluation

and reliability evaluation statistiCS

In parallel, Carnegie-Mellon University had developed several multiprocessor systems including

C mmp, a system With 16 processors communicating With 16 memones through a crossbar SWitch

[12], and Cm·, a 50 processor system WIth a hierarchIcal processor-memory SWitch [101 Over the

past decade resedrchers at CMU were evolVing experimental methodolo91es for evaluatmg these

multiprocessor systems AIRLAB prOVided an opportunity to dPply and e..<tcnd the e..<penmental

methodologies to real time fault tolerant multiprocessor systems The generality of the expenmental

4

methodology could be demonstrated by Its applicatIOn to four diverse multiprocessor systems while

producing actual measurements which compared and contrasted these architectures.

The remamder of this document IS organized as follows. Section 2 gives background on the

validation methodology used as the baSIs of the baseline experiments It also Introduces the Fault

Tolerant Multiprocessor (FTMP), on which the baseline experiments were performed, and gives a

short description of the types of baseline experiments that were run on FTMP Section 3 describes

the baSIC experimental structure and the variants used to measure different baseline parameters In

Section 4, the results of the experiments are presented and conclUSions drawn A summary of the

experiment results and a diSCUSSion of future work are presented In Section 5.

5

2. Background

This section contains information necessary to understand the motivation for the experiments

discussed In the next section. Included are a description of the validation methodology used as a

basIs for the experiments and a description of the Fault Tolerant Multl·Processor (FTMP).

2.1 Proposed Methodology

NASA held several workshops to determine system validatIOn procedures One In particular [8],

produced a detailed list of validation tasks to verify a system In an orderly manner. The methodology

was based on a bUilding block approach m that confidence would be bUilt up In an Incremental

manner through the understandmg and measurement of pnmltlve actIVIties Once these pnmltlve

activities were charactenzed, more complex expenments would be devised to explore the interaction

of primitive activities as well as more complex activities constructed from these primitive activities

ThiS orderly progression Insures umform coverage as well as maximizes the ability to locate the cause

of an unexpected phenomenon A modified version of thiS list IS shown In Figure 2-1.

Fault Free Evaluation

a Imtlal Checkout and OIll.gnostlCs
b. Programmer's Manual Verification
c. Executive Routme Verification
d Multiprocessor Interconnect Verification
e Multiprocessor Executive Routme Venflcatlon
f Application Program Verification and Performance Baseline

2 Fault Handlmg Evaluation

a Simulation of Inaccessible PhYSical Failures
b. Smgle Processor Fault Insertion
c Multiprocessor Fault Insertion
d. Smgle Processor Executive Failure Response Charactenzatlon
e MultIprocessor System Executive Fault Handling Capabilities
f. Application Program VerificatIOn on Multiprocessor

g Multiple Application Program Verification on Multiprocessor

Figu re 2-1' System Evaluation list

The first set of SIX tasks verifies the fault free functionality of the system while the next set of seven

verifies fault handling capabilities The reader IS referred to [8] for a more detailed explanation of the

above listed tasks The expenments descnbed In thiS paper deal only With the set of fault free

performance evaluation tasks The experiments run on FTMP were actually Involved m performance

baselines (part of task 1 f) although verification at other levels was accomplished as well (for example,

Executive Routme VenflcatlOn, task 1c) while running baseline expenments

6

2.2 Experiment Environm~nt

Multiprocessor systems are enormously complex In order to make them easier to comprehend, It IS

necessary to divide the system Into several levels One can then proceed from the most primitive level

upwards to the highest conceptual level by introducing a senes of abstractions Each abstraction

contains only informatIOn Important to ItS particular level, and suppresses unnecessary tnformatlon

about lower levels The levels In a digital system frequently cOincide with the system's phYSical

boundanes since the concept of levels was utilized by the system's designers to manage complexity

Once details at one level are comprehended, only the functionality prOVided for the next higher level

need be conSidered Figure 2·1 depicts one pOSSible set of levels of abstractions

Multiprocessor

Program

Hardware

Sublevel

Application Software

Executive Software

InstructIOn Set

Logic

Typical Components

Processor, memory.
SWitches

Display, navigation,
flight control

Me~sage system, task
scheduler, memory
allocator

Memory state,
processor state.
effective address
calculation.
instruction execution

Gates, flip-flops,
registers, sequential
machines

Figu re 2·2: Levels of Abstraction In Multiprocessor Systems

Our experience at CMU indicates multiprocessors go through a senes of evolutionary stages A

stage IS defined by the amount of functionality available to the user ThiS functionality, In turn,

determmes the compleXity and sophistication of experiments that can be conducted ThiS

functionality can usually be defmed In terms of the actiVities In the life of an experiment First, the

code has to be designed and wntten Next, the code must be compiled, followed by loading,

debugging, measurement, and analYSIS Consequently. a view of the stages of a system's life IS the

number of these actlVltiEls that are directly supported by the system for the user The follOWing are

three representative stages In the evolution of a tYPical multiprocessor system.

7

2.2.1 Stage 1 • Standalone

The system IS completed through the instruction set level of abstraction That IS, the Instruction set

has been defined and the hardw<.ue has been Implemented There IS Virtually no software to support

user apphcatlons The only software utility would be a loader whereby programs compiled on another

machine can be loaded Into the system under test. Experiments are hmlted to simple, regular,

compute bound algorithms Only a hmlted number of parameters may be vaned, and this vanatlon

reqUires rewrltmg of the SOllrce code of the experiment There are several attributes to Stage 1

expenments The programmer must be a hardware expert since there IS httle software to prOVide a

higher level Virtual (abstract) machine. Hence the program IS tied closely to the hardware The user

must speCify where code IS placed, define the memory map, and write code to Inltlahze the memory,

create processes, manage resources, and collect data.

TYPical basehne experiments In Stage 1 Inclllde:

• Hardware Saturation Programs consist of two or three instruction loops with vanatlon
In placement of code and data The capacity of various system hardware resources IS
determmed as well as the Impact of contention for those resources

• Speedup due to AlgOrithm/Data Variation. Experiments seek the Impact of
synchrOnization for data, as well as variation due to data dependenCies and size of data

• Errors Diagnostic programs can be contmuously run and monitored on the system
Distribution of diagnostic detected errors can be studied.

2.2.2 Stage 2 • Operating System (OS>

The user IS presented the abstraction prOVided by the executive software ThiS software prOVides

basIc functions such as resource management and scheduling. In programming experiments, the

user employs operating system primitives Hence, the user needs a substantial operatmg system

expertise Also, characteristic for thiS phase IS the discrete Incremental nature of the experimentation

process; each experiment represents one pOint In the deSign space

The attributes of Stage 2 apphcatlons can be stated as follows.

• very regular, data bound with limited variatIOn of parameters
• the general program organization has a Master process controlling a collection of Slave

processes domg the actual computation
• code IS replicated
• heavy use of OS mechanisms

TYPical basehne expenments In Stage 2 Include'

• Measurements of the cost·per-feature of the operatmg system's functions
Experiments statically exercise each OS function on a one by one baSIS Examples
mclude memory management, communication pnmltlves, synchrOnizatIOn, scheduling
and exception handling

8

• Measurements of different implementation of parallel ~Igorlthms. The Impact of
uSing vanous strategies In pardllel program organization, data structure and resource
allocatIOn IS studied

2.2.3 Stage 3 • Integrated Instrumentation Environment

At this stage hardware and software have been provided for generating expenmental stimulus,

dynamically observing hardware and software actIVIties, and analYZing results [9] With this

enhanced support, the user can experiment at the application level of abstraction With full vanatlon of

parameters A major characteristic of this stage IS the proVISion of stimulus generdtlOn, mOnltonng,

data collection and analYSIS grouped under a unique user Interface Also the OS, the support

software and the user application are uniformly Instrumented enabling Improved behavior VISibility.

Only With thiS capability, the interactIOn between OS, support software and user application became

measurable With acceptable effort Hence, the programmer could be a relative system novice

Furthermore, the effort to conduct advanced expenments becomes manageable Experiments at thiS

stage have the following attributes:

• Measurements of dynamiC behavior of OS and applications.
• Measurements are continUOus Program could be mOnitored on-line and sometimes In

real-time.
• Studies of different virtual machines.
• Studies of different loqlcal intercommUnication structures.
• Scaling application performance With respect to different Virtual machines

Examples of advanced experiments that can be conducted In Stage 3 mclude:

• Companson of various OS poliCies as reflected by classes of applications
• Tuning a virtual machine for a specifiC application.
• Deslgnmg application Oriented architectures
• Study of multiprocessor intercommUnication strategies.
• Study of the architectural effectiveness and effiCiency
• The handling of faults represents additional load for the aVIOniCS system The fault

capabilities represent another aspect of system functionality Whereas a system Without
faults may be able to meet all of ItS deadlines, the addition of fault handling workload may
cause schedule slippage and/or Violations of realtime constraints

A key part of the Stage 3 methodology IS the specification and generation of a controlled parallel

workload [9] Such a worL;.load for aVIOniCS applications IS given In [2] The workload IS represented

as a speCial purpose parallel data-flow graph A run-time expenmentatlon enVIronment provides

capability of controlling, varYing and measuring the workload Without havmg to recompile or re-debug

the parallel program.

9

2.3 Present and Future Experiment Environment

A slgmflcant amount of work was required by AIR LAB personnel to bring the system environment up

to Stage 2 At present, each experiment generally requires some code compilatIOn, followed by

linkage and dm'''nloadlng of the whole FTMP binary file Experiments can be deSigned With

modifiable varldbles so that some vanatlon can be made by changing values In memory Without

haVing to go through the entire code development cycle An example of a modifiable van able IS the

number of Iterations In a loop The experiments descnbed In this paper used the modifiable vanable

approach.

A more speCialized workload generation mechamsm IS being developed for use on real-time

multiprocessor systems (FTMP In particular [1]) With this mechanism In place, expenments can be

run In an environment somewhere between Stage 2 and Stage 3 This model conSiders tasks of a

speCific organization and deals With a simple set of parameters The system IS assumed to be made

up of a bus With several processors (each With local memory), one global memory, and I/O.

Operating system tasks are conSidered part of the system under measurement TraffiC on the bus IS

restricted to I/O and Inter-Process Commumcatlon (IPC), each of which access memory

In this real-time model, tasks are made up of five sectIOns These sections Include read In I/O data,

read In IPC data, perform some representative operation, wnte out I/O data and write out IPC data.

The amount of work performed In each section can be varied by parameters

The workload structure was deSigned for simplicity so that vanatlons In the workload parameters

and the resulting measurements could be easily understood The system parameters consist of total

I/O, total IPC, and total instructIOn executions per second Each system parameter IS divided

between functions as a percentage of the total work each function performs Each function IS In turn

made up of tasks which divide the work of the fllnctlon as evenly as pOSSible Measurement of the

throughput, system utilizatIOn and interaction of the system IS done by uSing the system clock to

measure when a task beginS and ends

Prior to presenting a detailed ddlnltlon of a :,et of baseline experiments, we Will first deSCribe the

experimental vehicle 50 that the reader can observe how indiVidual baseline experiments have to be

modified to take Into account the speCifiC Implem(')ntatlon of an architecture

10

2.4 The Fault Tolerant Multi-Processor (FTMP)

The Fault Tolerant Multi-Processor (FTMP) has been discussed In several papers and manuals (5,

6] This section will only describe those details necessary for understanding the experimental re~u'ts.

For more details the Interested reader IS referred to the literature.

I 110 POR r
1

PROCES~OR PRO!.F!>SOR PROCFS:'OR
1 Z 3 r

L
TlU PORT

8K OK 8K 8K UK 8K
PROM RAM PHOM RAM PROM RAM r PROM

I
I/O PORT

r 110 POIlT
L

r 1/0 POIlT
L

GLOBAl MEMORY I [10 PORT
3ZK I

L
[10 PORT

SYSTEM BUS r I/O PI)R T

1 L

I I
L

I/O PORT
REAL TIME ERROR

CLOCK LATCHES
r 110 PI)R T

L

Figu re 2·3: FTMP System

Figure 2-3 depicts FTMP at the software level (as seen by the application programmers) There are up

to three triads, each With local memory A triad conSists of three processors that the programmer

sees as a Single processor A bus connects the triads to global or main memory, 1/0 deVices, a

real-time clock and several latches needed for fault handhng The trrads only execute Independently

when accessing local memory.

Work IS performed by tasks A task IS a process that can be started Independent of other tasks

Each tnad will run tasks according to a schedule Due to the real-time nature of the application, triads

do not necessarily execute the same tasks In the same order Each task IS assigned a time limit II a

task cannot be completed wlthm the time limit, the task IS stopped and the next task started

1 I
z I

3 I
4 I
5 I

6 I

7 I

8 I

9 I

10 1

11

Tasks are run wlthm frames Frames also act as a synchrortlzatlon mechanism between triads. One

of the triads becomes the leader and starts a frame for that tnad and signals all of the other tnads to

start the frame In the time allotted by the frame. the group of working tnads must execute ~\II of the

tasks they are assigned The tasks are In a global linked list with each pOinting to the next task

(except the last which has a null pOinter) The individual tndds access the global list to select a task

If there IS more than one triad. some tasks Will be executed In parallel When there are no more tasks

available for a triad to execute, the triad becomes Idle until tllo end of the frame. At tillt time, a triad

becomes leader and starts a new frame.

In FTMP there are actually three frame sizes. each haVing a different frequency of execution as seen

In Figure 2·4 Each triad has separate pOinters to tasks for each rate group.

40 Hz III H 11111111111
, t

I~l nor Frames R4 Frame

20 Hz ~ I
t ,

R3 Frame Frame Marks

5 Hz ~ i I , t

Rt Frame Major Frames

Figure 2·4: Frame Structure

The frame sizes are:

• R4, the baSIC frame size
• R3. eqUivalent to 2 R4 frames
• Rl, eqUivalent to 4 R3 frames, the 'maJor' frame

Task execution becomes more complicated with multiple frame sizes One triad stili Signals the start

of the R4 frame, however, every second R4 frame It also starts an R3 frame and every eight R4 frames

It starts an Rl frame The order In which a triad executes tasks for the different frame groups IS fairly

Simple First, It executes all of the R4 tasks. then (stili In the same R4 frame) It executes R3 tasks If

the R3 tasks do not fmlsh before the next R4 frame, execution of the R3 task IS suspended and

another R4 frame IS started Agam, when all of the R4 tasks are done, the R3 tasks are contmued If

the R3 tasks are finished, the R1 tasks are started If these tasks are not finished before the beginning

of the next R4 frame, they are sllspended and started after the R4 tasks are done In the next frame If

another R3 frame starts before the R1 tasks fmlsh, the current Rl task IS suspended In the triad until

time IS available In a frame

12

R4 Frame lnltldU<Jn tlmC! marks

I I I I I 1 -I 1 I 1 1 1 1 1 H 1
~ Ill' due to R4 10ngUI than 60% or R4 fr .. me

R3 Frame initlatlon tlme marks

I I H
Sllp of one R4 frame due to R3 lncomplutlon

Rl Frame lnitiation tlme marks

~llp of one R3 frame due to Rl lncompletlon

Figu re 2·5: Frame Stretch Mechanisms

There IS another interesting Item concerning frames According to the documentation, If a task

needs more time In a frame, the frame can be stretched as Illustrated In Figure 2-5 An R4 frame IS

stretched by a specific amount and R3 and R1 frames are stretched by giVing them more R4 frames.

The third baseline experiment uncovered some interesting properties of this stretching mechanism

Time IS kept uSing a global clock The clock has a resolution of 25mS (that IS, each clock tick IS

25mS) The clock and I/O deVices are accessed by uSing a function called HREAD A

complimentary function IS HWRITE HREAD allows a program to transfer bytes between a deVice and

the local memory of a triad. Transfers between local and global memory occur by invoking the

functions RD and WRT KnOWing the amount of time that these transfers take and how the time can

vary are crucial to understanding the accuracy of measurements.

Several computer systems are used to run the experiments. Programs for FTMP are written In a

language called AED and assembly language The compiler, assembler and linker for these

languages reside on an IBM 4341 Load files are transferred to a VAX·111750 Special Interface

programs on the VAX are used to load, read and write global memory locations In FTMP Also, a

batch facIlity on the VAX allows experiments to be run unattended. An HP terminal displays the status

and other features of FTMP while It IS running Recently, It became possible to remotely access FTMP

through the VAX so that expenmenters do not have to be present at AIRLAB to conduct experiments.

2.5 Proposed Experiments

A candidate set of baseline experiments was organized according to the levels of abstraction

depicted In Figure 2·2:

• mstructlOn Set Level

13

o Assembly and HIgh-level language instructIon tunes.

• ExecutIve Software Level

o ExecutIve primItive and overhead tImes
o Interrupt procedure tImes
o Memory access tIme
o Bus access and contentIon delays
o Fault tolerance overheads

• System and ApplicatIOn Level

o Frame utIlizatIon characteristIcs (Ulcludmg OS overhead and bus contentIon delay
and fault tolerance overhead)

The speCIfIC baseline expenments that are reported upon In thIS paper are

• Clock Read Delay In order for subsequent expenments to be valid, the delay and
vanatlOn In reading the clock must be determined.

• Processor Performance for SImple OperatIons ThIS IS a measure of the amount of tIme
requIred by the processor to perform SImple AED instructIons, for example 'A = l' or
'A=B+C'

• R4 Frame IteratIon Rate The measurement of the R4 frame under nominal condItIons as
well as when stressed by long tasks.

14

3. The Experiments

The goal of the experiments described In this report IS to obtain simple performance measures of

processor and operating system functions. The method used to do this conSists of three steps'

• Record start time
• Perform operatlon(s)
• Record end time

Variations In Implementing this approach are due to the constramts of the FTMP system The

experiments use a framework as In Figure 3·1, which IS described In the following paragraphs A

framework related to this one has been used to Implement a synthetic workload environment on

FTMP [3]

Begln
EXEC = Read(CMU.EXEC);
If CMU.EXEC <= SomeCount Then

End

begln
RTCNUM = Read(CMU RTCNUM);
Hold = Read(RT.CLOCK);
For X=t to RTCNUM do

begln
Somelnstructlons;

end,
Holdl = Read(RT CLOCK);
Wrlte(Hold,CMU TIME(I»;
Wrlte(Holdl,CMU TIME(2»;
EXEC = EXEC + 1;
Wrlte(FXEC,CMU EXEC);

end;

Figu re 3·1: BaSIC Experiment Task Algorithm

When a task starts, a global variable called CMU EXEC IS read from global memory If It IS above a

certam value (which depends on the experiment) the task IS terminated If It IS not, a second variable,

CMU RTCNUM, IS read from global memory CMU RTCNUM IS the number of Iterations that a loop

must execute In most cases, the global time IS read, an instruction IS repeated a number of times

(defined by CMU RTCNUM) and time 1'3 read again These numbers are then stored In the global array

CMU TIME Finally, CMU EXEC IS Incremented

The time limit for each experiment task must be large enough that the task can finish Also, some of

the experimental tasks must finish before the 60% mark of the R4 frame has been reached According

to the dOCUmentation, after that time an Interrupt will occur The Interrupt would invalidate any clock

Interval times

15

USing the VAX/FTMP Interface program c-llied CTA and a b<ltch command SCript, the value,> In the

global array can be read and stored In a file CT A can also set memory locations Therefore, a

command SCript can set CMU EXEC to 0, Walt, read the global array and repeat as many times as

deSired.

It IS Important to note that the experiments allow the number of Iterations to be changed uSing CT A

For example, If the number of Iterations IS found to be too small to obtain useful results,

CMU RTCNUM can be II1creased uSll1g CT A and the experiment can be run again Changes can be

made without havll1g to recompile, rehnk and reload FTMP Thus a great deal of experimentation

overhead IS saved.

3.1 Clock Read Time Delay

In order for any subsequent experimental results to be conSidered valid, the characteristics of the

clock must be determined The delay and variation 111 reading the clock must be determined, as well

as the causes of any variations If these vanatlOns cannot be charactenzed or minimized, any further

experiments uSll1g the clock would be suspect For example, 111 the Cm· multiprocessor system, there

was as much as 4 6% difference In clock frequency, and sub::.tantlal vanatlon of clock read delays [7]

An example of possible characteristics of clock read delay would be a cunstant offset that could be

subtracted from any future experiment results USing the clock

On FTMP the time IS read with the instructIOn 'HREAD(RT CLOCK,vanable,2),' In the experiment

task, 16 Iterations, each of 5 clock reads were made with the time before starting and the time of the

last read being stored In global memory Referring to the framework 111 Figure 3·1, 'Some InstructIOns'

IS replaced by 5 consecutive clock reads and RTCNUM becomes 16 A second task was created that

did exactly the same as the first task except that It did not write to global memory ThiS second task

was placed so that It would be the second task to start executIOn If two triads were m use, the

second task would execute In parallel with the first and add contention for the clock

The experiment VIas repeated about 100 tnnes for three situations

1 Triad 1 runnmg alone,

2 Triad 2 runnll1g alone,

3 Triad 1 and 2 running Simultaneously (contention for the clock),

The first two runs determll1ed single triad clock read time with no contentIOn, and variation between

triads The third case determmed how the contention for the common clock resource effects the

clock read tllne

16

3.2 Instruction Times

The times for the following AED Instructions were measured:

1. 'Null'

2. A= 1; (Integer assign)

3 A1 = 1; (real assign)

4 A2= 1; (long assign)

5. A=B+C; (Integer add)

6 Al = B1 + Cl; (real add)

7. A2 = B2 + C2; (long add)

8 A=B*C; (Integer multiply)

Each of these Instructions was executed In a loop 100 times along with the instruction 'A = 1,'. The

'A = 1,' instruction was added because the compiler would not accept a null statement for the first

Instruction. The 'Null' statement was Included so that the overhead from clock reading and loop

control can be eliminated from the other instructions, leaVing only the time for instruction execution

Again, refernng to Figure 3·1, 'Somelnstructlons' IS replaced by 'A = 1,' and the instruction being

measured and RTCNUM becomes 100 ThiS task was executed 308 times.

3.3 Measuring R4 Frame Size

There were three parts to thiS expenment In the first part, time from the real·tlme clock was read at

the beginning of the first R4 task Refernng to Figure 3·1, thiS time was stored In the CMU TIME array

If appropnate (depending on the value of CMU EXEC) and the instruction 'A = 1,' was executed a

specified number of times as determined by CMU RTCNUM.

If CMU EXEC was above the value eight, the task would finish Without dOing anything else Eight

consecutive R4 TASKl start times were stored In each Iteration of the expenment The objective was

to determine the R4 fro.me duration The experiment was run about 100 times for a Single triad and

two triads

The second part of the experiment was to determine how the system behaved when an R4 frame

was stretched Only one triad was used The time limit for the task was set to a very large number (so

that a task would not abort before It was finished) Finally, RTC NUM had to be set to several values

that would stretch the frame. These values were 2000, 3000 and 5000 Data was recorded about 100

times for each Iteration value

17

The last part of the expenment was to determine the effect on the system of a rate group with an

infinite number of tasks This could be easily done because each task had control information

associated with It. One of the words of information was a pOinter to the next task. An Inflmte stnng of

tasks could be generated by haVing a task pOint to Itself as the next task One R4 task was caused to

execute over and over In thiS way Another task was checked to see If It rdn once the R4 task started

repeatmg.

18

4. Results

4.1 Read Time Clock Delay

The clock read overhead was virtually constant for a single triad configuration The data never

vaned more than a clock tick For the two different triads the results were

Triad 1: 55.9 + 047 tlcks/ 16 lteratlOn'i (!J5% (.onfldence 2)
14.0 - + .012 mSec / 16 lteratlons

.874 + - .00073 mSec / lteratlon

Trlad 2: 56.0 + - 036 tlcks/ 16 lteratlons
14.0 + 0091 mSec / 16 lteratlons

.875 + 00057 mSec / lteratlon

Each Iteration has 5 clock reads plus loop overhead Loop overhead per IteratIOn IS 15 7ILSeconds

(see Experiment 2) ThiS IS subtracted from the Iteration time, then the result IS diVided by 5

Triad 1 Triad 2
(ILSec) (ILSec)

874 ± 73 875 ± 57 Initial Data
-15 7 ± 11 -15 7 ± 11 Overhead

858.3 ± 84 859 3 ± 68
/5 /5 Number of Reads

172 ± .17 172 ± 14 Clock Read Time

A read with no contentIOn on the bus reqUires 172ILSeconds Although there IS an indication of some

variatIOn between triads, It IS not significant and '1'I1thin the margm of error for a 95% confldence

Interval

In the second measurement, two triads were started, each executing roughly the same code so that

contention for the bus IS created The result for two triads was

56 3 ± 091 Ticks / 16 iterations

173 + 31 ILSec / Clock Read

It IS eVident that the contention for the clock at thiS rate does not affect the delay III readmg the clock

greatly (less than 1%) However, the contention IS large enough that the range of the 95% confidence

2
All Intervals are 95% confidence IntervClls assuming normal distribution for the vanables r~t!fer to Ferrl1n [4] for a

descnpliOn of confidence Intervals and how they dre calculated

19

Intervals for the single triad read time and double tnad read time do not overlap These results do not

take Into account other contention for the bus like memory access or I/O device access.

The reason that this vanatlon IS so small IS that the section of code In the read procedure that

actually uses tho bus IS a small percentage of the whole clock re..ld procedure Since both

contending procedures are exactly the same when In the Iteration section, they Will tend to be

synchronized so that only one Will actually request control of the bus at a tlrne The slight vanatlon

from the single tnad case could be due to slight variations In the execution rates of the different

processors so that occaSionally the two tnads do conflict However, thiS would seem to be very

minor.

On the whole, the real-time clock on FTMP should serve as a reliable measurement device with

preulctable delays that can be factored out of experiments ThiS IS especially true In the slOg Ie triad

case However, thiS assume::. that the experimenter has complete control of all of the tasks If an

experimenter on the system with multiple triads lets one triad run uncontrolled, the clock results may

not be reliable The range of system activities under which the clock times are repeatable should be

explored further.

4.2 Instruction Measu rement

Clock Ticks p.Sec per p.Sec per p.Sec per
Instruction per100 Instruction, Instruction, Instruction,

Inst r .(ave) w/ Overhead w/o Overhead Predicted

Null 123 307.±. 013
Integer Assignment 18.3 45 7 .±. 013 150.±. 026 83
Real Assignment 184 461.±. 014 154.±. 027 83
Long Assignment 196 491 .±. 014 184.±. 027 123
Integer Addment 230 577.±. 004 270.±. 017 223
Real Add 232 580.±. 011 273.±. 024 223
Long Add 274 686.±. 014 379.±. 027 300
Integer Multiply 251 629.±. 010 322.±. 023 274

Table 4-1: Instruction Results

The result of the measurements are shown In Table 4-1 The three times given for each instructIOn

are as follows The first column IS the time to execute each instruction Includmg the overhead of

readmg the clock, maintaining the loop, and the time to execute' A = 1,' The second column adJusts

the time from the first column by subtracting out these overheads The third column represents time

per InstructIOn predicted by the assembler The range IS for a 95% confidence Interval

20

The results showed little vanance The number of 'clock ticks' per frame vaned only by one for each

AED instruction. The instructions tool(longer than suggested by the times given by the assembler

and Draper Labs documents. The predicted times according to the document are actually the times

under best conditions ThiS makes the predicted times of marginal value In real·tlme applications. In

order to get a complete view of the instruction execution times, aU of the Important AED instructions

must be measured on the actual machine.

The overhead neened to measure the instruction (the Iteration time and the two clock read tnnes)

can be found by subtracting the Null Instruction from the time for the instruction 'A = l' If the

overhead IS assumed to consist of only the loop instructions, then the amount of overhead per

instruction Iteration IS 15.0 ..±. 039 ILSeconds ThiS overhead IS useful for calculations III other

expenments.

Another aspect of the looping overhead IS the error due to the clock resolution On average thiS

turns out to be half a clock tick ThiS value would be subtracted from any absolute time average to

give the actual average time that was measured

Usmg 'A = B + C' as an average high level instructIOn, a rough order of magmtude of the number of

instructions that can be executed In an R4 frame and the rough high level throughput of a tnad can be

calculated.

40mS/ R4Frame
1500lnstructions/R4Frame

27 0ILS/Ills/ruc/lOn
1

37 KOPS(AED)Th roughput
27 0ILS/ fns/ruc/101l

The instruction 'A = B + C,' actually used four assembly instructions Therefore, a rough assembly

level throughput would be 150KOPS.

4.3 Measu ring R4 Frame Size

Triads Average Standard Range
Time DeViation

(mSeconds) (mSeconds) (mSeconds)

Smgle 400 741 3775·4225
Double 400 623 3775·4225

Table 4·2: Frame Measurement Results

R4 frames vaned conSiderably In size (the amount of time between consecutive frames) from one

21

frame to another. There may be cyclic vanatlon, however It IS hard to determme from the method

used to obtalll the data. The nom mal R4 frame measures In the single and double tnad cases are

shown In Table 4·2 The dlstnbutlons of frame sIzes are shown In FIgures 4·1 and 4·2. The

dlstnbutlon looks approxImately normal except that the frame sIzes nedr the average occur less

frequently than would be expected. The reason for thIS IS unclear.

~ 42.50
e 42.25
Q; 42 00
§ 41.75
~ 41.50

41.25
41.00
40.75
40.50
40.25
40.00
39.75
39.50
39.25
39.00
38.75
38.50
38.25
38.00
37.75
37.50

~

p.
p

F==3'

:::::3-

::r
:::3-
~

o

+
+

+

+

+

30 60 90 120 150
Amount

Flgu re 4·1: Single Triad R4 Frame Dlstnbutlon

In the second part of the expenment, the R4 frame was stretched The results of the stretchmg are

shown m Table 4·3 In all of these runs, the tIme measured for a frame was usually close to the

average (wIthin a few clock tIcks) WIth some takIng several tIcks longer and none taking more than 2

clock tIcks less than the average (see FIgures 4·3,4·4 and 4·5) The reason for thIS dlstnbutlOn IS

again unknown, but It IS probably due to the operatIng system and dispatcher vanatlons rather than

the task that runs wlthm the frame (see experiment 2) The actual variations compare to roughly nme

instructIons per tick ThiS could be the difference due to one conditIOnal (If - then - else)

statement.

When the average tImes were plotted agamst the Iteration rate, a linear relatIon emerged (see FIgure

4·6). From the documentation, a step functIon tncrease was assumed WIth a step of 24 mSeconds

ThiS IS also shown on the graph When the actual code was read, the linear tncrease was to be

Ci) 42.50
E 42.2
~ 42.00
.5 41 .7
~ 41.5

5

5
0
5
O
5
0
5
0
5
0
5
O
5

41.2
41.0
40.7
40.5
40.2
40.0
39.7
39.5
39.2
39.0
38.7
38.5
38.2
38.0
37.7
37.5

0
5
0
5
0

F1-
P-
P

~

P.
~
F1-

o

22

~

+
+

t-

50 100 150 200
Amount

Figure 4·2. Double Tnad R4 Frame Distribution

Frame Average Standard Range
Size Time Deviation

(Iterations) (mSeconds) (mSeconds) (mSeconds)

2000 808 480 805-830
3000 108 480 1078- 1105
5000 163 481 1623- 1650

Table 4·3: Frame Stretching Results

expected The reason for the supposed step function was a timer Interrupt that was to happen every

24 mSeconds In fact, after the first timer Interrupt, 24 mSeconds Into the R4 frame, the timer was not

used until the R4 tasks flmshed Therefore, the size of the frame would Increase linearly above 40mS

The fmal part of the experiment was to determine the behavior of the system when an infinite set of

R4 tasks was started In the experiment, an R4 task POinted to Itself as the next task If there were no

mechanism for aborting a frame, the R4 frame would continue forever This could be shown, by

attempting to use another task while the R4 task continues to loop For this expenment the task that

was used to test whether the system was running was an R3 task that failed and restored processors.

Normally, It took only a few seconds from entering a request to reconflgunng the system However,

en 83.25

i 83.00

~ 82.75

82.00

81.751-_-'

81.50

81.25

81.00

23

BO.751-_____________________ ~

BO.50r-_________________ ~

BO.25~--~--~--~--~--~----'

o 50 100 150 200 250 300
Amount

Figu re 4·3' Stretched Frame - 2000 iterations

en 110.75

.§. 110.50
Q)

E 110.25
~

110.00

109.75

109.50

109.25

109.00 r-----'

10B.75

108.50

10B.25
108.00r-____________________ ~

107.751-__________________ ~

107.50~--~---'---~-~----~~

o 50 100 150 200 250 300
Amount

Figu re 4·4 Stretched Frame - 3000 Iterations

Cii 165.25

.§ 165.00
II)

E 164.75
t::

163.75

163.501--_---'

163.251---'

163.00

162.75

24

162.501--____________________________ ~

162.251--_____________ ~

162.00~~--~--~~--~--~~~~--~--L-~

o 30 60 90 120150180210240270300330
Amount

Figure 4-5: Stretched Frame - 5000 Iterations

when the R4 task began to repeat IIlflnltely, the R3 task could not execute at all When the mflnlte

loop was stopped (by nullifYing the R4 pOinter), the R3 task ran Immediately.

ThiS last test POints out a flaw In the scheduhng software Although tasks are regulated by giVing

them time limits, frames are not limited In thiS manner A frame of any rate IS simply stretched until all

of the tasks Within the frame can finish. ThiS mechanism IS not reliable In at least two situations The

first was described above, In which all other tasks were locked out by one task that POinted to Itself

Another possibly hazardous situation would be a task WIth ItS tIme hmlt set too hIgh If, In most cases,

the task takes much less tIme than the hmlt, th,s error may not be noticed However, If some untested

sectIon of the code starts a long, VIrtually infInite loop, the system WIll hang (at least at that rate group)

untIl that task has stopped In a real· time applicatIon th,s IS equlvdlent to faIling

200

180

160

140

120

Time
(ms)

100

80

60

Frame Size
YS

Tterations

40 +-___ -V'

20

25

O~--------r-------~---------~-----------~~-------~
o 1000 2000 lterations 3000 4000 5000

Figure 4·6: Frame Size (mSeconds) vs Iteration Count

26

5. Summary and Future Work

This paper described three expenments that were designed within the framework of a validation

methodology The methodology was denved eallier and IS undergOing changes as experience

Increases The experiments were concerned with bazellne measurements of the running system The

major results of these experiments were:

1 The real·tlme clock IS a reliable measurement device and can be used In timing
experiments.

2 The instructIOn execution tunes are constant and reproducible The measured times are
slower than the documented best times.

3 The frames are nominally 40 milliseconds long There IS a vanatlon of many clock ticks In
all measurements.

4 The stretchmg mechanism allows a linear Increase In the size of the frame depending on
the number of instructions to be executed, not a stepwise Increase as expected from
reading the documentation

5 Frame stretching continues until all tasks finish or abort ThiS IS unreliable In some cases

More work needs to be done to fully characterize the FTMP system ThiS IS espeCially true of

instruction and procedure call measurements Major omiSSions of the present results were the

call/return times for different types of procedures and the system reaction to arithmetiC faults Other

AED instructIOns should also be measured to get a more complete eVdluatlon of the system

Enhancement of the experiment environment IS planned The goal of the enhancement IS to have

the capability of runnmg several different experiments on FTMP by only changmg certain values In

memory With thiS environment It IS hoped that informatIOn can be collected on the time to run

various sizes and types of tasks In many combinations Information on scheduling and other

operating system overhead might also be obtamed With thiS environment

27

6. Acknowledgment

We wish to acknowledge the help of all of the people of AIRLAB at NASA/Langley Research Center.

We would especially like to thank Carlos Llceaga, Frank HIli, Dan Koppen, Bnan Lupton, George

Finelli and Dale Holden We would also like to thank Matt Reilly for hiS Imtlal work on the FTMP

system and Frank Feather for hiS help 10 the data analysIs.

28

References

[1] Clune, E.
Analysls of the Fault Free Behavlor of the FrMP Multiprocessor System:

Basellne Measurements and Synthetlc Workload.
Master's ProJect, Cal'negle-Mellon Ulllverslty, September, 1984.

[2] Draper Labs.
AlPS System ReqUirements.
Technlca1 Report AIPS-83-50, Charles Draper Laboratory, 1983.

[3] Feather, Frank E.
Va1ldatlon of Fault-Free Behavlor of a Re1lab1e Mu1tlprocessor System.

Workload Implementation.
Master's ProJect, Carnegle-Me110n Unlverslty, March, 1985.

[4] Ferrari, D.
Computer System Performance Evaluation.
Prentlce-Ha11, Inc, 1975.

[5] Development and Evaluation of a Fault Tolerant Multiprocessor
(FTMP) Computer, Volume I, II, III, IV.

Contract Reports 166071, 166072, 166073, 166074.
Draper Laborator 1 es, 1983.

[6] Hopklns, A. L., et a1.
FTMP - A Hlgh1y Rellable Mu1tlprocessor.
IEEE Trans on Computers, October, 1978.

[7] Kong, T. H
Measurlng Tlme for Performance Eva1uatlon of Mu1tlprocessor Systems.
Master's Thesls, Carnegle-Mel10n UnlverslY, November, 1982.

[8] Research Trlang1e Instltute.
Validation Methods Research for Fault-Tolerant Computer Systems-

Preliminary Working Group /I Report.
NASA Conference Pub11catlon 2130, NASA-Langley Research Center, 1979.

[9] Segall, Z., A. Slngh, R. T. Snodgrass, A. K Jones, D. P. Slewlorek.
An Integrated Instrumentatlon EnVlronment for Multlprocessors.
IEEE Trans on Computers C-32(1), January, 1982.

[10] Swan, R. J., S. H. Fuller, D. P. Slewlorek.
Cm·: A Modular, Multl-Mlcroprocessor.
Proc AFIPSNCC, vol. 46, 1977.

[11] Wensley, J. H , et al
SIFT. A Computer for Alrcraft Control.
IEEE Trans on Computers, October, 1978.

[12] Wu1f, W. A .. C. G. Bell.
C.mmp: A Multl-Mlnl-Processor.
Proc AFIPS FJCC, vo 1. 41, pt. 2, 1972.

End of Document

