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Executive Summary

This 1s a report on research by Carnegie-Meilon University for NASA-Langley Research Center
under contract NAG-1-190 on the validation of fault-tolerant avionics multiprocessors This report

covers the initial phase of experimentation.

In this pericd a series of basic performance measurements were conducted on the Fault Tolerant
Multi-Processor (FTMP) as part of a process to evaluate validation methodologies. The results of

these expenments and proposals for future work are presented in this report.

A paper, based on this work, entitled "Validation of Fault-Free Behawvior of a Reliable Multiprocessor

System — FTMP: A Case Study"” was presented at the American Control Conference in June 1984,



Abstract

This report describes a set of experiments which were implemented on the Fault Tolerant Multi-
Processor (FTMP) at NASA/Langley’s AIRLAB faciity These expenments are part of an effort to
formulate and evaluate validation methodologies for fault tolerant computers. This report deals with

the measurement of single parameters (baselines) of a fault free system.

The initial set of baseline experiments lead to the following conclusions:

1 The system clock ts constant and independent of workload in the tested cases,

2 The instruction execution times are constant;

3 The R4 frame size 1s 40mS with some variation;
4. The frame stretching mechanism has some flaws 1n its implementation that allow the

possibility of an infinite stretching of frame duration

Future experiments are planned. Some will broaden the results of these initial experniments Others
will measure the system more dynamically The implementation of a synthetic workload generation

mechanism for FTMP 1s planned to enhance the experimental environment of the system.1

1Thns research was sponsored by the National Aeronautics and Space Administration, Langley Research Center under
contract NAG-1 190 The views and conclusions contained In this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or wnphed, of NASA, the United States Government or

Carnegie-Melion University



1. Introduction )

An aircraft of the 1990's will have computer systems that must function correctly for the aircraft to
fly Many studies have been performed on fault tolerant avionics computers One such study by
NASA, n its Aircraft Energy Efficiency (ACEE) program, requires that an aircraft computer failure
probability should be less than 1010 per hour Systems have been built with this goal in mind (SIFT
and FTMPI5, 6, 11]) Techmques must be developed for measuring the performance and rehability of

these systems.

00 per hour translates to less than one failure per million years of

Since a probability of failure of 1
operation, 1t 1s not feasible to wait for enough accumulated operational hours to demonstrate
comphance with the goal prior to the release of the aircraft computer A comprehensive validation
methodology can greatly reduce the amount of time required to determine if a system meets iis design
goals. An overall vahidation methodology has many components including theorem proving,
mathematical modeling, and physical expenmentation. NASA has held several workshops to develop
a system validation procedure One workshop in particular [8] produced a detailed list of validation

tasks to venfy a system in an orderly manner

Theorem proving and mathematical modeling are often based on a simphfication and abstraction of
the physical system These simphfications are required to reduce the complexity of the mathematics
to a tractable level Experimentation 1s a key element tn a validation methodology since it serves to
validate the model and abstractions assumed in the mathematical treatments as well as to discover

unanticipated phenomena.

The foundations for an expernimental validation methodology have been developed and are being
tested at the Avionics Integrated Research Laboratory (AIRLAB) at the NASA Langley Research
Center AIRLAB is a facihity for developing technologies and methodologies to evaluate and integrate
avionics and control functions of future arrcraft and to establish a store of performance evaluation

and rehability evaluation statistics

In parallel, Carnegie-Mellon Uniwversity had developed several multprocessor systems including
C mmp, a system with 16 processors communicating with 16 memories through a crossbar switch
[12), and Cm*, a 50 processor system with a hierarchical processor-memory switch [10] Over the
past decade researchers at CMU were evolving experimental methodologies for evaluating these
multiprocessor systems AIRLAB provided an opportunity to apply and extcnd the e«perimental

methodologies to real time fault tolerant multiprocessor systems The generality of the experimental



methodology could be demonstrated by its apphication to four diverse multiprocessor systems while

producing actual measurements which compared and contrasted these architectures.

The remainder of this document I1s orgamized as follows. Section 2 gives background on the
validation methodology used as the basis of the baseline experiments It also introduces the Fault
Tolerant Multiprocessor (FTMP), on which the baseline experiments were performed, and gives a
short description of the types of baseline experiments that were run on FTMP Section 3 describes
the basic expenmental structure and the vanants used to measure different baseline parameters In
Section 4, the results of the experiments are presented and conclusions drawn A summary of the

experiment resuits and a discussion of future work are presented in Section 5.



2. Background

This section contains information necessary to understand the motivation for the expenments
discussed In the next section. Included are a description of the validation methodology used as a

basis for the experiments and a description of the Fault Tolerant Multi-Processor (FTMP).

2.1 Proposed Methodology

NASA held several workshops to determine system validation procedures One in particular [8],
produced a detailed list of validation tasks to verify a system in an orderly manner. The methodology
was based on a building block approach in that confidence would be built up In an incremental
manner through the understanding and measurement of primitive activities Once these primitive
activities were characterized, more complex experiments would be devised to explore the interaction
of primitive activities as well as more complex activities constructed from these pnmitive activities
This orderly progression msures uniform coverage as well as maximizes the abihty to locate the cause

of an unexpected phenomenon A modified version of this list 1s shown in Figure 2-1.
1 Fault Free Evaluation

a Imtal Checkout and Diagnostics

b. Programmer’s Manual Verification

¢. Executive Routine Verification

d Multiprocessor Interconnect Verification

e Multiprocessor Executive Routine Vernfication

f Application Program Verification and Performance Baseline

2 Fault Handhing Evaluation

a Simulation of Inaccessible Physical Failures

b. Single Processor Fault Insertion

¢ Multiprocessor Fault Insertion

d. Single Processor Executive Failure Response Characterization
e Multiprocessor System Executive Fault Handling Capabilities
f. Application Program Verification on Multiprocessor

g Multiple Application Program Verification on Muitiprocessor

Figure 2-1- System Evaluation List

The first set of six tasks verifies the fault free functionahty of the system while the next set of seven
verifies fault handling capabilities The reader 1s referred to [8] for a more detailed explanation of the
above listed tasks The experments described in this paper deal only with the set of fault free
performance evaluation tasks The experiments run on FTMP were actually involved in performance
baselines (part of task 1f) although verification at other levels was accomplished as well (for example,

Executive Routine Verification, task 1¢) while running baseline expenments



2.2 Experiment Environment

Multiprocessor systems are enormously complex In order to make them easier to comprehend, it 1s
necessary to divide the system into several levels One can then procecd from the most pnmitive level
upwards to the highest conceptual level by introducing a series of abstractions Each abstraction
contains only information important to its particular level, and suppresses unnecessary tnformation
about lower levels The levels in a digital system frequently coincide with the system's physical
boundaries since the concept of levels was utiized by the system’s designers to manage complexity
Once details at one level are comprehended, only the functionality provided for the next higher level

need be considered Figure 2-1 depicts one possible set of levels of abstractions

Level Sublevel Typical Components

Multiprocessor Processor, memory,
switches

Program Apphcation Software Display, navigation,

flight control

Executive Software Message system, task
scheduler, memory
allocator

Instruction Set Memory state,
processor state,
effective address
calculation,
instruction execution

Hardware Logic Gates, flip-flops,
registers, sequential

machines

Figure 2-2: Levels of Abstraction in Multiprocessor Systems

Our experience at CMU indicates multiprocessors go through a senes of evolutionary stages A
stage 1s defined by the amount of functionalty available to the user This functionality, in turn,
determines the complexity and sophistication of experiments that can be conducted This
functionality can usually be defined 1n terms of the activities in the life of an expeniment First, the
code has to be designed and wntten Next, the code must be compiled, followed by loading,
debugging, measurement, and analysis Consequently, a view of the stages of a system’s hife 1s the
number of these activities that are directly supported by the system for the user The following are

three representative stages in the evolution of a typical multiprocessor system.



2.2.1 Stage 1 - Standalone

The system 1s completed through the instruction set level of abstraction That 1s, the instruction set
has been defined and the hardware has been implemented There Is wirtually no software to support
user apphcations The only software utiity would be a loader whereby programs compiled on another
machine can be loaded into the system under test. Experiments are hmited to simple, regular,
compute bound algonthms Only a imited number of parameters may be vaned, and this vanation
requires rewrting of the source code of the expennment There are several attributes to Stage 1
expenments The programmer must be a hardware expert since there 1s little software to provide a
tigher level virtual (abstract) machine. Hence the program 1s tied closely to the hardware The user
must specify where code is placed, define the memory map, and write code to initialize the memory,

create processes, manage resources, and collect data.

Typical baseline experniments in Stage 1 include:

e Hardware Saturation Programs consist of two or three instruction loops with vanation
in placement of code and data The capacity of various system hardware resources 1s
determined as well as the impact of contention for those resources

e Speedup due to Algornthm/Data Vanation. Experiments seek the impact of
synchronization for data, as well as variation due to data dependencies and size of data

e Errors Diagnostic programs can be continuously run and monitored on the system
Distribution of diagnostic detected errors can be studied.

2.2.2 Stage 2 - Operating System (OS)

The user 1s presented the abstraction provided by the executive software This software provides
basic functions such as resource management and scheduling. In programming experiments, the
user employs operating system primitives Hence, the user needs a substantial operating system
expertise Also, charactenstic for this phase is the discrete incremental nature of the experimentation

process; each experiment represents one point in the design space

The attributes of Stage 2 applications can be stated as follows.

e very regular, data bound with imited vanation of parameters

« the general program organization has a Master process controlling a collection of Slave
processes doing the actual computation

e code 1s replicated

o heavy use of OS mechanisms

Typical baseline experiments in Stage 2 includer

e Measurements of the cost-per-feature of the operating system’s functions
Experiments statically exercise each OS function on a one by one basis Examples
include memory management, communication pnimitives, synchronization, scheduling
and exception handling



e Measurements of different implementation of parallel algonthms. The impact of
using various strategies in parallel program organization, data structure and resource
allocation 1s studied

2.2.3 Stage 3 - Integrated Instrumentation Environment

At this stage hardware and software have been provided for generating experimental stimulus,
dynamically observing hardware and software activities, and analyzing results [9] With this
enhanced support, the user can experniment at the application level of abstraction with full vanation of
parameters A major charactenstic of this stage i1s the provision of stimulus generation, monitoring,
data collection and analysis grouped under a unique user interface Also the OS, the support
software and the user application are uniformly instrumented enabling improved behavior visibility.
Only with this capability, the interaction between OS, support software and user applicahon became
measurable with acceptable effort Hence, the programmer could be a relative system novice
Furthermore, the effort to conduct advanced expeniments becomes manageable Experiments at this

stage have the following attributes:

e Measurements of dynamic behavior of OS and applications.

e Measurements are continuous Program could be monitored on-line and sometimes in
real-time.

o Studies of different virtual machines.

o Studies of difterent logical intercommunication structures.

e Scaling apphcation performance with respect to different virtual machines

Examples of advanced experniments that can be conducted in Stage 3 include:

o Companison of various OS policies as reflected by classes of applications

e Tuning a virtual machine for a specific application.

e Designing application oriented architectures

o Study of multiprocessor intercommunication strategies.

o Study of the architectural effectiveness and efficiency

e The handling of faults represents additional load for the avionics system The fault
capabilities represent another aspect of system functionality Whereas a system without
faults may be able to meet all of its deadlines, the addition of fault handling workload may
cause schedule slippage and/or violations of realtime constraints

A key part of the Stage 3 methodology 1s the specification and generation of a controlled paraliel
workload [9] Such a workload for avionics applications is given in [2] The workload 1s represented
as a special purpose parallel data-flow graph A run-time expenmentation environment provides
capabitlity of controlling, varying and measuring the workload without having to recompile or re-debug

the parallel program.



2.3 Present and Future Experiment Environment

A significant amount of work was required by AIRLAB personnel to bring the system environment up
to Stage 2 At present, each experiment generally requires some code compilation, followed by
hnkage and downloading of the whole FTMP binary file Experiments can be designed with
modifiable varnables so that some vanation can be made by changing values in memory without
having to go through the entire code development cycle An example of a modifiable variable 1s the
number of iterations in a loop The expernments described in this paper used the modifiable vanable

approach.

A more specialized workload generation mechanism is being developed for use on real-time
multiprocessor systems (FTMP in particular [1]) With this mechanism 1n place, experiments can be
run in an environment somewhere between Stage 2 and Stage 3 This model considers tasks of a
spectfic organization and deals with a simple set of parameters The system i1s assumed to be made
up of a bus with several processors (each with local memory), one global memory, and 1/70.
Operating system tasks are considered part of the system under measurement Traffic on the bus 1s

restricted to 170 and Inter-Process Communication (IPC), each of which access memory

In this real-time model, tasks are made up of five sections These sections include read in 1/0 data,
read in IPC data, perform soms representative operation, write out 1/0 data and write out IPC data.

The amount of work performed in each section can be varied by parameters

The workload structure was designed for simplicity so that variations in the workload parameters
and the resulting measurements could be easily understood The system parameters consist of total
170, total IPC, and total instruction executions per second Each system parameter 1s divided
between functions as a percentage of the total work each function performs Each function is in turn
made up of tasks which divide the work of the function as evenly as possible Measurement of the
throughput, system utilization and interaction of the system is done by using the system clock to

measure when a task begins and ends

Prior to presenting a detailed definition of a set of baseline experiments, we will first describe the
expernimental vehicle so that the reader can observe how individual baseline experiments have to be

modified to take into account the specific implementation of an architecture



2.4 The Fault Tolerant Multi-Processor (FTMP)

10

The Fault Tolerant Multi-Processor (FTMP) has been discussed in several papers and manuals [5,

6] This section will only describe those detadls necessary for understanding the experimental resuits.

For more details the interested reader is referred to the literature.
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Figure 2-3: FTMP System
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Figure 2-3 depicts FTMP at the software level (as seen by the application programmers) There are up

to three triads, each with local memory A tnad consists of three processors that the programmer

sees as a single processor

A bus connects the tniads to global or main memory, 1/0 devices, a

real-time clock and several latches needed for fault handling The tniads only execute independently

when accessing local memory.

Work i1s performed by tasks A task 1s a process that can be started independent of other tasks

Each tniad will run tasks according to a schedule Due to the real-time nature of the apphcation, triads

do not necessanly execute the same tasks in the same order Each task 1s assigned a tme hmit if a

task cannot be completed within the time limit, the task ts stopped and the next task started
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Tasks are run within frames Frames also act as a synchronization mechanism between triads. One
of the triads becomes the leader and starts a frame for that tnad and signals all of the other tnads to
start the frame In the time allotted by the frame, the group of working triads must execute Jll of the
tasks they are assigned The tasks are in a global linked list with each pointing to the next task
(except the last which has a null pointer) The individual tnads access the global list to select a task
If there 1s more than one tnad, some tasks will be executed in parallel When there are no more tasks
available for a tnad to execute, the tnad becomes idle until the end of the frame. At that ime, a tnad

becomes leader and starts a new frame.

In FTMP there are actually three frame sizes, each having a different frequency of execution as seen

in Figure 2-4 Each tnad has separate pointers to tasks for each rate group.

T

40 Hz l l

* *
R4 Frame Minor Frames
20 Hz ' + * | l I | l I
+ *
R3 Frame frame Marks
L |
5 Hz I 1
S +
R1 Frame Major Frames

Figure 2-4: Frame Structure
The frame sizes are:

¢ R4, the basic frame size
e R3, equivalent to 2 R4 frames
e R1, equivalent to 4 R3 frames, the 'major’ frame

Task execution becomes more complicated with multiple frame sizes One tnad still signals the start
of the R4 frame, however, every second R4 frame it also starts an R3 frame and every eight R4 frames
it starts an R1 frame The order in which a tniad executes tasks for the different frame groups is fairly
simple First, it executes all of the R4 tasks, then {still in the same R4 frame) it executes R3 tasks |If
the R3 tasks do not finish before the next R4 frame, execution of the R3 task I1s suspended and
another R4 frame 1s started Again, when all of the R4 tasks are done, the R3 tasks are continued If
the R3 tasks are finished, the R1 tasks are started If these tasks are not fimshed before the beginning
of the next R4 frame, they are suspended and started after the R4 tasks are done in the next frame I

another R3 frame starts before the R1 tasks finish, the current R1 task is suspended in the tnad until

time i1s available in a frame
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R4 Frame initiation time marks

T O U O B

Ship due to R4 longer than 60% of R4 frume
R3 Frame initfation time marks

o o H

Slip of ane R4 frame due to R3I incompletion

R1 Frame initiation time marks

| — |

S1ip of one RI frame due to R1 incompletion

Figure 2-5: Frame Stretch Mechanisms

There is another interesting item concerning frames According to the documentation, If a task
needs more time in a frame, the frame can be stretched as illustrated in Figure 2-5 An R4 frame 1s
stretched by a specific amount and R3 and R1 frames are stretched by giving them more R4 frames.

The third baseline experiment uncovered some interesting properties of this stretching mechanism

Time is kept using a global clock The clock has a resolution of 25mS (that s, each clock tick is
25mS) The clock and 170 devices are accessed by using a function called HREAD A
complimentary function 1s HWRITE HREAD allows a program to transfer bytes between a device and
the local memory of a tnad. Transfers between local and global memory occur by invoking the
functions RD and WRT Knowing the amount of time that these transfers take and how the time can

vary are crucial to understanding the accuracy of measurements.

Several computer systems are used to run the experiments. Programs for FTMP are wntten in a
language called AED and assembly language The compiler, assembler and linker for these
languages reside on an {BM 4341 Load files are transferred to a VAX-11/750 Special interface
programs on the VAX are used to load, read and write global memory locations in FTMP  Also, a
batch facility on the VAX allows experiments to be run unattended. An HP terminal displays the status
and other features of FTMP while 1it1s running Recently, it became possible to remotely access FTMP
through the VAX so that experimenters do not have to be present at AIRLAB to conduct experiments,

2.5 Proposed Experiments

A candidate set of baseline experiments was organized according to the levels of abstraction

depicted in Figure 2-2:

o Instruction Set Level
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o Assembly and High-level language instruction times.
e Executive Software Level

o Executive pnmitive and overhead times
o Interrupt procedure imes

o Memory access time

o Bus access and contention delays

o Fault tolerance overheads

e System and Application Level

o Frame utilization characteristics (including OS overhead and bus contention delay
and fault tolerance overhead)

The specific baseline experiments that are reported upon in this paper are

o Clock Read Delay In order for subsequent experiments to be vahd, the delay and
vanation in reading the clock must be determined.

e Processor Performance for Simple Operations This is a measure of the amount of time
required by the processor to perform simple AED instructions, for example 'A=1" or
'A=B+C’

e R4 Frame lteration Rate The measurement of the R4 frame under nominal conditions as
well as when stressed by long tasks.
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3. The Experiments

The goal of the experiments described in this report 1s to obtain simple performance measures of

processor and operating system functions. The method used to do this consists of three steps:

e Record start ime
e Perform operation(s)
e Record end time

Vanations in implementing this approach are due to the constraints of the FTMP system The
expenments use a framework as in Figure 3-1, which 1s descrnibed in the following paragraphs A
framework related to this one has been used to implement a synthetic workload environment on
FTMP [3]

Begin
EXEC = Read(CMU.EXEC);
If CMU.EXEC <= SomeCount Then
begin
RTCNUM = Read(CMU RTCNUM);
Hold = Read(RT.CLOCK);
For X=1 to RTCNUM do
begin
SomelInstructions;
end,
Hold1l = Read(RT CLOCK);
Write(Hold,CMU TIME(1));
Wraite(Hol1d1,CMU TIME(2));
EXEC = EXEC + 1;
Write(EXEC,CMU EXEC);
end;
End
Figure 3-1: Basic Expcriment Task Algorithm

When a task starts, a global variable called CMU EXEC 1s read from global memory If it is above a
certain value (which depends on the experiment) the task is terminated 1f it 1s not, a second varniable,
CMU RTCNUM, s read from global memory CMU RTCNUM is the number of iterations that a loop
must execute In most cases, the global time 1s read, an instruction 1s repeated a number of times
(defined by CMU RTCNUM) and time 1s read again These numbers are then stored in the global array
CMU TIME Finally, CMU EXEC 1s incremented

The time limit for each experiment task must be large enough that the task can finish Also, some of
the experimental tasks must finish before the 60% mark of the R4 frame has been reached According

to the documentation, after that time an interrupt will occur The interrupt would invalidate any clock

interval times
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Using the VAX/FTMP interface program calied CTA and a batch command script, the values in the
global array can be read and stored in a file CTA can also set memory locations Therefore, a
command script can set CMU EXEC to 0, wait, read the global array and repeat as many times as
desired.

It 1s important to note that the experiments allow the number of iterations to be changed using CTA
For example, if the number of iterations 1s found to be too small to obtan useful results,
CMU RTCNUM can be increased using CTA and the experiment can be run again Changes can be
made without having to recoinpile, relink and reload FTMP Thus a great deal of expenimentation

overhead is saved.

3.1 Clock Read Time Delay

In order for any subsequent experimental results to be considered valid, the characteristics of the
clock must be determined The delay and variation 1n reading the clock must be determined, as well
as the causes of any varniations If these variations cannot be characterized or minimized, any further
expenments using the clock would be suspect For example, in the Cm* multiprocessor system, there
was as much as 4 6% difference in clock frequency, and substantial vanation of clock read delays [7]
An example of possible characteristics of clock read delay would be a constant offset that could be

subtracted from any future expernment results using the clock

On FTMP the time 1s read with the instruction 'HREAD(RT CLOCK,vanable,2),’ in the experiment
task, 16 iterations, each of 5 clock reads were made with the time before starting and the time of the
last read being stored in global memory Refernng to the framework in Figure 3-1, 'Somelnstructions’
1s replaced by 5 consecutive clock reads and RTCNUM becomes 16 A second task was created that
did exactly the same as the first task except that it did not write to global memory This second task
was placed so that it would be the second task to start execution i two trniads were in use, the

second task would execute in parallel with the first and add contention for the ctock

The expeniment was repeated about 100 times for three situations

1 Tniad 1 running alone,
2 Tnad 2 running alone,
3 Tnad 1 and 2 running simultaneously (contention for the clock),

The first two runs determined single triad clock read time with no contention, and varnation between

tnads The third case determined how the contention for the common clock resource effects the

clock read time
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3.2 Instruction Times

The times for the following AED instructions were measured:

1. 'Null’

2.A=1; (integer assign)
3 At=1; (real assign)

4 A2=1; (long assign)

5. A=B+C; (integer add)

6 A1=B1+C1,; (real add)
7. A2=B2+C2; (long add)

8 A=B*C; (integer multiply)
Each of these instructions was executed 1n a loop 100 times along with the instruction 'A=1,". The
'A =1, instruction was added because the compiler would not accept a null statement for the first
instruction. The 'Null’ statement was included so that the overhead from clock reading and loop
control can be eliminated from the other instructions, leaving only the time for instruction execution
Again, referning to Figure 3-1, 'Somelnstructions’ 1s replaced by 'A=1," and the instruction being
measured and RTCNUM becomes 100 This task was executed 308 times.

3.3 Measuring R4 Frame Size

There were three parts to this expeniment In the first part, time from the real-time clock was read at
the beginning of the first R4 task Referring to Figure 3-1, this time was stored in the CMU TIME array
if appropriate (depending on the value of CMU EXEC) and the instruction 'A =1, was executed a
specified number of times as determined by CMU RTCNUM.

{f CMU EXEC was above the value eight, the task would finish without doing anything else Eight
consecutive R4 TASK1 start imes were stored in each iteration of the experiment The objective was

to determine the R4 frame duration The experiment was run about 100 times for a single triad and

two triads

The second part of the experiment was to determine how the system behaved when an R4 frame
was stretched Only one triad was used The time hmit for the task was set to a very large number (so
that a task would not abort before it was finished) Finally, RTC NUM had to be set to several values
that would stretch the frame. These values were 2000, 3000 and 5000 Data was recorded about 100

times for each iteration value
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The last part of the experiment was to determine the effect on the system of a rate group with an
infinite number of tasks This could be easily done because each task had control information
assoclated with it. One of the words of information was a pointer to the next task. An infinite string of
tasks could be generated by having a task point to itself as the next task One R4 task was caused to
execute over and over in this way Another task was checked to see if it ran once the R4 task started

repeating.
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4. Results .

4.1 Read Time Clock Delay

The clock read overhead was virtually constant for a single tnad conhguration The data never

varied more than a clock tick For the two different triads the results were

Triad 1: 55.9 + 047 ticks/ 16 1terations (95% Lonf1dence2)

14.0 _+ .012 mSec / 16 1terations
.874 _+ ,00073 mSec / 1teration

Triad 2: 56.0 + 036 ticks/ 16 1terations

14.0 + 0091 mSec / 16 1terations

.875 _+ 00057 mSec / 1teration

Each iteration has 5 clock reads plus loop overhead Loop overhead per iteration 1s 15 7uSeconds

(see Experiment 2) This is subtracted from the iteration time, then the result 1s divided by §

Trniad 1 Triad 2
(nSec) (uSec)
874 + 73 875 + 57 } Imtial Data
-15 7 + 11 -156 7 + 11 | Overhead
858.3 + 84 859 3 + 68
/5 /5 Number of Reads
172 + .17 172 + 14 | Clock Read Time

A read with no contention on the bus requires 172uSeconds Although there is an indication of some
variation between triads, it 1s not significant and within the margin of error for a 35% confidence

interval

In the second measurement, two triads were started, each executing roughly the same code so that

contention for the bus is created The result for two tnads was

56 3 + 091 | Ticks / 16 Iterations
173 + 31 pSec / Clock Read

It 1s evident that the contention for the clock at this rate does not affect the delay in reading the clock

greatly (less than 1%) However, the contention is large enough that the range of the 95% confidence

2AII intervals are 95% confidence intervals assuming normal distribution for the vanables Refer to Ferran [4] for a
description of confidence intervals and how they are calculated
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ntervals for the single tnad read time and double tniad read time do not overlap These results do not

take into account other contention for the bus like memory access or I/0 device access.

The reason that this vanation 1s so small i1s that the section of code in the read procedure that
Since both

contending procedures are exactly the same when in the steration section, they will tend to be

actually uses the bus 1s a small percentage of the whole clock read procedure

synchronized so that only one will actually request control of the bus at a tune The shght vaniation
from the single triad case could be due to slight variations in the execution rates of the different
processors so that occasionally the two tnads do conflict However, this would seem to be very

minor.

On the whole, the real-time clock on FTMP should serve as a reliable measurement device with
predictable delays that can be factored out of experiments This 1s espectally true in the single tnad
case However, this assumes that the expenmenter has complete control of all of the tasks If an
experimenter on the system with multiple triads lets one tnad run uncontrolled, the clock results may
not be reliable The range of system activities under which the clock times are repeatable should be

explored further.

4.2 Instruction Measurement

Clock Ticks 1Sec per pSec per uSec per
Instruction per 100 Instruction, Instruction, Instruction,

instr.(ave) | w/ Overhead | w/o0 Overhead Predicted
Null 123 307 + 013
Integer Assignment 18.3 457 + 013 150 + 026 83
Real Assignment 184 461 + 014 154 + 027 83
Long Assignment 196 491 + 014 184 + 027 123
Integer Addment 230 577 + 004 270 + 017 223
Real Add 232 580+ 011 273+ 024 223
Long Add 27 4 686 + 014 379 + 027 300
Integer Multiply 251 629 + 010 322+ 023 27 4

Table 4-1: Instruction Results

The result of the measurements are shown in Table 4-1 The three times given for each instruction
are as follows The first column s the time to execute each instruction including the overhead of
reading the clock, maintaining the loop, and the time to execute 'A = 1, The second column adjusts
the time from the first column by subtracting out these overheads The third column represents time

per instruction predicted by the assembler The range 1s for a 95% confidence interval



20

The results showed little variance The number of 'clock ticks’ per frame vanied only by one for each
AED instruction. The instructions took longer than suggested by the times given by the assembler
and Draper Labs documents. The predicted times according to the document are actually the times
under hest conditions This makes the predicted times of marginal value n real-time applications. In
order to get a complete view of the instruction execution times, all of the important AED instructions

must be measured on the actual machine.

The overhead needed to measure the instruction (the iteration time and the two clock read tunes)
If the

overhead 1s assumed to consist of only the loop instructions, then the amount of overhead per

can be found by subtracting the Null instruction from the time for the instruction '‘A=1’

instruction iteration 1s 15.0 + 039 pSeconds This overhead i1s useful for calculations mn other

experiments,

Another aspect of the looping overhead is the error due to the clock resolution On average this
turns out to be half a clock tick This value would be subtracted from any absolute time average to

give the actual average time that was measured

Using 'A=B+ C’ as an average high level instruction, a rough order of magnitude of the number of

instructions that can be executed in an R4 frame and the rough high level throughput of a triad can be

calculated.
40mS/RAFrame __ ;o 01nstructions/RaFrame
27 0uS/ Instruction
1
=37KOPS(AED)Throughput
27 0uS/ Instruction ahe

The nstruction 'A =B+ C,’ actually used four assembly instructions Therefore, a rough assembly
level throughput would be 150KOPS.

4.3 Measuring R4 Frame Size

Tnads Average Standard Range
Time Deviation
{(mSeconds) | (mSeconds) | (mSeconds)
Single 400 741 3775-4225
Double 400 623 3775-4225

R4 frames varied considerably in size {the amount of time between consecutive frames) from one

Table 4-2: Frame Measurement Results
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frame to another. There may be cycllc_ vanation, however it I1s hard to determine from the method
used to obtain the data. The nominal R4 frame measures in the single and double triad cases are
shown in Table 4-2 The distnibutions of frame sizes are shown in Figures 4-1 and 4-2. The
distnbution looks approximately normal except that the frame sizes near the average occur less

frequently than would be expected. The reason for this i1s unclear.
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42.255’
42 00}
41.753
41.503
41.25
41.00
40.75
40.50
40.25
40.00
39.75
39.50
39.25
39.00
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38.25F 3%

£

i

Time(mS)

i

38.00
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37.50 : 4 . . -
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Q

Figure 4-1: Single Trniad R4 Frame Distribution

In the second part of the experniment, the R4 frame was stretched The results of the stretching are
shown in Table 4-3 In all of these runs, the time measured for a frame was usually close to the
average (within a few clock ticks) with some taking several ticks longer and none taking more than 2
clock ticks less than the average (see Figures 4-3,4-4 and 4-5) The reason for this distribution s
agamn unknown, but it i1s probably due to the operating system and dispatcher vanations rather than
the task that runs within the frame (see experiment 2) The actual vartations compare to roughly nine
instructions per tick This could be the difference due to one conditional (f — then — else)

statement.

When the average times were plotted against the iteration rate, a linear relation emerged (see Figure
4-6). From the documentation, a step function increase was assumed with a step of 24 mSeconds

This 1s also shown on the graph When the actual code was read, the linear increase was to be
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Figure 4-2. Double Triad R4 Frame Distribution

Frame Average Standard Range
Size Time Deviation
(Iterations) | (mSeconds) | (mSeconds) | (mSeconds)
2000 808 480 805-830
3000 108 480 | 1078-1105
5000 163 481 | 1623-1650

Table 4-3: Frame Stretching Results

expected The reason for the supposed step function was a timer interrupt that was to happen every
24 mSeconds In fact, after the first imer interrupt, 24 mSeconds into the R4 frame, the timer was not

used until the R4 tasks fimished Therefore, the size of the frame would increase linearly above 40mS

The final part of the experiment was to determine the behavior of the system when an infinite set of
R4 tasks was started In the experiment, an R4 task pointed to itself as the next task If there were no
mechanism for aborting a frame, the R4 frame would continue forever This could be shown, by
attempting to use another task while the R4 task continues to loop For this experiment the task that
was used to test whether the system was running was an R3 task that failed and restored processors.

Normally, it took only a few seconds from entering a request to reconfiguring the system However,
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Figure 4-5: Stretched Frame — 5000 {terations

when the R4 task began to repeat infinitely, the R3 task could not execute at all When the infinite
loop was stopped (by nullifying the R4 pointer), the R3 task ran immediately.

This last test points out a flaw in the scheduling software Although tasks are regulated by giving
them time limits, frames are not iimited in this manner A frame of any rate 1s simply stretched unti all
of the tasks within the frame can fimsh. This mechanism is not reliable in at least two situations The
first was described above, in which all other tasks were locked out by one task that pointed to itself
Another possibly hazardous situation would be a task with its tme limit set too high  If, iIn most cases,
the task takes much less time than the himit, this error may not be noticed However, If some untested
section of the code starts a long, wvirtually infinite loop, the system will hang (at least at that rate group)
until that task has stopped In a real-time application this I1s equivalent to failing
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5. Summary and Future Work

This paper described three experniments that were designed within the framework of a validation
methodology The methodology was denved eathier and 15 undergoing changes as experience
increases The experiments were concerned with baseline measurements of the running system The

major results of these experiments were:

1 The real-time clock 1s a rehable measureinent device and can be used in timing
experiments.

2 The instruction execution times are constant and reproducible The measured times are
slower than the documented best times.

3 The frames are nominally 40 miliseconds tong There i1s a variation of many clock ticks in
all measurements.

4 The stretching mechanism allows a hinear increase in the size of the frame depending on
the number of instructions to be executed, not a stepwise Increase as expected from
reading the documentation

5 Frame stretching continues until all tasks finish or abort This 1s unreliable in some cases

More work needs to be done to fully characterize the FTMP system This i1s especially true of
instruction and procedure call measurements Major omissions of the present results were the
call/return times for cifferent types of procedures and the system reaction to arithmetic faults Other

AED instructions should also be measured to get a more complete evaluation of the system

Enhancement of the experiment environment is planned The goal of the enhancement i1s to have
the capability of running several different experniments on FTMP by only changing certain values in
memory With this environment 1t 1s hoped that information can be collected on the time to run
various sizes and types of tasks in many combinations Information on scheduling and other

operating system overhead might also be obtained with this environment
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