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Executive Summary 

This IS a report on research by Carnegle-Meilon University for NASA-Langley Research Center 

under contract NAG-1-190 on the validation of fault-tolerant aVIOniCS multiprocessors This report 

covers the Initial phase of experimentation. 

In this period a series of basIc performance measurements were conducted on the Fault Tolerant 

Multi-Processor (FTMP) as part of a process to evaluate validation methodologies. The results of 

these experiments and proposals for future work are presented In this report. 

A paper, based on this work, entitled "Validation of Fault-Free BehaVior of a Reliable Multiprocessor 

System - FTMP: A Case Study" was presented at the American Control Conference In June 1984. 
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Abstract 

This report descnbes a set of expenments which were Implemented on the Fault Tolerant Multi

Processor (FTMP) at NASA/Langley's AIRLAB facIlity These expenments are part of an effort to 

formulate and evaluate validation methodologies for fault tolerant computers. ThiS report deals with 

the measurement of single parameters (baselines) of a fault free system. 

The Initial set of baseline expenments lead to the follOWing conclUSions: 

1 The system clock IS constant and Independent of workload In the tested cases, 
2 The instruction execution times are constant; 
3 The R4 frame size IS 40mS with some vanatlon; 
4. The frame stretching mechanism has some flaws In Its Implementation that allow the 

pOSSibility of an infinite stretching of frame duration 

Future experiments are planned. Some Will broaden the results of these Initial expenments Others 

will measure the system more dynamically The Implementation of a synthetic workload generation 

mechanism for FTMP IS planned to enhance the expenmental environment of the system.1 

1Thls research was sponsored by the National Aeronautics and Space Administration. Langley Research Center under 
contract NAG-1 190 The views and conclusions contained In thiS document are those of the authors and should not be 
Interpreted as representing the offiCial poliCies, either expressed or Implied, of NASA, the United States Government or 
Carnegie-Mellon Umverslty 
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1. Introduction 

An aircraft of the 1990's will have computer systems that must function correctly for the aIrcraft to 

fly Many studies have been performed on f.lult tolerant aVioniCS computers One such study by 

NASA, m Its Aircraft Energy Efficiency (ACE E) program, reqlllres that an aircraft computer failure 

probability shoull! be less than 10-10 per hour Systems have been bUilt with thiS goal In mmd (SIFT 

and FTMP[5, 6, 11]) Techniques must be developed for measuring the performance and reliability of 

these systems. 

Since a probability of failure of 10 10 per hour translates to les<) than one failure per million years of 

operation, It IS not feaSible to walt for enough accumulated operational hours to demonstrate 

compliance with the goal prior to the release of the aircraft computer A comprehenSive validation 

methodology can greatly reduce the amount of time reqUired to determine If a system meets lis deSign 

goals. An overall validation methodology has many components Includmg theorem proving, 

mathematical modeling, and phYSical experimentation. NASA has held several workshops to develop 

a system validation procedure One workshop In particular [8] produced a detailed list of validation 

tasks to verify a system In an orderly manner 

Theorem proving and mathematical modeling are often bdsed on a SimplificatIOn and abstraction of 

the phYSical system These Simplifications are required to reduce the comph:~xlty of the mathematiCs 

to a tractable level Experimentation IS a key element In a validatIOn methodology since It serves to 

validate the model and abstractions assumed In the mathematical treatments as well as to discover 

unanticipated phenomena. 

The foundations for an experimental validation methodology have been developed and are being 

tested at the AVionICS Integrated Research Laboratory (AIRLAB) at the NASA Langley Research 

Center AIRLAB IS a faCility for developing technologies and methodologies to evaluate and Integrate 

aVIOniCS and control functions of future aIrcraft and to establish a store of performance evaluation 

and reliability evaluation statistiCS 

In parallel, Carnegie-Mellon University had developed several multiprocessor systems including 

C mmp, a system With 16 processors communicating With 16 memones through a crossbar SWitch 

[12], and Cm·, a 50 processor system WIth a hierarchIcal processor-memory SWitch [101 Over the 

past decade resedrchers at CMU were evolVing experimental methodolo91es for evaluatmg these 

multiprocessor systems AIRLAB prOVided an opportunity to dPply and e..<tcnd the e..<penmental 

methodologies to real time fault tolerant multiprocessor systems The generality of the expenmental 
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methodology could be demonstrated by Its applicatIOn to four diverse multiprocessor systems while 

producing actual measurements which compared and contrasted these architectures. 

The remamder of this document IS organized as follows. Section 2 gives background on the 

validation methodology used as the baSIs of the baseline experiments It also Introduces the Fault 

Tolerant Multiprocessor (FTMP), on which the baseline experiments were performed, and gives a 

short description of the types of baseline experiments that were run on FTMP Section 3 describes 

the baSIC experimental structure and the variants used to measure different baseline parameters In 

Section 4, the results of the experiments are presented and conclUSions drawn A summary of the 

experiment results and a diSCUSSion of future work are presented In Section 5. 
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2. Background 

This section contains information necessary to understand the motivation for the experiments 

discussed In the next section. Included are a description of the validation methodology used as a 

basIs for the experiments and a description of the Fault Tolerant Multl·Processor (FTMP). 

2.1 Proposed Methodology 

NASA held several workshops to determine system validatIOn procedures One In particular [8], 

produced a detailed list of validation tasks to verify a system In an orderly manner. The methodology 

was based on a bUilding block approach m that confidence would be bUilt up In an Incremental 

manner through the understandmg and measurement of pnmltlve actIVIties Once these pnmltlve 

activities were charactenzed, more complex expenments would be devised to explore the interaction 

of primitive activities as well as more complex activities constructed from these primitive activities 

ThiS orderly progression Insures umform coverage as well as maximizes the ability to locate the cause 

of an unexpected phenomenon A modified version of thiS list IS shown In Figure 2-1. 

Fault Free Evaluation 

a Imtlal Checkout and OIll.gnostlCs 
b. Programmer's Manual Verification 
c. Executive Routme Verification 
d Multiprocessor Interconnect Verification 
e Multiprocessor Executive Routme Venflcatlon 
f Application Program Verification and Performance Baseline 

2 Fault Handlmg Evaluation 

a Simulation of Inaccessible PhYSical Failures 
b. Smgle Processor Fault Insertion 
c Multiprocessor Fault Insertion 
d. Smgle Processor Executive Failure Response Charactenzatlon 
e MultIprocessor System Executive Fault Handling Capabilities 
f. Application Program VerificatIOn on Multiprocessor 

g Multiple Application Program Verification on Multiprocessor 

Figu re 2-1' System Evaluation list 

The first set of SIX tasks verifies the fault free functionality of the system while the next set of seven 

verifies fault handling capabilities The reader IS referred to [8] for a more detailed explanation of the 

above listed tasks The expenments descnbed In thiS paper deal only With the set of fault free 

performance evaluation tasks The experiments run on FTMP were actually Involved m performance 

baselines (part of task 1 f) although verification at other levels was accomplished as well (for example, 

Executive Routme VenflcatlOn, task 1c) while running baseline expenments 
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2.2 Experiment Environm~nt 

Multiprocessor systems are enormously complex In order to make them easier to comprehend, It IS 

necessary to divide the system Into several levels One can then proceed from the most primitive level 

upwards to the highest conceptual level by introducing a senes of abstractions Each abstraction 

contains only informatIOn Important to ItS particular level, and suppresses unnecessary tnformatlon 

about lower levels The levels In a digital system frequently cOincide with the system's phYSical 

boundanes since the concept of levels was utilized by the system's designers to manage complexity 

Once details at one level are comprehended, only the functionality prOVided for the next higher level 

need be conSidered Figure 2·1 depicts one pOSSible set of levels of abstractions 

Multiprocessor 

Program 

Hardware 

Sublevel 

Application Software 

Executive Software 

InstructIOn Set 

Logic 

Typical Components 

Processor, memory. 
SWitches 

Display, navigation, 
flight control 

Me~sage system, task 
scheduler, memory 
allocator 

Memory state, 
processor state. 
effective address 
calculation. 
instruction execution 

Gates, flip-flops, 
registers, sequential 
machines 

Figu re 2·2: Levels of Abstraction In Multiprocessor Systems 

Our experience at CMU indicates multiprocessors go through a senes of evolutionary stages A 

stage IS defined by the amount of functionality available to the user ThiS functionality, In turn, 

determmes the compleXity and sophistication of experiments that can be conducted ThiS 

functionality can usually be defmed In terms of the actiVities In the life of an experiment First, the 

code has to be designed and wntten Next, the code must be compiled, followed by loading, 

debugging, measurement, and analYSIS Consequently. a view of the stages of a system's life IS the 

number of these actlVltiEls that are directly supported by the system for the user The follOWing are 

three representative stages In the evolution of a tYPical multiprocessor system. 
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2.2.1 Stage 1 • Standalone 

The system IS completed through the instruction set level of abstraction That IS, the Instruction set 

has been defined and the hardw<.ue has been Implemented There IS Virtually no software to support 

user apphcatlons The only software utility would be a loader whereby programs compiled on another 

machine can be loaded Into the system under test. Experiments are hmlted to simple, regular, 

compute bound algorithms Only a hmlted number of parameters may be vaned, and this vanatlon 

reqUires rewrltmg of the SOllrce code of the experiment There are several attributes to Stage 1 

expenments The programmer must be a hardware expert since there IS httle software to prOVide a 

higher level Virtual (abstract) machine. Hence the program IS tied closely to the hardware The user 

must speCify where code IS placed, define the memory map, and write code to Inltlahze the memory, 

create processes, manage resources, and collect data. 

TYPical basehne experiments In Stage 1 Inclllde: 

• Hardware Saturation Programs consist of two or three instruction loops with vanatlon 
In placement of code and data The capacity of various system hardware resources IS 
determmed as well as the Impact of contention for those resources 

• Speedup due to AlgOrithm/Data Variation. Experiments seek the Impact of 
synchrOnization for data, as well as variation due to data dependenCies and size of data 

• Errors Diagnostic programs can be contmuously run and monitored on the system 
Distribution of diagnostic detected errors can be studied. 

2.2.2 Stage 2 • Operating System (OS> 

The user IS presented the abstraction prOVided by the executive software ThiS software prOVides 

basIc functions such as resource management and scheduling. In programming experiments, the 

user employs operating system primitives Hence, the user needs a substantial operatmg system 

expertise Also, characteristic for thiS phase IS the discrete Incremental nature of the experimentation 

process; each experiment represents one pOint In the deSign space 

The attributes of Stage 2 apphcatlons can be stated as follows. 

• very regular, data bound with limited variatIOn of parameters 
• the general program organization has a Master process controlling a collection of Slave 

processes domg the actual computation 
• code IS replicated 
• heavy use of OS mechanisms 

TYPical basehne expenments In Stage 2 Include' 

• Measurements of the cost·per-feature of the operatmg system's functions 
Experiments statically exercise each OS function on a one by one baSIS Examples 
mclude memory management, communication pnmltlves, synchrOnizatIOn, scheduling 
and exception handling 
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• Measurements of different implementation of parallel ~Igorlthms. The Impact of 
uSing vanous strategies In pardllel program organization, data structure and resource 
allocatIOn IS studied 

2.2.3 Stage 3 • Integrated Instrumentation Environment 

At this stage hardware and software have been provided for generating expenmental stimulus, 

dynamically observing hardware and software actIVIties, and analYZing results [9] With this 

enhanced support, the user can experiment at the application level of abstraction With full vanatlon of 

parameters A major characteristic of this stage IS the proVISion of stimulus generdtlOn, mOnltonng, 

data collection and analYSIS grouped under a unique user Interface Also the OS, the support 

software and the user application are uniformly Instrumented enabling Improved behavior VISibility. 

Only With thiS capability, the interactIOn between OS, support software and user application became 

measurable With acceptable effort Hence, the programmer could be a relative system novice 

Furthermore, the effort to conduct advanced expenments becomes manageable Experiments at thiS 

stage have the following attributes: 

• Measurements of dynamiC behavior of OS and applications. 
• Measurements are continUOus Program could be mOnitored on-line and sometimes In 

real-time. 
• Studies of different virtual machines. 
• Studies of different loqlcal intercommUnication structures. 
• Scaling application performance With respect to different Virtual machines 

Examples of advanced experiments that can be conducted In Stage 3 mclude: 

• Companson of various OS poliCies as reflected by classes of applications 
• Tuning a virtual machine for a specifiC application. 
• Deslgnmg application Oriented architectures 
• Study of multiprocessor intercommUnication strategies. 
• Study of the architectural effectiveness and effiCiency 
• The handling of faults represents additional load for the aVIOniCS system The fault 

capabilities represent another aspect of system functionality Whereas a system Without 
faults may be able to meet all of ItS deadlines, the addition of fault handling workload may 
cause schedule slippage and/or Violations of realtime constraints 

A key part of the Stage 3 methodology IS the specification and generation of a controlled parallel 

workload [9] Such a worL;.load for aVIOniCS applications IS given In [2] The workload IS represented 

as a speCial purpose parallel data-flow graph A run-time expenmentatlon enVIronment provides 

capability of controlling, varYing and measuring the workload Without havmg to recompile or re-debug 

the parallel program. 
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2.3 Present and Future Experiment Environment 

A slgmflcant amount of work was required by AIR LAB personnel to bring the system environment up 

to Stage 2 At present, each experiment generally requires some code compilatIOn, followed by 

linkage and dm'''nloadlng of the whole FTMP binary file Experiments can be deSigned With 

modifiable varldbles so that some vanatlon can be made by changing values In memory Without 

haVing to go through the entire code development cycle An example of a modifiable van able IS the 

number of Iterations In a loop The experiments descnbed In this paper used the modifiable vanable 

approach. 

A more speCialized workload generation mechamsm IS being developed for use on real-time 

multiprocessor systems (FTMP In particular [1]) With this mechanism In place, expenments can be 

run In an environment somewhere between Stage 2 and Stage 3 This model conSiders tasks of a 

speCific organization and deals With a simple set of parameters The system IS assumed to be made 

up of a bus With several processors (each With local memory), one global memory, and I/O. 

Operating system tasks are conSidered part of the system under measurement TraffiC on the bus IS 

restricted to I/O and Inter-Process Commumcatlon (IPC), each of which access memory 

In this real-time model, tasks are made up of five sectIOns These sections Include read In I/O data, 

read In IPC data, perform some representative operation, wnte out I/O data and write out IPC data. 

The amount of work performed In each section can be varied by parameters 

The workload structure was deSigned for simplicity so that vanatlons In the workload parameters 

and the resulting measurements could be easily understood The system parameters consist of total 

I/O, total IPC, and total instructIOn executions per second Each system parameter IS divided 

between functions as a percentage of the total work each function performs Each function IS In turn 

made up of tasks which divide the work of the fllnctlon as evenly as pOSSible Measurement of the 

throughput, system utilizatIOn and interaction of the system IS done by uSing the system clock to 

measure when a task beginS and ends 

Prior to presenting a detailed ddlnltlon of a :,et of baseline experiments, we Will first deSCribe the 

experimental vehicle 50 that the reader can observe how indiVidual baseline experiments have to be 

modified to take Into account the speCifiC Implem(')ntatlon of an architecture 
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2.4 The Fault Tolerant Multi-Processor (FTMP) 

The Fault Tolerant Multi-Processor (FTMP) has been discussed In several papers and manuals (5, 

6] This section will only describe those details necessary for understanding the experimental re~u'ts. 

For more details the Interested reader IS referred to the literature. 

I 110 POR r 
1 

PROCES~OR PRO!.F!>SOR PROCFS:'OR 
1 Z 3 r 

L 
TlU PORT 

8K OK 8K 8K UK 8K 
PROM RAM PHOM RAM PROM RAM r PROM 

I 
I/O PORT 

r 110 POIlT 
L 

r 1/0 POIlT 
L 

GLOBAl MEMORY I [10 PORT 
3ZK I 

L 
[10 PORT 

SYSTEM BUS r I/O PI)R T 

1 L 

I I 
L 

I/O PORT 
REAL TIME ERROR 

CLOCK LATCHES 
r 110 PI)R T 

L 

Figu re 2·3: FTMP System 

Figure 2-3 depicts FTMP at the software level (as seen by the application programmers) There are up 

to three triads, each With local memory A triad conSists of three processors that the programmer 

sees as a Single processor A bus connects the triads to global or main memory, 1/0 deVices, a 

real-time clock and several latches needed for fault handhng The trrads only execute Independently 

when accessing local memory. 

Work IS performed by tasks A task IS a process that can be started Independent of other tasks 

Each tnad will run tasks according to a schedule Due to the real-time nature of the application, triads 

do not necessarily execute the same tasks In the same order Each task IS assigned a time limit II a 

task cannot be completed wlthm the time limit, the task IS stopped and the next task started 

1 I 
z I 

3 I 
4 I 
5 I 

6 I 

7 I 

8 I 

9 I 

10 1 
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Tasks are run wlthm frames Frames also act as a synchrortlzatlon mechanism between triads. One 

of the triads becomes the leader and starts a frame for that tnad and signals all of the other tnads to 

start the frame In the time allotted by the frame. the group of working tnads must execute ~\II of the 

tasks they are assigned The tasks are In a global linked list with each pOinting to the next task 

(except the last which has a null pOinter) The individual tndds access the global list to select a task 

If there IS more than one triad. some tasks Will be executed In parallel When there are no more tasks 

available for a triad to execute, the triad becomes Idle until tllo end of the frame. At tillt time, a triad 

becomes leader and starts a new frame. 

In FTMP there are actually three frame sizes. each haVing a different frequency of execution as seen 

In Figure 2·4 Each triad has separate pOinters to tasks for each rate group. 

40 Hz III H 11111111111 
, t 

I~l nor Frames R4 Frame 

20 Hz ~ I 
t , 

R3 Frame Frame Marks 

5 Hz ~ i I , t 

Rt Frame Major Frames 

Figure 2·4: Frame Structure 

The frame sizes are: 

• R4, the baSIC frame size 
• R3. eqUivalent to 2 R4 frames 
• Rl, eqUivalent to 4 R3 frames, the 'maJor' frame 

Task execution becomes more complicated with multiple frame sizes One triad stili Signals the start 

of the R4 frame, however, every second R4 frame It also starts an R3 frame and every eight R4 frames 

It starts an Rl frame The order In which a triad executes tasks for the different frame groups IS fairly 

Simple First, It executes all of the R4 tasks. then (stili In the same R4 frame) It executes R3 tasks If 

the R3 tasks do not fmlsh before the next R4 frame, execution of the R3 task IS suspended and 

another R4 frame IS started Agam, when all of the R4 tasks are done, the R3 tasks are contmued If 

the R3 tasks are finished, the R1 tasks are started If these tasks are not finished before the beginning 

of the next R4 frame, they are sllspended and started after the R4 tasks are done In the next frame If 

another R3 frame starts before the R1 tasks fmlsh, the current Rl task IS suspended In the triad until 

time IS available In a frame 
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R4 Frame lnltldU<Jn tlmC! marks 

I I I I I 1 -I 1 I 1 1 1 1 1 H 1 
~ Ill' due to R4 10ngUI than 60% or R4 fr .. me 

R3 Frame initlatlon tlme marks 

I I H 
Sllp of one R4 frame due to R3 lncomplutlon 

Rl Frame lnitiation tlme marks 

~llp of one R3 frame due to Rl lncompletlon 

Figu re 2·5: Frame Stretch Mechanisms 

There IS another interesting Item concerning frames According to the documentation, If a task 

needs more time In a frame, the frame can be stretched as Illustrated In Figure 2-5 An R4 frame IS 

stretched by a specific amount and R3 and R1 frames are stretched by giVing them more R4 frames. 

The third baseline experiment uncovered some interesting properties of this stretching mechanism 

Time IS kept uSing a global clock The clock has a resolution of 25mS (that IS, each clock tick IS 

25mS) The clock and I/O deVices are accessed by uSing a function called HREAD A 

complimentary function IS HWRITE HREAD allows a program to transfer bytes between a deVice and 

the local memory of a triad. Transfers between local and global memory occur by invoking the 

functions RD and WRT KnOWing the amount of time that these transfers take and how the time can 

vary are crucial to understanding the accuracy of measurements. 

Several computer systems are used to run the experiments. Programs for FTMP are written In a 

language called AED and assembly language The compiler, assembler and linker for these 

languages reside on an IBM 4341 Load files are transferred to a VAX·111750 Special Interface 

programs on the VAX are used to load, read and write global memory locations In FTMP Also, a 

batch facIlity on the VAX allows experiments to be run unattended. An HP terminal displays the status 

and other features of FTMP while It IS running Recently, It became possible to remotely access FTMP 

through the VAX so that expenmenters do not have to be present at AIRLAB to conduct experiments. 

2.5 Proposed Experiments 

A candidate set of baseline experiments was organized according to the levels of abstraction 

depicted In Figure 2·2: 

• mstructlOn Set Level 
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o Assembly and HIgh-level language instructIon tunes. 

• ExecutIve Software Level 

o ExecutIve primItive and overhead tImes 
o Interrupt procedure tImes 
o Memory access tIme 
o Bus access and contentIon delays 
o Fault tolerance overheads 

• System and ApplicatIOn Level 

o Frame utIlizatIon characteristIcs (Ulcludmg OS overhead and bus contentIon delay 
and fault tolerance overhead) 

The speCIfIC baseline expenments that are reported upon In thIS paper are 

• Clock Read Delay In order for subsequent expenments to be valid, the delay and 
vanatlOn In reading the clock must be determined. 

• Processor Performance for SImple OperatIons ThIS IS a measure of the amount of tIme 
requIred by the processor to perform SImple AED instructIons, for example 'A = l' or 
'A=B+C' 

• R4 Frame IteratIon Rate The measurement of the R4 frame under nominal condItIons as 
well as when stressed by long tasks. 



14 

3. The Experiments 

The goal of the experiments described In this report IS to obtain simple performance measures of 

processor and operating system functions. The method used to do this conSists of three steps' 

• Record start time 
• Perform operatlon(s) 
• Record end time 

Variations In Implementing this approach are due to the constramts of the FTMP system The 

experiments use a framework as In Figure 3·1, which IS described In the following paragraphs A 

framework related to this one has been used to Implement a synthetic workload environment on 

FTMP [3] 

Begln 
EXEC = Read(CMU.EXEC); 
If CMU.EXEC <= SomeCount Then 

End 

begln 
RTCNUM = Read(CMU RTCNUM); 
Hold = Read(RT.CLOCK); 
For X=t to RTCNUM do 

begln 
Somelnstructlons; 

end, 
Holdl = Read(RT CLOCK); 
Wrlte(Hold,CMU TIME(I»; 
Wrlte(Holdl,CMU TIME(2»; 
EXEC = EXEC + 1; 
Wrlte(FXEC,CMU EXEC); 

end; 

Figu re 3·1: BaSIC Experiment Task Algorithm 

When a task starts, a global variable called CMU EXEC IS read from global memory If It IS above a 

certam value (which depends on the experiment) the task IS terminated If It IS not, a second variable, 

CMU RTCNUM, IS read from global memory CMU RTCNUM IS the number of Iterations that a loop 

must execute In most cases, the global time IS read, an instruction IS repeated a number of times 

(defined by CMU RTCNUM) and time 1'3 read again These numbers are then stored In the global array 

CMU TIME Finally, CMU EXEC IS Incremented 

The time limit for each experiment task must be large enough that the task can finish Also, some of 

the experimental tasks must finish before the 60% mark of the R4 frame has been reached According 

to the dOCUmentation, after that time an Interrupt will occur The Interrupt would invalidate any clock 

Interval times 
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USing the VAX/FTMP Interface program c-llied CTA and a b<ltch command SCript, the value,> In the 

global array can be read and stored In a file CT A can also set memory locations Therefore, a 

command SCript can set CMU EXEC to 0, Walt, read the global array and repeat as many times as 

deSired. 

It IS Important to note that the experiments allow the number of Iterations to be changed uSing CT A 

For example, If the number of Iterations IS found to be too small to obtain useful results, 

CMU RTCNUM can be II1creased uSll1g CT A and the experiment can be run again Changes can be 

made without havll1g to recompile, rehnk and reload FTMP Thus a great deal of experimentation 

overhead IS saved. 

3.1 Clock Read Time Delay 

In order for any subsequent experimental results to be conSidered valid, the characteristics of the 

clock must be determined The delay and variation 111 reading the clock must be determined, as well 

as the causes of any variations If these vanatlOns cannot be charactenzed or minimized, any further 

experiments uSll1g the clock would be suspect For example, 111 the Cm· multiprocessor system, there 

was as much as 4 6% difference In clock frequency, and sub::.tantlal vanatlon of clock read delays [7] 

An example of possible characteristics of clock read delay would be a cunstant offset that could be 

subtracted from any future experiment results USing the clock 

On FTMP the time IS read with the instructIOn 'HREAD(RT CLOCK,vanable,2),' In the experiment 

task, 16 Iterations, each of 5 clock reads were made with the time before starting and the time of the 

last read being stored In global memory Referring to the framework 111 Figure 3·1, 'Some InstructIOns' 

IS replaced by 5 consecutive clock reads and RTCNUM becomes 16 A second task was created that 

did exactly the same as the first task except that It did not write to global memory ThiS second task 

was placed so that It would be the second task to start executIOn If two triads were m use, the 

second task would execute In parallel with the first and add contention for the clock 

The experiment VIas repeated about 100 tnnes for three situations 

1 Triad 1 runnmg alone, 

2 Triad 2 runnll1g alone, 

3 Triad 1 and 2 running Simultaneously (contention for the clock), 

The first two runs determll1ed single triad clock read time with no contentIOn, and variation between 

triads The third case determmed how the contention for the common clock resource effects the 

clock read tllne 
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3.2 Instruction Times 

The times for the following AED Instructions were measured: 

1. 'Null' 

2. A= 1; (Integer assign) 

3 A1 = 1; (real assign) 

4 A2= 1; (long assign) 

5. A=B+C; (Integer add) 

6 Al = B1 + Cl; (real add) 

7. A2 = B2 + C2; (long add) 

8 A=B*C; (Integer multiply) 

Each of these Instructions was executed In a loop 100 times along with the instruction 'A = 1,'. The 

'A = 1,' instruction was added because the compiler would not accept a null statement for the first 

Instruction. The 'Null' statement was Included so that the overhead from clock reading and loop 

control can be eliminated from the other instructions, leaVing only the time for instruction execution 

Again, refernng to Figure 3·1, 'Somelnstructlons' IS replaced by 'A = 1,' and the instruction being 

measured and RTCNUM becomes 100 ThiS task was executed 308 times. 

3.3 Measuring R4 Frame Size 

There were three parts to thiS expenment In the first part, time from the real·tlme clock was read at 

the beginning of the first R4 task Refernng to Figure 3·1, thiS time was stored In the CMU TIME array 

If appropnate (depending on the value of CMU EXEC) and the instruction 'A = 1,' was executed a 

specified number of times as determined by CMU RTCNUM. 

If CMU EXEC was above the value eight, the task would finish Without dOing anything else Eight 

consecutive R4 TASKl start times were stored In each Iteration of the expenment The objective was 

to determine the R4 fro.me duration The experiment was run about 100 times for a Single triad and 

two triads 

The second part of the experiment was to determine how the system behaved when an R4 frame 

was stretched Only one triad was used The time limit for the task was set to a very large number (so 

that a task would not abort before It was finished) Finally, RTC NUM had to be set to several values 

that would stretch the frame. These values were 2000, 3000 and 5000 Data was recorded about 100 

times for each Iteration value 
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The last part of the expenment was to determine the effect on the system of a rate group with an 

infinite number of tasks This could be easily done because each task had control information 

associated with It. One of the words of information was a pOinter to the next task. An Inflmte stnng of 

tasks could be generated by haVing a task pOint to Itself as the next task One R4 task was caused to 

execute over and over In thiS way Another task was checked to see If It rdn once the R4 task started 

repeatmg. 
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4. Results 

4.1 Read Time Clock Delay 

The clock read overhead was virtually constant for a single triad configuration The data never 

vaned more than a clock tick For the two different triads the results were 

Triad 1: 55.9 + 047 tlcks/ 16 lteratlOn'i (!J5% (.onfldence 2) 
14.0 - + .012 mSec / 16 lteratlons 

.874 + - .00073 mSec / lteratlon 

Trlad 2: 56.0 + - 036 tlcks/ 16 lteratlons 
14.0 + 0091 mSec / 16 lteratlons 

.875 + 00057 mSec / lteratlon 

Each Iteration has 5 clock reads plus loop overhead Loop overhead per IteratIOn IS 15 7ILSeconds 

(see Experiment 2) ThiS IS subtracted from the Iteration time, then the result IS diVided by 5 

Triad 1 Triad 2 
(ILSec) (ILSec) 

874 ± 73 875 ± 57 Initial Data 
-15 7 ± 11 -15 7 ± 11 Overhead 

858.3 ± 84 859 3 ± 68 
/5 /5 Number of Reads 

172 ± .17 172 ± 14 Clock Read Time 

A read with no contentIOn on the bus reqUires 172ILSeconds Although there IS an indication of some 

variatIOn between triads, It IS not significant and '1'I1thin the margm of error for a 95% confldence 

Interval 

In the second measurement, two triads were started, each executing roughly the same code so that 

contention for the bus IS created The result for two triads was 

56 3 ± 091 Ticks / 16 iterations 

173 + 31 ILSec / Clock Read 

It IS eVident that the contention for the clock at thiS rate does not affect the delay III readmg the clock 

greatly (less than 1%) However, the contention IS large enough that the range of the 95% confidence 

2 
All Intervals are 95% confidence IntervClls assuming normal distribution for the vanables r~t!fer to Ferrl1n [4] for a 

descnpliOn of confidence Intervals and how they dre calculated 
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Intervals for the single triad read time and double tnad read time do not overlap These results do not 

take Into account other contention for the bus like memory access or I/O device access. 

The reason that this vanatlon IS so small IS that the section of code In the read procedure that 

actually uses tho bus IS a small percentage of the whole clock re..ld procedure Since both 

contending procedures are exactly the same when In the Iteration section, they Will tend to be 

synchronized so that only one Will actually request control of the bus at a tlrne The slight vanatlon 

from the single tnad case could be due to slight variations In the execution rates of the different 

processors so that occaSionally the two tnads do conflict However, thiS would seem to be very 

minor. 

On the whole, the real-time clock on FTMP should serve as a reliable measurement device with 

preulctable delays that can be factored out of experiments ThiS IS especially true In the slOg Ie triad 

case However, thiS assume::. that the experimenter has complete control of all of the tasks If an 

experimenter on the system with multiple triads lets one triad run uncontrolled, the clock results may 

not be reliable The range of system activities under which the clock times are repeatable should be 

explored further. 

4.2 Instruction Measu rement 

Clock Ticks p.Sec per p.Sec per p.Sec per 
Instruction per100 Instruction, Instruction, Instruction, 

Inst r .(ave) w/ Overhead w/o Overhead Predicted 

Null 123 307.±. 013 
Integer Assignment 18.3 45 7 .±. 013 150.±. 026 83 
Real Assignment 184 461.±. 014 154.±. 027 83 
Long Assignment 196 491 .±. 014 184.±. 027 123 
Integer Addment 230 577.±. 004 270.±. 017 223 
Real Add 232 580.±. 011 273.±. 024 223 
Long Add 274 686.±. 014 379.±. 027 300 
Integer Multiply 251 629.±. 010 322.±. 023 274 

Table 4-1: Instruction Results 

The result of the measurements are shown In Table 4-1 The three times given for each instructIOn 

are as follows The first column IS the time to execute each instruction Includmg the overhead of 

readmg the clock, maintaining the loop, and the time to execute' A = 1,' The second column adJusts 

the time from the first column by subtracting out these overheads The third column represents time 

per InstructIOn predicted by the assembler The range IS for a 95% confidence Interval 
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The results showed little vanance The number of 'clock ticks' per frame vaned only by one for each 

AED instruction. The instructions tool( longer than suggested by the times given by the assembler 

and Draper Labs documents. The predicted times according to the document are actually the times 

under best conditions ThiS makes the predicted times of marginal value In real·tlme applications. In 

order to get a complete view of the instruction execution times, aU of the Important AED instructions 

must be measured on the actual machine. 

The overhead neened to measure the instruction (the Iteration time and the two clock read tnnes) 

can be found by subtracting the Null Instruction from the time for the instruction 'A = l' If the 

overhead IS assumed to consist of only the loop instructions, then the amount of overhead per 

instruction Iteration IS 15.0 ..±. 039 ILSeconds ThiS overhead IS useful for calculations III other 

expenments. 

Another aspect of the looping overhead IS the error due to the clock resolution On average thiS 

turns out to be half a clock tick ThiS value would be subtracted from any absolute time average to 

give the actual average time that was measured 

Usmg 'A = B + C' as an average high level instructIOn, a rough order of magmtude of the number of 

instructions that can be executed In an R4 frame and the rough high level throughput of a tnad can be 

calculated. 

40mS/ R4Frame 
1500lnstructions/R4Frame 

27 0ILS/Ills/ruc/lOn 
1 

37 KOPS(AED)Th roughput 
27 0ILS/ fns/ruc/101l 

The instruction 'A = B + C,' actually used four assembly instructions Therefore, a rough assembly 

level throughput would be 150KOPS. 

4.3 Measu ring R4 Frame Size 

Triads Average Standard Range 
Time DeViation 

(mSeconds) (mSeconds) (mSeconds) 

Smgle 400 741 3775·4225 
Double 400 623 3775·4225 

Table 4·2: Frame Measurement Results 

R4 frames vaned conSiderably In size (the amount of time between consecutive frames) from one 
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frame to another. There may be cyclic vanatlon, however It IS hard to determme from the method 

used to obtalll the data. The nom mal R4 frame measures In the single and double tnad cases are 

shown In Table 4·2 The dlstnbutlons of frame sIzes are shown In FIgures 4·1 and 4·2. The 

dlstnbutlon looks approxImately normal except that the frame sIzes nedr the average occur less 

frequently than would be expected. The reason for thIS IS unclear. 

~ 42.50 
e 42.25 
Q; 42 00 
§ 41.75 
~ 41.50 

41.25 
41.00 
40.75 
40.50 
40.25 
40.00 
39.75 
39.50 
39.25 
39.00 
38.75 
38.50 
38.25 
38.00 
37.75 
37.50 

~ 

p. 
p 

F==3' 

:::::3-

::r 
:::3-
~ 

o 

+ 
+ 

+ 

+ 

+ 

30 60 90 120 150 
Amount 

Flgu re 4·1: Single Triad R4 Frame Dlstnbutlon 

In the second part of the expenment, the R4 frame was stretched The results of the stretchmg are 

shown m Table 4·3 In all of these runs, the tIme measured for a frame was usually close to the 

average (wIthin a few clock tIcks) WIth some takIng several tIcks longer and none taking more than 2 

clock tIcks less than the average (see FIgures 4·3,4·4 and 4·5) The reason for thIS dlstnbutlOn IS 

again unknown, but It IS probably due to the operatIng system and dispatcher vanatlons rather than 

the task that runs wlthm the frame (see experiment 2) The actual variations compare to roughly nme 

instructIons per tick ThiS could be the difference due to one conditIOnal (If - then - else) 

statement. 

When the average tImes were plotted agamst the Iteration rate, a linear relatIon emerged (see FIgure 

4·6). From the documentation, a step functIon tncrease was assumed WIth a step of 24 mSeconds 

ThiS IS also shown on the graph When the actual code was read, the linear tncrease was to be 
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Figure 4·2. Double Tnad R4 Frame Distribution 

Frame Average Standard Range 
Size Time Deviation 

(Iterations) (mSeconds) (mSeconds) (mSeconds) 

2000 808 480 805-830 
3000 108 480 1078- 1105 
5000 163 481 1623- 1650 

Table 4·3: Frame Stretching Results 

expected The reason for the supposed step function was a timer Interrupt that was to happen every 

24 mSeconds In fact, after the first timer Interrupt, 24 mSeconds Into the R4 frame, the timer was not 

used until the R4 tasks flmshed Therefore, the size of the frame would Increase linearly above 40mS 

The fmal part of the experiment was to determine the behavior of the system when an infinite set of 

R4 tasks was started In the experiment, an R4 task POinted to Itself as the next task If there were no 

mechanism for aborting a frame, the R4 frame would continue forever This could be shown, by 

attempting to use another task while the R4 task continues to loop For this expenment the task that 

was used to test whether the system was running was an R3 task that failed and restored processors. 

Normally, It took only a few seconds from entering a request to reconflgunng the system However, 
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Figu re 4·3' Stretched Frame - 2000 iterations 
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Figu re 4·4 Stretched Frame - 3000 Iterations 
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Figure 4-5: Stretched Frame - 5000 Iterations 

when the R4 task began to repeat IIlflnltely, the R3 task could not execute at all When the mflnlte 

loop was stopped (by nullifYing the R4 pOinter), the R3 task ran Immediately. 

ThiS last test POints out a flaw In the scheduhng software Although tasks are regulated by giVing 

them time limits, frames are not limited In thiS manner A frame of any rate IS simply stretched until all 

of the tasks Within the frame can finish. ThiS mechanism IS not reliable In at least two situations The 

first was described above, In which all other tasks were locked out by one task that POinted to Itself 

Another possibly hazardous situation would be a task WIth ItS tIme hmlt set too hIgh If, In most cases, 

the task takes much less tIme than the hmlt, th,s error may not be noticed However, If some untested 

sectIon of the code starts a long, VIrtually infInite loop, the system WIll hang (at least at that rate group) 

untIl that task has stopped In a real· time applicatIon th,s IS equlvdlent to faIling 
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5. Summary and Future Work 

This paper described three expenments that were designed within the framework of a validation 

methodology The methodology was denved eallier and IS undergOing changes as experience 

Increases The experiments were concerned with bazellne measurements of the running system The 

major results of these experiments were: 

1 The real·tlme clock IS a reliable measurement device and can be used In timing 
experiments. 

2 The instructIOn execution tunes are constant and reproducible The measured times are 
slower than the documented best times. 

3 The frames are nominally 40 milliseconds long There IS a vanatlon of many clock ticks In 
all measurements. 

4 The stretchmg mechanism allows a linear Increase In the size of the frame depending on 
the number of instructions to be executed, not a stepwise Increase as expected from 
reading the documentation 

5 Frame stretching continues until all tasks finish or abort ThiS IS unreliable In some cases 

More work needs to be done to fully characterize the FTMP system ThiS IS espeCially true of 

instruction and procedure call measurements Major omiSSions of the present results were the 

call/return times for different types of procedures and the system reaction to arithmetiC faults Other 

AED instructIOns should also be measured to get a more complete eVdluatlon of the system 

Enhancement of the experiment environment IS planned The goal of the enhancement IS to have 

the capability of runnmg several different experiments on FTMP by only changmg certain values In 

memory With thiS environment It IS hoped that informatIOn can be collected on the time to run 

various sizes and types of tasks In many combinations Information on scheduling and other 

operating system overhead might also be obtamed With thiS environment 
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