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Thic paper concerns a numerical model of a regenerator running at very low
temperatures. The model consists of the usual three equations for a
compressible fluid with an additional equaticn for a "matrin temperature.” The
main difficulty with the model i{s the very low Mach number (approximately
1.E~3). The divergence of the velocity is not smell, the pressure divergence is
small, and the pressure fluctuation in time i{s not small. An asymptotic
expansion based on the “"bounded derivative” method of Kreiss is used to give a
“reduced” model which eliminates aceustic waves. The velocity fe then )
deternined by a two-polat boundary velue problem which does not contain e time
derivative. The solution obtsiced from the reduced system ig compared with the
numerical solution of the original system.
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1. The differeantial equations

The oscillating flow takes place in o cylinder filled with emzll metal spheres [i]. The
conpreecsible filow equations are used to describe the flow around the scheres. A “resistance” term
‘favolving the resistance factor ¥ is used to account for the porous wedia effects. The "matrix” of
 gpheres has a heat ‘capaci{ty and neat can be transferred betwecen the matrix and the gas. This
conductance fs deternined by the coefficient h. The temperature of the matrix s givea by T, The
variables are listed in the appendix. The partiel differential equations for these variables are
the following. : )
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The domain 10 0 € x < L. - We will discuss the boundary and L{nitial conditions in the next section.
Their deterwination is crucial to the success of the numerical approximation.

To set up the numerical approximation we need to vrite these equations in dimensfonless form.
For this purposc we assume an ideal gas described by the following relations.

3 P
p = —— pe? = = R, = 2,03 E+3 J/kg'K  y = 0.6
R.T Y

The scaling factors for the basilc varlables are the constanta.(s; ;; T). The time is scaled b& the
period (t) of the {mposed oscillation {n the mass flow. This 45 the seme a8 the pericd of the
piston oscillgtion, The x coordinate ie scaled by the length L., We use (», uv, T, Tm) for the
scaled variasbles (p/p, u/u, 1/aT, T,/4T).
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Typicsl values of thace dimonsionless parameters are:

1} = 0.92 T = 14 a = 70 ay = 709

a3 = 64 By = 5.82-4 8y = 8.78-3 € = 1.4B-5

This 18 based on the values

T=0508 U= 0.12 /s L =0.057 m R = 2.038+3 J/ug'R
Gy = 0,65 Cy » 3.1B43 3/kg*K T o= 8.7E+3 W/oleK -
T=15K Dy = 1.28-4 Foa2

Cleerly the term with the dominant coeffictient 1s the one containing the factor el The
prassure rust be very nearly constant in order to balance the terms in cthese equations. In order to
evoid high velocity eound waves we must carefully set the Lnftial and boundary conditions. The
“bounded derivetive” method of Kreiss is uvsed to set the initfal conditions. We chose the initial
conditions go that the first two derivatives of the baeic varisbles with respect to time are O{1)
rather than 0{c™'). The work of Kreiss indicates that we can expect the time derivatives to remain
bounded during the time integration of the partial differential equations. This fwplies that the
fgat sound waves do not gppear, since their presence would reguire derivatives which are 0(e ).

2. The bounded deri{vative expeneion

This method was developed by Kreiss [4]., Gustafsson has shown that, fu certsin cases, the
reoults of Kreiss can be obteined by an asymptotic expausion [3]. Gustafsson has given & good
expository treatment of the method [2). If we assume on expansion of the basic variables in the form

- ~ -

p(x,t) = po(x,t) + epy{x,t) + ¢=°

then we obtain a new cystem of equations far the functions (Pes Tis Yy Tpgds {=0,1, ... by
equating like powers of ¢ in the ususl way. Thue, we obtain from the velocity eq (7)

o
——— = (),

ax

The first term in the pregsure expansion g therefore independent of x. Using thie fact, eq (1) cen
be differentiated with reypect to x to obtein an equstion for the velocity (hereaiter we drop the
subscript “o” and the """ modifier for the asymptotic expansion).

3 ) - 2 | 4nG, 2¥Gpjul)3
- (pcz—- o = | —(TyT) + (%)
ax 3x ax by, - Dy,

If the functions T and p are known and u 18 knowm at the boundary, then this equation can be gsolved
for u(x) in the {aterior. Equation (9) implies that the right side of the pressure eq (1) is
independent of x, Therefore eq (1) can be regarded as an ordinery differential equation for p(t).
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Equation (2) can be regarded as a hyperbolic partiel differential cquation for T(t,x) and
eq (4) 18 an ordinery differential equation for T,(t,x). Note that these equaticns do not require
afny boundary conditions for the pressure p or the tewperature Tp. If we regard the equation for the
gas tewmperature as a hyperbolic equation, then we rmust specify T at an inflow boundary and leave it
unepecified at an outflow boundary. He want to specify constant temperatures T(t,o) = T, and
T(t,L) = Tp at the boundary. However, when the flow reverses this would ceuse g discontinuity in
the temperature at the boundary. Therefore we ifmpose a fast exponential decay in time from the
temperature at the time of reversal to the desired temperature Ty or Ty.

The velocity boundary values are chosen so that the mass flow is sinusoidal, that is

p(t,0)u(t,0) = C, sin(wt)

p(t,L)u(e,L) = Cp sin(wt+9)

These conditions insure that mass is conserved over a cycle.
3. The numerical scheme for the asymptccic expansion

A finite difference mesh (t,,%q) 15 used whcre t, = nat, and xy = iL/N for 0Ci<N. The spatial
derivatives are approxiusted by centered second order differences, for cxample

n n
dT Tye1~T1-1
— (tpaxq) & -
dx 2ax

n , .
where Ty L6 the approximation for T(t,,x;). An implicit type of predictor corrector i{g used which
is similar to a Crank-Nicolson scheme. We will not write out the complete acheme for the full
equations; iustead we describe the scheme for the folleowing sirple equation

du du

— D {je

dc dx

. . N n ~o n+l
Given the values at the nth time level, Uy, and an approximstion U; for Uy , then compute a

~

corrected approximation Uy from

~1 ~n "o n} {1 n "1 n
by-Uy UgtUgj Uge1 e tg-17Ug-)

AT 2 ' 4ax

Thie is a tridiagonal linear systew frx the unknown vector Uy. A'correction is made for the
varlablos p,T, and Ty in that order; thea an updated value of the velocity is obtained by solving a
n

finfte difference version of eq (9) for Ug. If the heat transfer cofficient, h, io coastant, then

this is another tridiagonal iinear system. 1If h = h(u) depends on the velocity, then the resulting

nonlinear equation 1s solved by a Newton iteration. The boundary conditions are described in the

previocus section, Generally, from two to five {teraticns (or correctiong) vere used. On the firat
’ ~o n ’ '

iteration Uy = y;,
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4. A fully ipplicit scheme for the original equations
e have a gecond comﬁhter code which is baged on the original eqs (1) through (4) rather than

the asymptotic expansion. Slnce,Hi = ¢ is small we expect this sytem to be very stiff. Therefore,
we expect thet an {mplicit scheme is required. However, we use a C¥ (Crank-Nicolson) scheme rather
than a BOF (backward-difference~formula). We choose the initfal conditions to avoid the fast moving
acoustic waves; therefore we do not need the BDF scheme to dsmp out the fast waves. WHe can cheose
arbitrary {nitial values for T(x,0); however p(x,0) is required to be constant snd u(x,0) wmst
satisfy (9). This i{s the bounded derivative principle of Kreisa. The initial conditions are chosen
so that the firgt tvo time deriacivea of the solution (p, T, u, Ty) at t = 0 are bounded independent
of 5. -

The finite difference scheme uses three-point centered approximations for the spatial
derivatives except at outflow boundaries, where a one-sided first order approximation is used. A
Crank-Nicolson approximetion is used in time. The difference scheme for each of the four varighles
18 thus similar to (!) for the asymptotic approximation. However, the four equations are now
coupled. Therefore, each time step requires the solution of a linear block~tridiagonal system with
4x4 blocks. We do not use a Newton fteration to deal with the nonlinearity. Instead, we uge an
iteration and evaluate the coefficients of the derivative terms at the previous iteration,

The boundazy spﬁroxlmatlon for the temperature T(x,t) i8 the same &8 for the asymptotic
equationg. The boundary conditions for u(x,t) are specified at all times using the cane values as
in eq (6). There 1s no boundary condition for the p equaticn; instead one-sided differehces are
used to approximate derivatives at the boundary. WNo boundary condition 1s needed for the Ty
equation since this equation contains no spatia] derivatives.

S. Computational reaulta

In this sectlon we give some regults obtatned ftom the two numerical methods described in the

previous gectlons. Unless otherwise stated, the results were obtained using the bounded derivative

(L.e. asymptotic expansion) model. Within SI, many units cholces exict for meost quentitfies! 1In all
of. these runs the heat transfer coefficient between thz gas and metrix was given by the term

h(m) = 40 crp(-1.6m) + 220(l~exp(~1.6m) )=
where

m = pluf.

The exponential factor is included to avoid a discontinuous derivative of h(]pu|) with respect te to
u at u=0,

The formula used to bring the boundary temperature of the gas back to its constant inflow value
when the velocity reverzes is - .

T(e) =Ty + (Trev - TI.)G"P((Crév't)/T)

" Here Ty 18 the constant inflow temperature (15 K at the left boundary and 10 K at the right boundary
for most of our rung) and Typey 18 the temperature of the gas at the time when the velocity reverses
direction, The time of reversal is t,,, and t {s an input parameter, whose value was 0.05F where P
18 the period of the mass flow oscillation.

The mass flow at ﬁhe boundary is given by

pu = C sin{2nfe+8)
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vhere f 18 the frequency and O is the phage, At the laft boundary 6=0, at the right values fa the
range -45°¢9<0° were used. o :

All runs assumed an ideal gas witn equation of state

p = Re o7,

The specific heat of the gas at constant volume was
Cy = 3120. J/kg'K

The thermal conductivity of the matrix was 0.3 #/m°K and of the gas was 0.13 W/m*K. The regenerator
length was 0.0572 n, :

5.1 The temperature and pressure wave forms

The temperatuve as a function of time at the left and right boundaries ie glven in figuree 1
and 2, 1In this case, which we refer to as case I, the inflow temperatures at these boundaries were
15 K and 10 K; the mass flow smplitude was 77.9 kg/n“s; the starting preosure was 3.3 Mpa; the heat
capacity of the matrix was 2.6%4E+5; the hydraulic diameter was 1.21E~4; and the frequency wea 5 liz.
The time interval shown is 12{t<13, that fs, tne system has been run for 60 cycles before these
curves are drawa. The matrix temperature is shown a8 a dgshoed line; the gas temperature is a solid
lire. In this case, the two temperatures were slmost identical. The temperature at s potut 4/5 of
the distance cerogs the tegereratot (x=0 8) ia ghovm in figure 3.

The temperature as a functicn of pocztion % across the regenerator at certain timcs in the
cycle is shown in figure 4. The pressure oscillation is ghown in figure 5.
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Figure l. Temperature (K) va., time (a) at x =.0 for case L.
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Figure 2, Temperature vs. time at x = 1.0 for case I.
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Figure 3. Temperature vs. time at x = 0.8 for cage l.
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Figure 4. Temperature vg. x at the given t for case I. .
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Figure 5. Pressure vs. time for case I.

5.2 The effect of the hydraulic diameter and matr{x‘heat capacity

In figure 6 the temperature wave at the right boundary 18 'shown, All parsmeters are the same
as in case 1 above, except the hydraulic diameter has been inc-eased by a factor of four. There is
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Figure 6. Temperature vs. time at x = 1.0 with Dy, (hydraulic diameter} = 4.84FE-4 .
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Figure 7. Temperature vs. time at x = 1.0 with Pelm = +28E+6 J/kg‘m3.

now some separation of the matrix and gas temperature. A greater teparation is’ seen in figuré 7.
Here the heat capacity of the matrix has been increagsed by a factor of 20 over case I.

Our definition of the ineffectiveness is given by the following integral which "4 taken over
the outflow portion of the cycle,

folul(TL, )=T)dE 7 folul(T,-Ty)de.

Here T, and Ty, denote the fixed gas temperature and T(L,t) denotes the gas temperature o. ‘outflow.
Tha- 1neffectiveness as a function of hydraulic diameter, Dh' is shovm in fi{gure 8 for the ccadltions
.of case I. 1In figure 9 the variation with matrix heat capacity, ppCp, is shown.

In table 1, w2 comparé our computed ineffectiveness with that obtained by Daney using a wodel
which assumes nc pressure varlation. Our results are higher, which is probably explained by our

non-zero pregsure swing during the cycle. The table shows that ineffectiveness increases with the
pressure swing.

5.3 The accuracy and consistency of the model

In table 2 the value of the ineffectiveness is shown as a fu:ztion of the numerical resolution.
These results are for case 1 where the frequency is 5 Hz, Note that with &t = 0.001 5 and 4x = 0.1
we have 10 mesh intervals across the regenerator and 200 time steps per cycle. The last run with At
= 0,004 s did nct yteld valid results. The need for a small time step may be explained by the rapid
change in the temperature at the boundary. When the flaw changes from outflow to inflow the.

tem 2rature 1e raised to the boundary value in about 0.0l seconds in this case. Therefore we might
ex.ect some trouble with the larger time step. '
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Figure 8. Ineffectivencss vs. hydrauvlic diaseter.
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FPigure 9. Ineffectiveness vs. matriz heat capacity.
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Table 1. Comparison with Constant Pressure Model.

) Temperature Swing Pressure Swing
Model Ineffectiveness K ¥Pa
constant pressure (Daney) 0.015 —
phase = 0,0 0.027 10,0 - 10,50 2.9 - 3.3
phase = ~14° 0.079 10.0 - 10.62 2.8 ~ 3.8
phase = -29° 0.122 10.0 - 10.79 2.6 - 4.5

Table 2. Accuracy.

Resolution Ineffectivensss
At = 0.001 g
: 0.207
Ax = 0.1
At = G.,001 g
. 0.202
ax = 0,05
At = 0.G005 s
0.201
Ax = 0.025%
AT = 0.006 g
_ 0.23*
Ax = 0.05
&

Did not reach a gteady state -
waegs loss 1Z per cycle. .

In table 3 we compsre the results for case I obtalned from the two wodels. The full equation
solution shows a opnll oscillation in the velocity flald which i not preseant in the solutior using
tiie reduced equations. The CPU ctiae i3 on & COC Cyder 750. The results for the twe wmodels seem to
be in good agreerant. o

5.4 Achieving a quasi-steady state

The reselts described above uere obteined by runaing the model Zor 66 cycles. At this point
there 18 very little chacge of averege or maximum values €rom one cycle to the aexz. For exsmple,
in cage I the manimum gas temperature at the cold end is chenging st a rate of 1077 K par cycle.
This 5 s very emall change; hmrever, this rate appears to be virtially comstant over the last 10 or
20 cycles. Therefore, we don't know how cles2 we are to o steady occillation. At this rate 1000
cycles vould be required to effect a 10 percent change in this maximum temperature. WUe need vo Eind
& method to accelerate couvergence.

Table 3. Comparieocn of Reduced and Full Fguations Hodels.

Temperature Pregsure - CPO
Swing Swing Ties/Cycle
HModel Ineffectiveness K #Pa 8 i
Reduced 0.201 10.0 - 11.2 2.7 - 6.3 6.8
Full 0.186 10.0 ~ 1.1 2.8 ~ 4.3 23
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Notation ST Units
P ~ prescure MPa
o - gas density Kgla>
oa - wmatrix density ke/od
é - acoustic veloéity m/é
u - welceity w/s
Gy ~ Grueneisen parzseter
h = heat transfer coefficient Walr
Py, ~ hydraulic dlameter ‘@
T - gaé tewperature k
Ty ~ watrixz Eenperatuze k
F - friction factor
Cy - gas hest capacitf lJ/kg'K
Cm‘ < patrix heét-cééacii} J/kg&
é -~ porosity
R - Vgae congtant J/kgeK
Y ~ ratio of gpecific hegts
L - length of regenerator 2

a(t) - left endpoint (pfston position) B

b(t) -~ right endpoint B

an.



