NASA CR-176,353

NASA-CR-176355 19860003826

A Reproduced Copy

OF

NASA CR-176,355

Reproduced for NASA

by the

NASA Scientific and Technical Information Facility

LIBRARY GOPY

MAY 1 1986

LANGLEY RESEAR MTER LIBRARY, NASA HAMPTON, VIRGINIA

Report on Research Performed under NASA Cooperative Agreement NCC 2-242, "V/STOL Handling and Control Power Requirements"

AN INVESTIGATION INTO THE VERTICAL AXIS CONTROL POWER REQUIREMENTS FOR LANDING VTOL TYPE AIRCRAFT CNEOARD NON-AVIATION SHIPS IN VARIOUS SEA STATES

KU-FRL-623-1

Prepared by

Mark E. Stevens

Principal Investigator: Jan Roskam

a lue fr

Flight Research Laboratory University of Kansas Center for Research, Inc. Lawrence, Kansas 66045

July 1985

ABSTRACT

The problem of determining the vertical axis control. requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a non-piloted simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags.

The piloted simulation was run using a fixed-base simulator at N.A.S.A. Ames Research Center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer.

Simplified linear models of the pilot, aircraft, ship motion, and ship air-wake turbulence were developed for the non-piloted simulation. A unique aspect of the non-piloted simulation was the development of a model of the piloting strategy used for shipboard landing. This model was refined during the piloted simulation until it provided a reasonably good representation of observed pilot behavior. Further refinement could lead to a model suitable for prediction of landing performance of VTOL aircraft on ships and as the basis of control logic for automatic landing.

A surprising result of this simulation was that, with a good station keeping control system and with statistical ship motion displayed on the head-up display, pilots could consistently perform safe landings in sea state 6, with handling qualities that were adequate at thrust-to-weight ratios greater than 1.03 and even

i

marginally adequate down to thrust-to-weight ratios of 1.01. These results should hold quite generally provided that a thrust-to-weight ratio of $1 + \Delta$ is interpreted as meaning that the pilot always has the capability of accelerating the aircraft at Δg upward even in the presence of ground effect and hot gas reingestion.

÷.

TABLE OF CONTENTS

	Page
ABSTRACT	·····
LIST OF	FIGURESvi
LIST OF	TABLESx
LIST OF	SYMBOLSxi
I. INTRO	DDUCTION1
II. ANAL	LYSIS OF HOVER HEIGHT CONTROL
Α.	CONTROL TASK8
В.	THE NON-PILOTED SIMULATION
c.	ANALYTICAL MODELS12
	1. Aircraft Model12
	2. Pilot Model13
	3. Ship Model15
	4. Turbulence Model20
D.	RESULTS FOR THE NON-PILOTED SIMULATION
III. SI	MULATION EXPERIMENT25
Α.	TEST MATRIX
в.	AIRCRAFT MODEL
	1. Basic Aircraft25
	2. Modifications to the Simulation Model
	3. Control Augmentation System28
	4. Head-up Display
C .	SHIP MODEL
D.	SIMULATION FACILITIES

T

iii

TABLE OF CONTENTS, continued

7

1-----

		raye
		1. Simulator
		2. Pilots
	E.	OPERATIONAL TASK
	F.	RESULTS FOR THE PILOTED SIMULATION
		1. Task Performance and Pilot Ratings
		2. Pilot Comments
IV.	REV	ISED ANALYTICAL PREDICTIONS
	A.	MODIFIED ANALYTICAL MODEL
	в.	COMPARISON OF ANALYTICAL AND SIMULATOR RESULTS63
v.	CONC	LUSIONS
VI.	REF	ERENCES
VII.	AP	PENDIX AA1
	Α.	APPROXIMATE INVERSE LAPLACE TRANSFORM METHOD
	в.	A.I.L. IMPLEMENTATIONA3
	c.	DEVELOPMENT OF THE SHIP MOTION MODEL
	D.	TURBULENCE MODEL
	E.	HOVER HEIGHT INPUT
	F.	DATA PLOTTINGA14
·	G.	LISTING OF NON-PILOTED SIMULATION COMPUTER VARIABLE DEFINITIONS AND PROGRAM LISTINGSA22
VIII	. А	PPENDIX BB1
, î	Α.	TEST VARIABLESB2
	в.	HUD DYNAMICSB3

iv

TABLE OF CONTENTS, continued

	Page
c.	DATA OUTPUT OF PILOTED SIMULATIONB4
D.	PILOTSB5
E.	LISTING OF PILOTED SIMULATION RUNS AND RESULTS

V ·

x >_____

LIST OF FIGURES

Figure No.	<u>Title</u> Pa	ge
1.	Non-Piloted Simulation Computer Program Flow Path	•9
2.	Block Diagram of the Original Non-Piloted Simulation Model	11
3.	Block Diagram and Example Time History of the Original Flight Path Command Logic	16
4.	Wind Waves at Sea	17
5.	U. S. Non-Aviation Ships	19
6.	Axis Definitions for the Non-Piloted Simulation Model	21
7.	Non-Piloted Simulation Touchdown Velocity Results	23
8.	Test Matrix for the Piloted Simulation	26
9.	Block Diagram of Vertical Velocity Damping Through Thrust as Implemented in the Simulation	27
10.	Throttle Control Sensitivity	29
11.	Head-up Display Format and Symbology Definitions	31
12.	The Chair 6 Fixed-Base Simulator	35
13.	Handling-Qualities Rating Scale	37
14.	Mean Flight Times for the Piloted Simulation	38
15.	Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Touchdown Sink Rate Baseline HUD with Velocity Command Control System	40
16.	Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Pilot Ratings Baseline HUD with Velocity Command Control System	41

ż

vi

LIST OF FIGURES, continued

J

. .

Figure No.	Title	Page
17.	Comparison of Touchdown Sink Rate and Pilot Rating as Influenced by Thrust-to-Weight Ratio for a Selected ConditionBaseline HUD with Velocity and Attitude Control Systems	•••42
18.	Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Touchdown Sink Rate Augmented HUD with Velocity Command Control System	44
19.	Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Pilot RatingsAugmented HUD with Velocity Control System	•••45
20.	Comparison of Touchdown Sink Rate and Pilot Rating as Influenced by Sea State for a Selected Test ConditionAugmented HUD with Velocity Command Control System	••••47
21.	Influence of Thrust-to-Weight Ratio on the Positioning Side TaskAugmented HUD with Attitude Command System	•••48
22.	Distribution of Touchdown Sink Rate and Ship Deck VelocityBaseline and Augmented HUD Prockdown for all Landings Completed for the	•
	Simulation	•••48
23.	Influence of Thrust-to-Weight Ratio on Thrust- to-Weight Ratio Use HistogramsBaseline HUD with Velocity Command Control System	•••50
24.	Influence of Thrust-to-Weight Ratio on Thrust- to-Weight Ratio Use HistogramsAugmented HUD with Velocity Command Control System	•••51
25.	Influence of Engine and Airframe Dynamics, and Thrust-to-Weight Ratio on Thrust-to-Weight	
	Ratio Use HistogramsAugmented HUD with Velocity Command Control System	•••53
26.	Influence of HUD Format and Control System on Thrust-to-Weight Use for a Selected Test Condition	53

vii

LIST OF FIGURES, continued

575

THE BEFORE

Figure No.	<u>Title</u>	<u> </u>	vage
27.	Influence of Sea State on Thrust Ratio UseAugmented HUD with Ve System	-to-Weight locity Command	- 54
		••••••••	
28.	Block Diagram for the Modified N Simulation Model	on-Piloted	.59
29.	Block Diagram of the Modified Fl Command Logic	ight Path	.64
30.	Example Time History for the Mod	ified Flight	
	Path Command Logic	•••••••	•65
31.	Aircraft and Ship Motion Time Hi Output from the Non-Piloted Simu	story as lation	
32.	Aircraft and Shin Motion Time Hi	story as	
	Output from the Non-Piloted Simu	lation	.67
33.	Comparison of the Influence of T Weight Patio on Touchdown Sink P	hrust-to-	
	Augmented HUD with Velocity Comm	and System	
	of Piloted Simulation and Non-Pi Simulation	loted	68
34.	Comparison of the Influence of T Weight Ratio on Flight TimeAug with Velocity and Attitude Comma of Piloted Simulation and the Or Modified Flight Path Command Log	hrust-to- mented HUD nd Systems iginal and ic of the	
	Non-Piloted Simulation	••••••	68
35.	Comparison of the Influence of T Weight Ratio and Engine Dynamics Sink RateAugmented HUD with Ve	hrust-to- on Touchdown clocity	
	Command System and Modified Filg	•••••••	.69
36.	Comparison of Thrust-to-Weight L as Obtained from the Piloted and Simulations	lse Histograms Non-Piloted	• • 72
37.	Variation of Thrust-to-Weight Ra Histograms Due to a Statisticall Runs Used Per Data Point	tio Use y Small Number of	73

LIST OF FIGURES, continued

Figure No.	Title Page	
A1.	Block Diagram of the A.I.L. Implementation in the Non-Piloted Simulation	
A2.	Examle Output from SHPREF.FOR with Plot of Ship Motion Specturm for the DD962 in HeaveA11	
A3.	Example Output from SHPREF.FOR with Plot of Ship Motion Spectrum for the DD962 in PitchA12	
A4.	Strip Chart Recording of Vertical Acceleration Due to Turbulence as Obtained from the AV-8A Fixed-Base Simulation Facilities and Used to Determine Magnitude of Turbulence Values for the Turbulence Modeling in the Non-Piloted Simulation	
A5.	Example Plot of Thrust-to-Weight Ratio Use as Output from the Non-Piloted SimulationA17	
A6.	Example Plot Showing the Variation in Variance and Means for Flight Time and Touchdown Velocity as Influenced by the Number of Runs Made in the Non-Piloted Simulation	
A7.	Example Plot Showing the Variation in Variance and Means for Ship Motion as Influenced by the Number of Runs Made, Where Number of Runs is Seconds in This Case	
A8.	Example Output of Run Conditions and Results for the Non-Piloted Simulation	
B1.	HUD Hover Point DynamicsB4	
B2.	Example Data Output from the Piloted SimulationB6	
вЗ.	Piloted Simulation Test MatrixB10	

ix

LIST OF TABLES

[

Maran - A

Tab	le No.	Title	Page
	1.	Example Lull Criteria	•••3
	2.	Simulation Environmental Conditions for the DD963 Class Destroyer	33
	3.	Touchdown Velocity Statistics Indicating Number of Landings with Sink Rates Greater Than 12 ft/s for Selected Test Conditions	• • 49
	4.	Influence of Thrust-to-Weight Ratio and Engine and Airframe Dynamics on Flight Path Command Logic Sequence Use	62
	A1.	Values for Variables Which Must be Edited into Program with Change in Sea State	•A16
	В1.	Fixed-Base Simulation Computer Variables and Related Variables and Values	••B2
	B2.	Variable Values Use in Correcting for the Mean Aerodynamic Forces	••B3

x

.

LIST OF SYMBOLS

Symbol	Definition
AC	Aircraft transfer function
^A n	Amplitude
A _R	Acceleration magnitude
COS	Cosine
cmd	Command
deg	Degree
ENG	Engine transfer function
ELC	Engine lag time constant
^E n	Random phase angle
ft	Foot, feet
g	Gravitational constant
h	Altitude
H _s	Significant wave height
in	Inches
i(t)	Ship motion component
κ _p	Pilot gain
knts	Nautical miles per hour
m.	Meters
msec	Millisecond
n	Random number
S	Laplace variable
S	Second
sec	Second

.

-

· _ ·

xi

LIST OF SYMBOLS, continued

Definition

t		Time (seconds)
т		Thrust
TC		Time increment
TG	-	Lag time constant
TL	· · · ·	Lead time constant
то		Modal period
V		Velocity
W		Weight
x		Position along the X axis
x.		True longitudinal acceleration
^ x		Estimated true acceleration
≏ x ₁		Estimate of high frequency acceleration
Yp		Pilot transfer function
z,		Vertical velocity damping coefficient

Increment

Frequency

Time constant

Statistical variance

Greek Symbol

Δ

ω

σ

τ

Δ

Symbol

Component of the ship motion spectrum

5.1

xii

LIST OF SYMBOLS, continued

-

Greek Symbol	Definition
φ	Roll angle (deg)
θ	Pitch angle (deg)
ψ	Yaw angle (deg)
Ψ	Ship heading (deg)
ζ	Laplace variable

Subscript

ż

C	Command
cg	Center of gravity
en	Encounter
eng	Engine
٤p	Landing pad
long	Longitudinal
v -	Velocity
w	Wind
wođ	Wind over deck
x	Position along x axis
У	Position along y axis
2	Position along x axis
ф	Roll axis
θ	Pitch axis
ψ	Yaw axis

xiii

LIST OF SYMBOLS, continued

Abbreviation	Definition
A.I.L.	Approximate inverse Laplace transform
HUD	Head-up display
N.A.S.A.	National Aeronautics and Space Administration
V/STOL	Vertical/short takeoff and landing
VTOL	Vertical takeoff and landing
A.C.	Attitude command control system
v.c.	Translational velocity command control system

xiv

ş

I. INTRODUCTION

The problem of landing V/STOL aircraft aboard destroyer class ships has been investigated in the past (References 1-3). Several methods have been used to determine the feasibility of, and the control/display systems needed, to accomplish this task.

Many of the researchers in this area began with the premise that for the successful completion of this task, it would be necessary for the pilot/aircraft system to have the capability of in-phase chasing of the ship deck. The vertical task then was to start at a specified altitude, descend at a reasonable rate and begin to match the vertical motion of the ship deck. If the ship deck motion can be matched in both phase and amplitude, then it is only a matter of establishing a small relative descent rate and a reasonable landing can be made. There are, of course, problems with this technique. In high sea states (5-6) the frequency of the ship motion is near the maximum piloting frequency (~4 rad/sec). In attempting to match both the phase and amplitude of the ship motion, the pilot is forced to operate at close to his break frequency and at fairly high gain. The aircraft must incorporate a high thrustto-weight ratio to achieve the maximum amplitudes in the time required. The combination of high piloting frequency and gain with high thrust-to-weight ratio can cause lags and a tendency to overshoot. If in addition there is a large system lag due to engine spool time, display lags, and pilot delay times, the phase lag can become excessive to the point of producing large touchdown

velocities and an unstable system. This has been demonstrated in computer simulations (Reference 1). As a result it is generally concluded that deck chasing is not a reliable method for landing an aircraft with reasonable accuracies or consistently low touchdown velocities. This conclusion is confirmed in helicopter operations onto small ships.

A second approach was based on the idea that the pilot could loiter until a lull in the ship motion occurred. Some of the research indicates that adequate lulls are not frequent occurrences or are too short in duration to be useful. For example Reference 1, which investigated results for the two lull criteria given in Table 1, determined that for the more conservative criterion no lulls occurred in the DD963 ship motion model over a period of 1800 seconds. For the less stringent criterion, 52 lulls occurred in this time period, or the average of 1 every 33 seconds. This indicates lulls of very short duration.

Reference 1 concludes that looking for lull conditions under high sea states in order to make a landing is not very feasible. Other research conducted in the area of lull prediction (Reference 2) indicates that lull conditions (defined as the time from which there are 2 successive peaks under the mean value of the positive peak amplitude envelope until 2 successive peaks over that value) occurs at the rate of 1 every 70 seconds and are of 10 to 60 seconds duration. Another consideration is found in Reference 3 where a

Reference 1 LULL CRITERIA									
Motion Component Limit	Criteria 1	Criteria 2							
Longitudinal Vel.	2 ft/sec	3 ft/sec							
Lateral Velocity	2 ft/sec	3 ft/sec							
Vertical Velocity	2 ft/sec	3 ft/sec							
Pitch	· 1°	1.5°							
Roll	2 ⁰	3 ⁰							
Pitch Rate	2 ⁰ /sec	8 ^o /sec							
Roll Rate	2 ⁰ /sec	8 ^o /sec							
No. of Occurrances Based on 1800 sec.	0	52							
of DD963 ship model	motion for	Sea State 5.							

Table 1: Example Lull Criteria

description of sea trials performed using a SH-2F helicopter indicated that pilots were often unable to determine visually when a lull was occurring. The above information indicates that in general it is not practical for fixed wing VTOL aircraft to loiter for the required time periods in the high fuel use state of hovering while waiting for optimum landing conditions.

Another area of research involved the use of ship motion prediction schemes. Research in this area has shown some promising results. Computer studies have shown that ship motion can be predicted with reasonable accuracies for 10-15 seconds in advance (Reference 4). Given this capability, it has been demonstrated in computer studies using optimal control modeling techniques, that autopilot landings can be made with touchdown velocities on the order of 1 ft/sec in sea state 5 conditions (Reference 5). The

advantage to using a system in which the ship position is predicted in advance and updated as the approach progresses comes from being able to adopt a control strategy in which the aircraft is chasing a slower moving prediction point rather than the real time deck motion. This adds lead, thereby requiring less effort on the part of the system as demonstrated by adequate performance at thrust-toweight ratios of 1.05. The major problem here is that motion prediction for destroyer class ships in high seas has not been demonstrated.

The research conducted for this report is directed at the question of what thrust-to-weight ratios, and vertical velocity damping are required to allow a pilot to make an acceptable landing given adequate situational information.

It is clear that it is desirable to land with low touchdown velocities using low thrust-to-weight ratios, and without wasting time in the high fuel consumption state of a hovering loiter waiting for lulls in the ship motion.

II. ANALYSIS OF HOVER HEIGHT CONTROL

会员

To provide some insight into the problem and the models being used in this research, the following facts are presented: 1) The current AV-8A Harrier aircraft has a maximum touchdown velocity limit of 12 ft/sec. 2) The DD963 ship motion model has a maximum ship deck heave velocity (3 sigma value) of 17.5 ft/sec. 3) In sea state 6, the ship has a heave velocity equal to or greater than 12 ft/sec for less than 0.6% of the time. 4) The maximum heave velocity values occur in a region close to the ship motion mean position. 5) The lower velocities occur in the peak and trough regions of the motions. The above facts in conjunction with the ship motion histogram for sea state 6 would indicate that if the pilot did nothing but maintain a descent velocity of less than 2 ft/sec, he would touch down within the AV-8A gear limits approximately 97% of the time. The ship motion statistics show that a maximum heave velocity of 12.5 ft/sec is encountered at the 2 sigma heave amplitude for sea state 6 conditions. These same statistics show that the 2 sigma heave amplitude values are reached at reasonable time intervals of approximately 1 per minute. This frequency increases to 1 every 40 seconds for amplitudes of 1 foot below the 2 sigma value. These facts suggest a landing strategy differing from both the "deck chasing" and "lull waiting." This strategy has the pilot descend to the 2 sigma height above the mean deck position. At this height the pilot waits and watches the snip motion. If it appears that a 3 sigma amplitude (high velocity) deck

motion is imminent, the pilot has enough height, and therefore lead time to begin an ascent, landing at the more desirable higher altitude. (lower ship and relative velocity) as the deck catches up to him. If it appears that the deck position is going to peak somewhat below his present altitude, there is again enough lead time to begin a slow descent and land near the crest (low ship velocity) position) of the deck motion. The 2 sigma height above mean deck position meets the desired criteria for the strategy. It offers an easily obtained position without continous deck chasing, provides the buffer needed to escape the high velocity portions of the deck motion, and presents the pilot with numerous landing opportunities without a lengthy loiter period. To accomplish this, the pilot must be presented with a suitable indication of mean deck position and the 2 and 3 sigma values of deck position relative to the aircraft's landing gear. This information requires measurement of the ship motion for several minutes prior to the arrival of the aircraft and the transmission of this information to the aircraft for use in the head-up display. Real time information is also required to show the pilot where the deck is currently positioned within the bounds of the probable travel. The pilot can then monitor the ship motion, obtain an accurate deck position relative to the mean, and make his prediction as to how fast it is moving and where its position will be in a couple of seconds.

An investigation of the proposed landing strategy was conducted along two lines: namely, a non-piloted simulation and a piloted

simulation. The non-piloted simulation incorporates a linear pilot model and vertical axis aircraft model. In addition there is a flight path command logic section, a command flight path subroutine, a ship motion subroutine, and a turbulence modeling subroutine. Input variables are pilot gain, maximum thrust-to-weight ratio, sea state, vertical velocity damping coefficient, pilot time delay, and engine lag.

The piloted simulation used the chair 6 simulator at the N.A.S.A. Ames Research Center. This fixed-base simulator consists of a cab containing the normal cockpit controls and a single forward looking window through which a visual image of the outside environment can be obtained. The visual image is provided by a camera-terrain board imaging system. A head-up display can be superimposed on the outside scene to provide flight situation information to the pilot. The cockpit also contains a unique throttle/nozzle control quadrant used for V/STOL simulation. Slightly modified versions of an existing math model of the AV-8A (Reference 6) and an existing head-up display format were used. The math model was linearized in the vertical axis and the display format simplified to represent only information needed to fly the vertical axis.

A. CONTROL TASK

E

l.

ſ

The task to be flown begins with the aircraft at an initial altitude of 45 ft above the mean deck position in a stabilized hover directly over the bull's-eye on the ship deck landing pad. The pilot uses the throttle to control altitude and vertical velocity to descend to an initial hover altitude. This initial hover altitude is the 2 sigma value of ship deck position above the mean, as designated by a line on the head-up display (HUD). The pilot then lands at his discretion, based on the ship deck motion information presented on the HUD.

There are two variations of this task. In the first variation, the ship deck motion boundaries and reference lines are not displayed on the HUD and the pilot makes the landing without the 2 sigma reference. In the second variation, an attitude command control system replaces the translational velocity command control system which creates an effective sidetask in that the pilot must actively maintain the aircraft position over the bull's-eye, using the control stick, while performing the vertical task.

B. THE NON-PILOTED SIMULATION

The non-piloted simulation was run through a control program which links the main program with flight path, ship motion, and turbulence subroutines, data files, and subroutines for output of statistical and plotted data. Figure 1 shows the flow path diagram

a ward of

ن ند الم

and the second second

÷.

Figure 1: Non-Piloted Simulation Computer Program Flow Path

married

. 1.

Ares

9

L.S.F.

between the various programs and files. The main program contains the flight path command logic, pilot neuromuscular model, and aircraft models. A block diagram showing the model transfer functions is shown in Figure 2.

The rationale for developing a non-piloted simulation was that it provided a relatively low cost test of the feasibility of the proposed landing strategy and its ability to minimize the required T/W. In addition it was conjectured that comparison of the results of such a simulation with the piloted simulation would provide a test of the validity of the intuitive notions underlying the assumed way the pilot would implement the strategy. Perhaps not too surprisingly, the task turned out to be much more invloved than originally thought, and refinements to incorporate additional features suggested by the piloted simulation was a continous process. Nonetheless, the insight gained by the exercise was invaluable.

The Approximate Inverse Laplace Transform (A.I.L.) method (see Appendix A), was used to solve the differential equations describing the pilot and aircraft transfer functions. From a review of the literature and looking at the task to be flown, it appeared from the beginning that the pilot transfer function would be the major problem. For the type of problem being looked at, a generic aircraft transfer function could be used, but because of the amplitudes and frequencies involved in the ship motion, it was apparent that the time constants used in the pilot transfer function

Figure 2: Block Diagram of the Original Non-Piloted Simulation Model

would be more critical. It was also desired to keep the pilot transfer function separated from the aircraft transfer function as much as possible, so that either the pilot or aircraft portion of the program could be moved as a block, either for use in other programs or to facilitate looking at other systems in the current program. This need to separate the transfer functions complicated the A.I.L. equation set-up.

C. ANALYTICAL MODELS.

1. Aircraft Model

The dynamics of the aircraft vertical axis are represented by two first order cascaded transfer functions (Figure 2), one representing the airframe vertical velocity response to a thrust change, and the second representing the engine response to a power lever input. The feedback from the aircraft to the pilot is assumed to be aircraft altitude only.

Only the vertical axis of the aircraft is modeled. The first order powerplant transfer function representing powerplant lags is

$$\frac{dT/W}{dT/W_{c}} = \frac{1}{(ELC \ s + 1)}$$
(1)

Cascaded to this is the aircraft transfer function:

$$\frac{h}{dT/W} = \frac{g}{(s^2 + Z_y s)}$$
(2)

To give a total vertical axis transfer function of

$$\frac{h}{dT/W} = \frac{(g/ELC)}{[s^3 + (1/ELC + Z_y)s^2 + (Z_y/ELC)s]}$$

(3)

A limiter is put on the pilot output of T/W to prevent any input above the maximum T/W ratio or below 0; i.e., the pilot can not command a negative thrust.

The engine lag constant, ELC, is one of the parameters on which the control requirements depend.

2. Pilot Model

The pilot transfer function was first set up using a first order lead-lag multiplied by the Padé approximation (Figure 2). This transfer function was looked at using the Linear Systems Analysis Program (LSAP). Bode plots, roct locus plots, and time history plots were looked at to determine values for lead and lag time constants which gave the best results for both a step input and a sine-wave input. The values which subjectively produced outputs similiar to those expected from a piloted simulation were then used in the non-piloted simulation. Because the computer program is nonlinear, several runs were made to determine which values for lead and lag still gave a good combination of rise time for step inputs and small phase and position errors in following a sine-wave. Values for the lag time constant, TG, of 0.1 secs and for the lead time constant, TL, of 0.5 secs were finally selected. These values are within the range of values usually quoted for pilot models (Reference 7).

Because a pure time delay could be programmed into the nonpiloted simulation, the Padé approximation, which was needed in the analysis using LSAP, was replaced.

The pilot transfer function is

$$Y_{p} = K_{p} \frac{(TL s + 1)}{(TG s + 1)}$$
 (4)

The pilot's logic is represented by a logic section in the simulation. The logic section consists of 4 basic sections. The first section is a series of logic statements which determine which of the other 3 sections will be used to provide the commanded flight path. These sections will be referred to subsequently as ABORT TO HOVER HEIGHT, CHASE, and RUN FROM.

If the aircraft is more than 6 ft above the ship deck, or has followed the ship deck below a specified abort chase altitude, or has exceeded a specified vertical velocity (a function of the maximum available T/W), the flight path command logic enters the ABORT TO HOVER HEIGHT section. The hover height is the 2 sigma value of the ship deck heave above the ship deck mean position. The CHASE sequence is entered if the ship deck is within 6 ft of the aircraft and the ship deck velocity is less than 2 ft/sec (approaching the aircraft) and decreasing. When the CHASE sequence is entered, the aircraft flight path is commanded to match the ship motion. The RUN FROM sequence is entered if the ship deck velocity is greater than 2 ft/sec or if the velocity is increasing; i.e., the ship is accelerating toward the aircraft. In the RUN FROM sequence, the commanded altitude is the ship position plus an exponential

smoothing function (a function of time, based on when the sequence was entered). Because the exponential function dies out with time, the aircraft is prevented from climbing to excessive altitudes before one of the other sequences is initiated. A block diagram and example time history of the flight path command logic prior to the piloted simulation are presented in Figure 3.

After results were obtained from the piloted simulation, models representing the time the pilot spends flying a particular portion of the task and delays in perception were added. Since the pilot scans the situation and instruments and corrects errors in a sequence rather than in parallel, the time delay was divided into a combination of the pure delay and a gap where the input was maintained at a given value for the time a pilot could be considered flying another axis or scanning other instruments and therefore not activily flying the vertical task. The length of the time delay, the length of the gap, and how often the gap occurs are variables that can be initialized at the beginning of a run. In addition there are inputs for pilot preception error noise and pilot internal noise. These are discussed in more detail later.

3. Ship Model

An understanding of sea state can be gained by referring to the chart in Figure 4. Sea state is shown with the associated wind, wave heights, lengths, and periods. Sea state 6 is considered significant in that it is estimated that operational capability under these conditions would provide for use of aircraft 67% of the

Figure 3: Block Diagram and Example Time History of the Original Flight Path Command Logic

1	WIND VELOCITY (knts)		4 5	6	78	9	10	1		żo	30	4	ò	so	60 70
2	BEAUFORT WIND and DESCRIPTION	l light air	2 1ight breeze	8	3 gent prec	al ze		4 moderate breeze	5 Cresh breez	6 strong breaze	7 mod erato gale	8 fresh gale	9 str ong gale	10 whole gale	11 storm
3	RUQUIRED FETCH Fetch (m1) wind ha	is the nu s been bl	mber of mil owing over	es a open	giv wat	en er.	50	100	2	0 3	00 4	00 5	00 60	0 700	
4	REQUIRED WIND Duration DURATION (hr) been bl	n is the owing ove	time a give r open wate	n wir r.	nd h	as	5	20	2	5		30			35
5	WAVE HEICHT (Crest to Trough (ft))	н		. 1			2	4 white	6 8	10 1	5 20	25 30	o 40	50	60
6	SEA STATE and DESCRIPTION		1 smooth			2 sli	gh t	noder r ate	4 ough	5 very hi rough	6 gh	7 very high		perci	B pitous
7	WAVE PERIOD (sec)		i	2			3	4	6		8	10	1	2 1	16
8	WAVE LENGTH (ft)			20)		40	60 80 100	150 2	00 3	00 4 0 0	500 (500	800 I	000 1400
9	WAVE VELOCITY (knts)			<u></u>				10	15	20	25	3p	35	40	<u>45 50 5</u>
10	PARTICLE VELOCITY (ft/	sec)	į			2'		3	<u> </u>	\$	6	8	10	12 :	
11	WIND VELOCITY (knts)		4 5	6 7	8	9	10		:	0		- 40	b 1	50 (60 70

- waves. Occasional waves by interference between waves or between waves and swell
- waves, occasional waves by interference between waves or between waves and swell may be considerably larger.
 b. The above values are only approximate due to lack of precise data and to the difficulty in expressing it in a single casy way.
 c. Below the surface the wave motion decreases by 1/2 for every 1/9 of a wave length

.....

Ň

of depth increase.

Figure 4: Wind Waves at Sea

ĝ. 10 time, in the North Atlantic during January. If operations can be conducted only under sea state 3 conditions, operations would be limited to 31% of the time.

It should be noted that ship motion may be considerably greater than indicated by the wave amplitude values. For example in sea state 6 the wave height maximum is 20 ft from crest to trough. The heave motion for the DD963 class destroyer can approach 40 ft from crest to trough under sea state 6 conditions.

The DD963 Spruance class destroyer model was used for both the piloted and non-piloted simulation. This ship was chosen because a motion program for use with the piloted simulation was already available. The DD963 is considered to be typical of the type of ship from which VTOL operations could be conducted. The non-piloted simulation was set up so that data for other ships, as contained in Reference 8, could also be used. To provide some perspective of the ship used, Figure 5 shows a listing of ships according to type and class, information on the number of helicopters (assumed replaceable by VTOL aircraft) that can be carried, dimensional information, and a chart showing displacement.

A single degree of freedom ship model was programmed using the method outlined in Reference 9. The data for the DD963 class destroyer were obtained from Reference 8. The model consists of the superposition of twelve sine waves, six representing the heave motion at the ships center of gravity and six representing the pitch motion. The pitch motion is multiplied by the appropriate moment

SHIP	Type	CLASS	HELI- COPTER	DIMENSIONS					DISPLA	CEMENT		
RELIANCE BEAR CARCIA WEST WIND O.H. PERRY KNOX MACKINAW SPRUANCE BELKNAP GLACIER	C. C. CUTTER C. G. CUTTER FRIGATE ICE BREAKER FRIGATE ICE BREAKER DESTROYER G. MISSLE CRUISER ICE BREAKER	WMEC 615 WMEC 901 FF 1040 * WAGB 83 FFG 7 * FF 1052 * WAGB 83 DD 963 ** CG 26 WAGB	1 1 2 2 1 1 2 1 2	210.5 270 414 269 445 438 290 563.2 563.2 547 309.6	34 38 44 63.5 45 46.8 74 55.1 54.8 74	10.5 13.5 24 29 24.5 24.8 19 29 28.8 29	- - - - - - -	· · · · · · · · · · · · · · · · · · ·				
AUSTIN MARS IWO JIMA KILAUEA WICHITA BLUE RIDGE SACRAMENTO SAIPAN	AMPHIB. TRANS. DOCK COMBAT STORES AMPHIBIOUS ASSUALT AMMUNITION REPLENISHMENT OILER AMPHIBIOUS COMMAND FAST COMBAT SUPPORT AMPHIBIOUS ASSUALT AMPHIBIOUS ASSUALT	LPD 4 AFS 1 LPH 2 *** T-AE 26 AOR 1 LCC 19 AOE 1 LHA 2 LHD 1	6 2 11-20 2 2 1 19-26 19-26	570 581 602 564 659 620 793 820 840	100 79 84 81 96 82 107 106 106	23 24 26 28 33.3 29 39.3 26 26	•	• - -			•	
* OTHER ** Ship *** This	L (ft)	W (ft)	H (ft)	10	2	0 Tons	30 x 1000	 40	50			

Figure 5: U. S. Non-Aviation Ships

19

2. 20
arm and the vertical component is extracted and added to the heave motion to obtain the heave motion at the landing pad. Reference 9 reports that this method gives ship motion accuracies to within 5% of a model containing 30 superimposed sine waves per axis.

This ship motion program uses the Bretschneider wave spectrum, transformed based on ship velocity and heading relative to the waves. The ship motion spectrum is then obtained by combining the wave spectrum with the ship response functions and phase differences, Φ_{ii} , and the six amplitudes, A_n , and frequencies, ω_{en} , are extracted. The appendix contains more information on how this is accomplished. A component of the ship motion is then represented by

$$i(t) = \sum_{n=1}^{6} A_{n} \cos(\omega_{en} t - \phi_{i} + E_{i})$$
(5)

The phase differences are directly available from the ship motion data base information contained in Reference 8. E_n is a random phase angle which is obtained from a random number generator with an output scaled to give valued between 0 an 6.242 radians. Figure 6 shows a graphical definition of the axis system used in the simulation.

4. Turbulence Model

The turbulence model (Reference 9) consists of white noise, shaped by the following filters:

$$\dot{A}_{R} = \omega_{n}A_{R} + \sigma_{v}(2\omega_{n})^{2}n(1/TC^{1/2})$$
$$A_{R} = A_{R} + TC \dot{A}_{R}$$

Where A_R is turbulence induced accelerations on the aircraft in g's. The bandwidth, ω_n , was obtained from Reference 9. Values of the variance, σ_v , were obtained from a strip-chart recording of the turbulence induced vertical acceleration for the AV-8A during a fixed-based simulation. The term containing the simulation time increment, TC, is a correction to the power spectrum to allow for digitization. The quantity, n, is a random number from a Guasian distributed sequence with zero mean and unity variance.

(6)

D. RESULTS FOR NON-PILOTED SIMULATION

Touchdown velocities obtained from the non-piloted simulation incorporating the flight path command logic devised prior to the piloted simulation are shown in Figure 7. This figure shows the average over many runs during which damping constants, and various parameters in the flight path command logic, as well as pilot gain, were being manipulated to roughly determine the range of values that could be expected for touchdown velocities. These runs were also monitored as they were occurring to determine (subjectively) which values provided realistic piloting responses. As such, the results should be interpreted as a rough indication of the trends.

Figure 7 shows that in sea state 6 conditions, the orginal flight path command logic suggested the very surprising result that the landing task could be accomplished without ever exceeding a touchdown velocity of 12 ft/sec, for T/W values down to 1.01 and with engine lags as high as 0.7 sec. Moreover, the mean value of touchdown velocity was only mildly dependent on T/W and engine lag, ranging between 5.5 ft/sec and 6.5 ft/sec. Flight times from the initial altitude of 20 ft above the mean deck height were again only mildly dependent on T/W and engine lag, ranging from 20 to 30 sec.

The unexpected nature of the preliminary non-piloted simulation results strongly indicated the need for experimental verification. This experiment was performed on a fixed-base simulator at N.A.S.A.

Ames Research Center using an existing model of the AV-8A. It was recognized from the outset that an important requirement of this experiment was the need to supply the pilot with exactly the same information assumed in the construction of the command logic in the non-piloted simulation. Fortunately, an existing head-up display format termed SUPAR HUD (Reference 10) was available and was modified by removing all augmented information and adding the basic situation information of mean deck position, and the 2 sigma and 3 sigma deck positions relative to the mean.

24

Π

Ē

E

Γ

III. SIMULATION EXPERIMENT

A description of the test matrix, aircraft and ship models, simulation cab, and results obtained for the piloted simulation are presented in the following sections.

A. TEST MATRIX

and the second of the state of the second second

Based on the information gained from the non-piloted simulation, the test matrix shown in Figure 8 was set up. Sea state, thrust-to-weight ratio, vertical velocity damping through thrust, pilot, and HUD format were the variables. The task was then simulated using the fixed-base simulation facilties as further described below.

B. AIRCRAFT MODEL

1. Basic Aircraft

The AV-8A model used in the piloted simulation is described in Reference 6. It is a real time digital computer program developed to simulate the take-off and landing of V/STOL aircraft aboard ship. The unmodified aircraft model includes nonlinear aerodynamics, engine and reaction control systems, stability augmentation and actuator dynamics, and a landing gear model.

	HUD FORMAT			v	EL.	HU CO	D1 M.	SYS	•					. v :	EL.	HUI	D3 M. 1	SYS		•				Ă	TT.	HU CO	D3 M. :	SYS	•		
SFA	ENGINE LAG			0.	3			I	0.7			Γ	1	0.3					0.7		,	i.		0.3				I	0.7		
STATE	τ/₩ Ζ.₩	1.01	1.03	1.05	1.07	1.10	1.01	1.03	1.05	1.07	1.10	1.01	1.03	1.05	1.07	1.10	1.01	1.03	1.05	1.07	1.10	1.01	1.03	1.05	1.07	1.10	1.01	1.03	1.05	1.07	1.10
	0.0						Γ					0	0	0	0	0	0	0	0	0	0		1.15				—				
0	-0.2				·					•		0	0	0	0	0	0	0	0	0	0										
	-0.4											0	0	0	0	0	0	0.	0	0	0						-				
	-0.0											0	0	0	0	0	0	0	0	0	0										
-4 -	-0.2											0	0	0	0	0	0	0	0	0	0										
	-0.4						ļ					0	0	0	0	0	0	0	0	0	0										
	-0.0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0		0		0
6	-0.2	0	0	0	0	0	0	С	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0		0	0		0		Ò
	-0.4	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.	0		0		0	0		0		0

O INDICATES AREAS OF MATRIX TESTED

Figure 8: Test Matrix for the Piloted Simulation

2. Modifications to the Simulation Model

k

[]

11

Π

Only the turbulence portion of the airwake simulation was used. In order to create a simulation environment as close as possible to that assumed in the non-piloted simulation, the mean wind and its variation with height above deck were not used. In addition, the ground effects inherent in the AV-8A were deleted from the simulation to match the non-piloted simulation, and to more effectively isolate the parameters being studied.

A block diagram of the vertical velocity damping through thrust is presented in Figure 9, along with a definition of the variables used.

CHDOT - POWER LEVER ANGLE (deg)/(ft/sec) A/C CAIN - 0.45 (ft/sec²)/POWER LEVER ANGLE (deg)

Figure 9: Block Diagram of Vertical Velocity Damping through Thrust as Implemented in the Simulations

3. Control Augmentation System

In running the simulation, the throttle quadrant was used with a fixed range of travel throughout the test matrix. As a result, the throttle sensitivity (vertical acceleration per degree of throttle) varied with thrust-to-weight ratio. A plot of commanded g per degree of throttle travel may be found in Figure 10.

Two control systems were used for the fixed-based simulation. For the portion of the simulation in which only the vertical axis was being flown, a translational velocity command system was used. With this system the stick controls velocity in the longitudinal and lateral directions. When the pilot leaves the stick centered, the aircraft maintains position (zero velocity). The pilot only had to control the throttle to perform the task.

The second control system was an attitude command system. It was used to provide a positioning sidetask for the pilot. Using this system, the pilot flew the vertical task using throttle and had to actively maintain position over the ship deck by commanding attitude through the stick.

The transfer functions for the control systems are as follows:

Translational velocity command system:

Attitude command system:

Î

$$\frac{\phi}{\phi_{\rm cmd}} = \frac{4}{(s^2 + 3s + 4)} \qquad \frac{\theta}{\phi_{\rm cmd}} = \frac{4}{(s^2 + 3s + 4)}$$

$$\frac{\phi_{\rm cmd}}{\phi_{\rm lat \ stick}} = \frac{11^{\circ}/in}{\theta_{\rm long \ stick}} \qquad \frac{\theta}{\theta_{\rm cmd}} = \frac{11^{\circ}/in}{\theta_{\rm long \ stick}} \qquad (8)$$

More information on the control systems being used in fixed-based simulations may be found in Reference 11.

4. Head-Up Display

Two HUD displays were used in the piloted simulation. These are referred to as HUD1, and HUD3, and are shown in Figure 11. HUD3 was used most extensively in the testing. HUD3 contains the ship position reference lines and aircraft hover height and "abort chase" altitude lines. HUD1 contains only the symbol indicating current ship deck position. HUD1 was used to determine how much (if any) advantage there was to displaying the extra information on ship motion boundaries. It should be noted that the HUD3 format collapses into the HUD1 format for calm seas (sea state 0).

The head-up display superimposes vertical and horizontal situation information. The trident symbol is fixed in the center of the display and shows the aircraft's vertical position as the distance of the three 'pads' of the trident from the top of the ship deck reference symbol. In addition, the trident provides horizontal situation indications to the pilot when actively flying the sidetask with the attitude command control system. When the sidetask is flown, a dagger is added to the display to indicate the undisturbed position of the deck bull's-eye. The distance between the trident and the dagger shows the error in lateral and longitudinal position. The HUD format also contains symbols showing a horizon line, pitch bars, pitch reference, and side slip. The lines added for the experiment show the 3 sigma, 2 sigma, abort chase height, and mean deck positions.

The equations describing the transfer function for moving the dagger relative to the trident are described in appendix B. To assist the pilot in performing the station keeping task the dagger motion is augmented with input of aircraft true velocity, the estimated acceleration, and stick position. The HUD symbology was driven by a Digital Corperation PDP-1VES computer at an update frame time of 110 msec.

C. SHIP MODEL

Ship dynamics are modeled as six degree of freedom sinusodial motion. The ship is assumed to have a fixed mean position about which it oscillates. Wind over the deck is composed of a steady induced wind equal to the ship speed plus a separate North or East component of natural wind which can be specified. At present a turbulence model developed for the DD963 class destroyer is used (Reference 8). This subroutine calculates the free air turbulence as well as ship wake turbulence. The latter varies with position relative to the landing pad. Table 2 gives an indication of the environmental conditions for the simulation.

D. SIMULATION FACILITIES

1. Simulator

The fixed-base chair (Ch. 06), is used primarily to develop controls and head-up displays for use in VTOL aircraft and

CONDITION	SEA STATE	V s (knts)	μ _s (deg)	Ψ _Ψ (deg)	Ψwod (deg)	V _w (knts)	V _{wod} (knts)	^{il} s (m)	T _o (sec)
1	6	25	120	-60	-30	25.00	43.30	5.49	15.13
7	4	25	105	-75	-30	17.68	34.15	2.10	10.60
14	0	10	-	-68.6	-30	8.07	15.00	0	-
	, deg)	σ _θ (deg)	σ _ψ (deg)	σ _{×cg} (m)	σy _{cg} (m)	σ _z cg (m)	σ _× (m)	σy _{tp} (m)	σ _z 2p (m)
1	3.13	1.05	0.45	0.24	0.71	1.51	0.45	0.63	1.67
7	1 11	0.34	0.17	0.05	0.27	0.60	0.12	0.18	0.65
14	0	0	0	0	0	0	0	0	0
	σ• φ (deg/sec)	σ _θ (deg/sec)	°↓ (deg/sec)	°* cg (m/sec)	^{o,} y _{cg} (m/sec)	() cg (m/sec)	("*tp (m/sec)	^σ • y _{îp} (m/sec)	"z ¹ p (m/sec)
1	2.00	0.90	0.36	0.15	0.41	1.10	0.32	0.46	1.31
7	0.88	0.32	0.18	0.04	0.21	0.53	0.10	0.20	0.59
14	0	0	0	0	0	0	0	0	0

Table 2: Simulation Environmental Conditions for the DD963 Class Destroyer

• • • • • • •

· Lucial Lucian

1.

helicopters (Figure 12). Configured as a single-seat cockpit, it is equipped with a conventional stick and rudder pedals with adjustable trim. The chair is provided with a virtual image TV display, on a single forward looking window. The outside scene is provided by a camera-terrain board system. A head-up display can be superimposed on the outside scene to provide flight information to the pilot. The cockpit also contains a unique throttle/nozzle control quadrant used for V/STOL simulation. Aircraft dynamics are provided by a Xerox Sigma 9 digital computer. The aircraft dynamics are updated at a frame time of 55 msec for the AV-8A model.

2. Pilots

E!

Two pilots were used for the simulation. Both pilots were used in the sea state 6 portion of the test matrix. Pilot B filled in the remaining tested portions of the test matrix.

Pilot A is a research engineer at NASA Ames Research Center. He has been flying both the fixed and moving base simulators for 15 years. Most of this time has been spent using the AV-8A and YAV-8B simulation models. He was also heavily involved in simulations of advanced lift-fan transport (ALFT) aircraft and the Navy research and technology aircraft (RTA).

Pilot B is also a research engineer at NASA Ames Research Center. He has been flying both the fixed and moving base simulators for over 4 years. Most of his simulation time has also been with the AV-8A and YAV-8B models. He also has some helicopter simulation time.

The pilots were asked for comments and a pilot rating following each series of the five runs that made up a data point. The pilot rating is based on the Cooper-Harper rating scale (Figure 13). More information on the Cooper-Harper scale may be found in Reference 12.

E. OPERATIONAL TASK

The task to be flown was the same as described in the nonpiloted simulation. The aircraft was positioned at an initial altitude of 45 ft above the mean deck position, in a stabilized hover, directly over the bull's-eye on the ship deck landing pad. The pilot, through use of throttle, was then to control altitude and vertical velocity in descending to an initial hover altitude. The initial hover altitude was the 2 sigma value of the ship deck position, above the ship deck position mean, as designated by a line on the HUD (HUD3). The pilot was then to land at his descretion, aided by the ship deck motion information presented on the HUD.

There were two variations of the task. In the first, the HUD was reconfigured so that the ship deck motion boundaries and position reference lines were not displayed (HUD1). The pilot was then to complete the task with only the deck position symbol as a reference. In the second variation, the control system was changed from the translational velocity command system to an attitude command system. This was done to provide the pilot with the sidetask of actively using the stick to maintain the aircraft position over the deck bull's-eye while performing the vertical task.

F. RESULTS FOR THE PILOTED SIMULATION

1. Task Performance and Pilot Ratings

A record of the test matrix and runs completed may be found in Appendix B.

As might be expected from the random nature of the ship motion, the time to complete the task was the most variable parameter. The average time over each series of 5 runs as a function of sea state, HUD, and T/W (Figure 14) lies in a band from 19 to 36 seconds.

Individual times varied from a low of 7.2 seconds for a particular sea state 4, HUD3 run, to a high of 79.0 seconds for a sea state 6, HUD1 run. It should be noted that the addition of the sidetask does not appear to change the amount of time the pilot takes to complete the task.

The non-piloted simulation showed that the mean time and standard deviation for flight time did not approach a steady value until after approximately 40 runs, indicating why such a large variation exits for the piloted simulation groups of 5 runs each.

Average touchdown velocity as a function of T/W for HUD1, sea state 6 conditions are presented in Figure 15 for two values of engine response. The following points should be noted: 1) In general there is a less than expected change in touchdown velocity with change in T/W ratio (less than 4.0 ft/sec for the T/W ratio range tested), 2) The faster engine time response (0.3 secs) produce touchdown velocities of 0.5 to 1.5 ft/sec less than the slower responding engine (0.7 secs) and 3) The greater vertical velocity damping the lower the touchdown velocity (as much as 4 ft/sec).

Pilot ratings as a function of T/W for HUD1, sea state 6 conditions are presented in Figure 16 for two values of engine response. The following items should be noted: 1) The pilot rating is higher (worse) as T/W ratio goes down over the range tested, 2) Pilot rating is higher (worse) as engine lag is increased and as vertical velocity damping is decreased (as much as 2.5 points difference) 3) With the HUD1 system and low vertical damping there are ratings in the Inadequate range even for T/W ratios of 1.1.

Average touchdown velocity and pilot ratings as a function of the control system and HUD format are presented in Figure 17.

Figure 15: Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Touchdown Sink Rate---Baseline HUD with Velocity Command Control System

Lik 🛆

÷

Figure 16: Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Pilot Ratings--Baseline HUD with Velocity Command Control System

1.22

Figure 17. Comparison of Touchdown Sink Rate and Pilot Rating as Influenced by Thrust-to-Weight Ratio for a Selected Condition--Baseline HUD with Velocity and Attitude Control Systems

As shown, the touchdown velocity and pilot ratings are both improved with the additional information of the HUD3 format. There is as much as a 2.5 ft/sec improvement in average touchdown velocity in going from HUD1 to HUD3. It should also be noted that HUD3 produced an Adequate pilot rating throughout the range of T/W ratio tested for the stated engine response and vertical damping (Figure 17). The addition of the sidetask did not seem to influence the result in any systematic manner.

Average touchdown velocity as a function of T/W for HUD3, sea state 6 conditions are presented in Figure 18. Again note that there is little change in average touchdown velocity over the T/W ratio range tested (less than 3 ft/sec for the worse case). Average touchdown velocities are 0.5 to 3 ft/sec better with the HUD3 format than for the HUD1 format (Figures 15 and 18). The engine time constant and vertical velocity time constant have a much smaller and less consistent effect on average touchdown rate for the HUD3 format (Figures 15 and 18).

Pilot rating as a function of T/W for HUD3, sea state 6 conditions are presented in Figure 19. The most interesting thing to note here is that the average ratings are Adequate for all conditions tested throughout the T/W ratio range tested. The pilot ratings also show more clearly that the faster responding engine and greater vertical velocity damping are important to the pilot as evidenced by the consistent effect they have on pilot rating. There is as much as one pilot rating improvement attributable to either a fast responding engine or good damping.

Figure 18: Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Touchdown Sink Rate--Augmented HUD with Velocity Command Control System

44

c

19: Influence of Thrust-to-Weight Ratio, Engine and Airframe Dynamics on Pilot Ratings--Augmented HUD with Velocity Control System Figure 20 provides some perspective on the effect of sea state on average touchdown velocity and pilot rating, for a selected, condition using the HUD3 format. Note the relatively small change in touchdown velocity over the range of sea state, the greatest change occurring for T/W ratio of 1.01 (an increase of 5.0 ft/sec from calm sea to sea state 6). The pilot ratings show Satisfactory ratings for sea state 0 and 4 and Adequate ratings at sea state 6 for all T/W ratios for the selected condition.

The miss distance when performing the sidetask associated with the attitude command system is presented in Figure 21 for various values of T/W. The miss distance is the horizontal distance from the aircraft center of gravity to the center of the bull's-eye on the ship deck at the time of landing. It is interesting to note that the average miss distance changes less than a foot with the fast responding engine while changing 5.5 feet for the slow responding engine over the T/W ratio range tested. In both cases the miss distance decreases with decreasing T/W ratio. Possible reasons for this result would include; too much control sensitivity at higher T/W, or a change in piloting technique; i.e., the pilot may be spending a different percentage of time, or changing the frequency with which he samples the information at the different T/W ratios.

A better understanding of the relative performance of HUD1 and HUD3 can be gained from Figure 22, which shows a histogram of the landing performance for HUD1 and HUD3 with a histogram of the ship deck motion for sea state 6 conditions.

MANY IN

Figure 20: Comparison of Touchdown Sink Rate and Pilot Rating as Influenced by Sea State for a Selected Test Condition--Augmented HUD with Velocity Command Control System

Figure 21: Influence of Thrust-to-Weight Ratio on the Positioning Side Task--Augmented HUD with Attitude Command System

Figure 22:

THE WAY

Distribution of Touchdown Sink Rate and Ship Deck Velocity--Baseline and Augmented HUD Breakdown for all Landings Completed for the Simulation The velocity histogram for HUD1 peaks at 8.5 ft/sec, which is just above the 1 sigma value for the ship motion velocity for sea state 6. The touchdown velocity for HUD3 peaks at 6.5 ft/sec or 2 " ft/sec less than HUD1. The histogram also shows the HUD3 data to have a smaller standard deviation.

1.1

Table 3 indicates the precentage and number of landings over 12 ft/sec which occurred overall and for several sets of test conditions.

Table	3: .	Touchdown	Velocity	y Sta	ntistic	cs Indica	ating	Nu	nber
		of Landing	gs with a	Sink	Rates	Greater	Than	12	ft/s
		for Select	ted Test	Cond	litions	3.			

CONDITION	NUMBER OF LANDINGS	NUMBER OF LANDINGS > 12 ft/sec	% LANDINGS > 12 ft/sec
Total Simulation	995	28	2.81
S.S.O, S.S.4 Overall	260	0	0.0
S.S.6 Overall	735	28	3.81
S.S.6, HUD1 Vel. Cmd. Sys. S.S.6, HUD3 Vel. Cmd. Sys. S.S.6, HUD3 Atd. Cmd. Sys.	212 419 104	18 7 3	8.49 1.67 2.89
S.S.6, HUD3 V.C. τ _{eng} =0.3 S.S.6, HUD3 A.C. τ _{eng} =0.3	216 60	1 1	0.46 1.67

A series of T/W ratio histograms are presented in Figures 23 through 27. Most of these curves show a fairly sharp spiked peak. In observing the simulation and through pilot comments, it is concluded that this shape of curve can be attributed to the pilots technique of setting up an initial descent rate and holding it either until near the ship deck for the HUD1 system, or until the 3 sigma line on the HUD3 system was approached, and then slowing or arresting the descent. The initial descent phase, which takes 90 to 95% of the total time produces the predominant peak in the histogram.

The histograms for HUD1, sea state 6 conditions are presented in Figure 23.

 $(\overline{)}$

Figure 2:

Influence of Thrust-to-Weight Ratio on Thrust-to-Weight Ratio Use Histograms--Baseline HUD with Velocity Command Control System

The peak occurs at the T/W ratio used most often in the initial descent. The peak is somewhat broader for T/Wmax of 1.1 probably

indicating that the pilot is operating with lower gains. The base of the peak is fairly narrow and corresponds to the observed pilot behavior, with the HUD1 format, of chasing the deck less, possibly due to lack of positional cues. Landings, using the HUD1 format generally occurred as the deck caught the aircraft. The area under the curves tends to bunch up at the high end of the available T/W as T/Wmax is decreased. This is due to the pilot tending to fly more conservatively (lower descent velocities).

The histograms for HUD3, sea state 6 conditons are shown in Figure 24.

Figure 24:

1. J. 19

Influence of Thrust-to-Weight Ratio on Thrust-to-Weight Ratio Use Histograms--Augmented HUD with Velocity Command Control System Notice that the curves broaden somewhat in comparison to those for the HUD1 format. Because of the positional information available to the pilot with the HUD3 format, pilot gains are somewhat lower, and the pilot has more opportunity to chase or run from the ship deck. This tends to broaden the peak and base of the curves. The area under the curve for T/Wmax = 1.01 is much more bunched up at the high end, than for the HUD1 case. This is due to, the pilot's tendency to fly more conservatively (lower descent velocities, higher thrust settings), since the HUD3 format makes him more aware of the limitations of the available control power.

The effects of vertical velocity and engine time lag for HUD3, sea state 6 conditions are presented in Figure 25.

With zero vertical damping, the pilot had a much more difficult time controlling vertical velocity, and this is compounded with a slow responding engine. The curve becomes much less peaked and is spread out over a larger range of available T/W. This is in contrast to the curve for higher damping and faster responding engine where the pilot is able to control vertical velocity with much less throttle movement (i.e., the throttle becomes a vertical velocity command control).

The effects of HUD format and type of control system on T/W histograms is presented in Figure 26. An interesting thing to note here is that the peak for the attitude command system occurs at a higher T/W ratio than for the velocity command system using either HUD. Also the curves for the attitude command system tend to be

much more symmetrical about the peak. The explaination for this is that the pilot was observed to spend at least as much time on the positioning sidetask as with the vertical task. As a result, he tended to fly more conservatively (at a higher thrust, slower descent rate) and the errors in desired vertical position/velocity are therefore more likely to occur randomly rather than only on a conservative side as when flying only a vertical task.

The effect of sea state on T/W histograms for a selected condition is presented in Figure 27.

As expected, at the low sea states the pilot spends more time in the initial descent and less time correcting for deck position. As a result, lower sea states produce a histogram with a sharper peak and with a smaller base.

2. Pilot Comments

The pilots were given an explanation of the task and discription of the HUD symbology. From this they developed some individual techniques. Pilot A, especially for the higher values of T/W with fast responding engine, often waited for the deck symbol to crest just below the 2 sigma line, and then smoothly rolled off the throttle providing a quick descent in which the aircraft would catch the deck on its downward motion with a usually low value of relative descent rate. Pilot B used this technique also although, not as often.

Both pilots became more adept at picking out "lulls" in the ship motion as the simulation progressed. It was often possible to tell that the deck was in a lull condition when its motion was slow and position was a couple of feet above the mean line. The pilots would make a quick descent and attempt to catch the deck before the more extreme motions reoccurred.

The pilots also understood that if they chased the deck below the mean line (or were unable to arrest a descent until below the mean line), then in most cases it was better to continue and attempt to catch the deck near its lowest position (and therefore low velocity) than attempt to climb back to the 2 sigma line. When the attempt to pull up was made, especially with low T/W, the deck tended to catch the aircraft near the mean deck position, often with a high velocity, and therefore, high relative velocity.
The most general comment expressed about technique was, "always be in a position to gradually take off power, and don't get caught needing it."

Pilot comments indicated the following:

1) The greater the T/W, the more controllable and easier it is to perform the task (through the range tested).

2) The higher the value of T/W, the less sensitive the pilot workload is to engine lag and vertical damping.

3) The higher values of damping provided better control of vertical velocity, which in turn aided the initial descent to the 2 sigma line. The lower values of damping provide quicker vertical response and therefore greater agility during the final phase of descent.

4) The slow responding engine was considered unfavorable, even though a few cases occurred when the engine compensated for an overcontrol by the pilot.

5) Both pilots commented on the importance of engine noise as a cue.

6) HUD3 was perferred over HUD1. The pilots commented favorably on having the ship motion boundaries and 2 sigma lines as references in giving precise situation information.

7) Comments concerning HUD1 generally focused on the feeling of not knowing either the position or vertical velocity of the aircraft relative to the mean deck position.

8) When using HUD1, the effects of damping and engine lag were less evident, since errors were not as easily detected due to the lack of references. One of the pilots commented that the task workload was less using HUD1 because of the lack of references, but gave it a higher (worse) pilot rating because of the greater uncertainty involved.

57

IV. REVISED ANALYTICAL PREDICTIONS

After the piloted simulation was run, the non-piloted simulation was modified in an attempt to match the measured T/\tilde{W} histograms, as well as to better represent the observed piloting technique.

A. MODIFIED ANALYTICAL MODEL

The following modifications were made to the program:

1) A feed back loop was added to provide vertical velocity damping through thrust, and the coefficient for vertical velocity damping through airframe was reduced to more closely match the fixed-based simulation model.

2) The flight path command logic was rewritten to provide a better match to the observed landing strategy adopted by the pilots. Details of the logic are given in the next section.

3) Two additional noise sources were added to account for pilot perception error and internal pilot noise.

4) The pure time lag, used to represent the pilot's information processing time interval, was divided into a pure lag and a secondary time in which the input to the pilot's neuromuscular dynamics was held constant for a specified time. The purpose here was to simulate the pilots concentration on a sidetask. A block diagram of the modified model set-up is shown in Figure 28.

The modified version of the flight path command logic consists of 6 basic sections. The first section determines which of five defined regions of relative position and velocity that the aircraft is currently in. This section then specifies which of the remaining 5 sections is to be used to supply the commanded flight path information to the pilot transfer function. These sections are referred to according to their basic strategy: RUN FAST, RUN, CHASE, ABORT TO HOVER HEIGHT, and CHOP THROTTLE. The RUN FAST sequence is initiated whenever the relative velocity of the aircraft and ship exceeds a given value, typically 5.5 ft/sec. The RUN FAST logic commands an altitude of 12 ft above the present altitude using a cosine smoothing function. This command causes the simulated pilot to apply full throttle. If the relative position is less than 9 ft and the relative velocity exceeds 4.5 ft/sec the RUN sequence is initiated. The RUN logic commands an altitude of 6 ft above the present altitude through a cosine smoothing function, causing the simulated pilot to apply approximately 95% of full throttle. If the aircraft was in the RUN FAST sequence and then switches to the RUN sequence, the commanded altitude is lowered 6 ft from the previously commanded altitude, thus causing the throttle to be reduced from full to approximately 90%. If the relative position of the aircraft and ship deck is less than 3 ft and the relative velocity hasn't exceeded 4:5 ft/sec then the CHASE sequence is initiated. The CHASE logic commands a cosine function descent, modulated by the ship deck motion, starting at the previously commanded altitude and

ending at the ship deck. If the aircraft position descends below a designated abort height, the ABORT TO HOVER HEIGHT sequence is initiated. The abort height is the height above the ship deck mean position which, if a descent is continued, will not provide enough time to gain the necessary height to prevent a hard landing in the event the next segment of the motion is around the 3 sigma value. This height, of course, varies with sea state. Up to sea state 4 the abort height is zero because the relative velocity can be maintained below the gear limits anywhere in the ship motion boundaries. The hover height is the 2 sigma height above the ship deck mean. The ABORT TO HOVER HEIGHT logic commands the hover height altitude through a cosine smoothing function from the altitude in the previous sequence. The hover height altitude is then maintained until conditions require use of another logic section. The CHOP THROTTLE sequence is designed to mimick a normal pilot landing technique. It is initiated when the relative aircraft to ship position is less than the Chop Throttle Now Height (CTNH), which is another adjustable variable. Unlike the other sequences, which can be abandoned for a more apporpriate one at any time during the sequence, once the CHOP THROTTLE sequence is initiated it continues until a landing occurs or a specified time has elasped The CHOP THROTTLE logic commands a 12 ft descent in altitude through a cosine smoothing function. This command effectively produces near zero thrust output. The sequence maintains this reduced altitude for a specified period of time. If during this time period a

The Alt

landing has not occurred, the sequence commands an ascent back to the hover altitude. This logic models the pilot behavior after he sees a landing opportunity; i.e., the aircraft is 0.5 ft off the deck but with the deck beginning to descend.

The modified analytical model produced a much more accurate representation of observed piloting technique. For example, it was observed in the piloted simulation that with the slow responding engine, more landings were made running from the ship than chasing it, whereas with the fast responding engine, approximately the same number of landings were made chasing the ship as running from it. A series of computer runs were made which duplicated this result (Table 4).

1	TEST CON	DITION	PERCENT OF LANDINGS					
т/ч	τ eng sec	Z sec ⁻¹	Flight 1	Path Lo 2	ogic Sec 6	tion 7		
1.07	0.7	0.4	52.5	10.0	35.0	2.5		
1.05	0.7	0.4	55.0	10.0	15.0	20.0		
1.03	0.7	0.4	55.0	5.0	27.5	12.5		
1.01	0.7	0.4	50.0	15.0	30.0	5.0		
· .	Avera	ge	6:	3.1	30	5.9		
1.01	0.3	0.4	42.5	10.0	27.5	20.0		
1.07	0.3	0.4	42.5	5.0	32.5	20.0		
1.05	0.3	0.4	40.0	12.5	30.0	17.5		
1.03	0.3	0.4	45.0	2.5	45.0	7.5		
	Avera	ge	50.0			0.0		

Table 4: Influence of Thrust-to-Weight Ratio and Engine and Airframe Dynamics on Flight Path Command Logic Sequence Use

- Run Fast Sequence

2 - Run Sequence

6 - First section of the Chop Throttle Sequence - Second section of the Chop Throttle Sequence

The original flight path command logic did not provide a chop throttle sequence, and the landing nearly always occurred while in the RUN FROM sequence. A schematic diagram of the modified flight path command logic is shown in Figure 29. An example time history showing some of the flight path command logic aspects is shown in Figure 30. In addition, two representive time histories are presented in Figures 31 and 32. (&

B. COMPARISON OF ANALYTICAL AND SIMULATION RESULTS

A comparison of touchdown velocities for the non-piloted simulation and the piloted simulation are shown in Figure 33. The non-piloted simulation results, using either the original or modified flight path command logic, produced lower touchdown velocities than were achieved in the piloted simulation. The modified logic generally produced the lowest touchdown velocities. Further adjustment of the parameters in the non-piloted simulation to produce a closer match to the piloted simulation results could provide further insight into the pilot's capabilities.

The results for the modified version of the flight path command logic when compared to the piloted simulation data show a good correspondance in average flight time for the lower T/W ratios, but a large gap is evident for T/W = 1.1 as shown in Figure 34.

Figure 29: Block Diagram of the Modified Flight Path Command Logic

Figure 34: Comparison of the Influence of Thrust-to-Weight Ratio on Flight Time--Augmented HUD with Velocity and Attitude Command Systems of Piloted Simulation and the Original and Modified Flight Path Command Logic of Non-Piloted Simulation

A comparison of average touchdown velocities for a selected condition is shown in Figure 35.

Figure 35: Comparison of the Influence of Thrust-to-Weight Ratio and Engine Dynamics on Touchdown Sink Rate---Augmented HUD with Velocity Command System and Modified Flight Path Command System.

As can be seen the trends are roughly correct for either command logic. However, there is still a fairly large bias that is unaccounted fcr. It should be noted that the data shown for the non-piloted simulation is a composite of data in which the pilot gains, aircraft vertical velocity damping, and variables mentioned in the T/W histogram section were being manipulated in an attempt to find optima (touchdown velocity and flight time) for each T/W ratio. Most of these runs were made shortly after the piloted simulations began, but before the data from the piloted simulation were analyzed. A more precise comparison requires another series of

non-piloted simulations to be run with variables similiar to those us d in the piloted simulations.

Initially, there was only interest in obtaining an indication from the non-piloted simulation as to whether or not the lower thrust-to-weight values were practical for landing in high sea states. In the early stages the program was used to provide estimates of touchdown velocity means and standard deviation and the time required to land. As the work progressed it became clear that the fixed-base simulation output data used to construct thrust-toweight ratio histograms, could then be used as another matching variable in determining the accuracy of the non-piloted simulation. There are 17 variables whose values determine in some way the

shape of the histogram. These are:

1. The initial starting altitude.

2. The letdown time.

3. The hover height altitude.

4. The abort height altitude.

The chop throttle height.
 6-8. Pilot gains.

9. The pilot pure lag time.

10. The pilot sidetask time.

11. The ratio of 9. and 10.

12. The pilot preception error noise amplitude.

13. The pilot preception error noise frequency.

14. The pilot internal noise amplitude.

- 15. The pilot internal noise frequency.
- 16. Pilot lead time time constant.
- 17. Pilot lag time constant.

Some of these non-piloted simulation variables are easily fixed. Initial height, hover height, and abort heights are all displayed for the pilot and so are the same in both piloted and non-piloted simulations. Pilot internal noise amplitude was based on having each pilot, and any other observers present, guess the velocity at which the pilot touched down as viewed on the head-up display monitors. The error was then determined and the noise standard deviation was set at 1.5 ft/sec after averaging over the number of observers approximately 180 landings. The rest of the variables were set by making an initial guess and then making 5 runs and looking to determine how the variable had changed the histogram. This process was repeated by either changing the variable again, or going to the next one. In this way a good match to the histogram was made for one of the cases (Figure 36). It should be noted that there may be as much as 20-30% change in any one point on the histogram for a given set of 5 runs (as can be seen in Figure 37). This is because 5 runs are not enough to get a good statistical representation, thus aggravating the difficulty of trying to obtain a good match. The non-piloted simulation showed that approximately 40 runs (depending on the T/W ratio being used) is needed to p. svide adequate statistics. When histograms representing only 5 runs are constructed based on 10 unknown variables, there is some difficulty in producing a good match. Another problem occurs when trying to

Non-Piloted Simulations

In it

Figure 37: Variation of Thrust-to-Weight Ratio Use Histograms Due to a Statistically Small Number of Runs Used Per Data Point

match the touchdown velocity and flight time averages for the same cases. It was found that once the major influence of variable changes on the histogram shape was obtained, it was fairly easy to get a rough match of histograms. The T/W ratio for which the histogram peaks can be obtained through selection of the initial letdown velocity of the aircraft. The base can be broadened by selecting higher values for the pilot gains. The sharpness of the fillets between the base and peak were found to change somewhat with the selection of pilot gains and the values used for frequency and magnitude in the pilot internal and preception noise models. The shape of the base; i.e., the number and size of the peaks appeared to be mainly dependant on the ratio of three pilot gains used. It is also fairly easy to get a reasonable match of touchdown velocities and flight times. It is not easy to get all three of these results to give a reasonable match simultaneously. This may be due to something inherent in either the piloting technique or aircraft model being flown on the fixed-base simulation that is not being modeled accurately in the non-piloted simulation, or that the right combination of values for the variables has not been found. The latter should be explored further using parameter identification techniques. It would ultimately be hoped that all three could be matched for a couple of cases and then the values of the variables be determined analytically to produce matching values for other cases. This pilot model would then be a good tool for predicting the landing performance of any VTOL aircraft onto any type of ship.

V. CONCLUSIONS

The problem of determining the vertical axis control requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a non-piloted batch simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags.

The piloted simulation was run using a fixed-base simulator at N.A.S.A. Ames Research Center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer. Two pilots were used to obtain data and to give pilot ratings based on the Cooper-Harper pilot rating scale.

A surprising result of this simulation was that, with a good station keeping control system and with statistical ship motion displayed on the head-up display, pilots could consistently perform safe landings in sea state 6, with handling qualities that were adequate at thrust-to-weight ratios greater than 1.03 and even marginally adequate down to thrust-to-weight ratios of 1.01. These results should hold quite generally provided that a thrust-to-weight ratio of 1 + Δ is interpreted as meaning that the pilot always has the capability of accelerating the aircraft at Δ g upward even in the presence of ground effect and hot gas reingestion.

Preliminary work with a non-piloted simulation showed that with a good strategy and the right information, a pilot should be able to

land a VTOL type aircraft vertically aboard a DD963 class destroyer under sea state 6 conditions, in an adequately controllable manner, with thrust-to-weight ratios as low as 1.01, engine lags as high as 0.7 sec, and vertical velocity damping of 0.2 secs, without exceeding a 12 ft/sec landing gear limit. This non-piloted simulation showed an overall average touchdown velocity of 5.8 ft/sec and an average flight time of 32.5 seconds. Results were then obtained from a piloted fixed-base simulation in order to verify the non-piloted results. Similiar results were obtained, with an average touchdown velocity of 6.7 ft/sec and flight time average of 33 seconds. In addition, the pilot ratings indicate satisfactory (level 1) handling qualities for sea state 6 conditons and thrust-to-weight ratios as low as 1.03 and adequate (level 2) handling qualities for thrust-to-weight ratios as low as 1.01.

Pilot ratings showed the expected results of being more favorable as T/W ratio increased, up to the maximum tested of 1.1, and with increasing vertical velocity damping, up to the maximum of -0.4 sec⁻¹ tested, and with the faster responding engine, engine lag of 0.3 secs. The pilots also demonstrated lower touchdown velocities when presented with the ship motion boundaries, and aircraft hover and abort chase height lines on the head-up display, then when presented only with the ship deck position symbol. The simulation also showed that the pilot was capable of obtaining similiar results when flying either the translational velocity command system or attitude command system. Pilot ratings indicate

that the translational velocity command system was perferred however.

Based on the current non-piloted simulation, it is believed that an extension can be made to determine piloted results for other T/W ratios, engine lags, vertical velocity damping, and ship classes, under various sea state conditions. This is based on the assumption that, using parameter indentification techniques, touchdown velocities, flight times, and T/W use histograms can be made to match the current piloted simulation data.

Although the simulation indicates that aircraft can be landed vertically at much lower T/W ratios than previously suspected, even with the positioning sidetask, it remains to be seen how well low thrust-to-weight ratios will work when a full range of sidetasks inherent in flying actual aircraft are employed. In addition, more work should be done to determine the effects on minimum T/W ratio of non-linear elements which were not examined in this simulation. The effects of suckdown, fountains, hot gas ingestion, and height dependant mean winds can all significantly effect minimum T/W.

As a practical point regarding the simulation, additional research would have to be conducted to ascertain how well instrumentation aboard ship can determine the mean ship position and the motion boundaries, how long in advance of the aircraft arrival the motion would have to be monitored to provide accurate results, and how well the aircraft/ship systems can determine real time deck position.

IV. REFERENCES

Ref. No.	Reference
1.	Nave, Ronald L., "Analysis of Height Control Power Requirements for V/STOL Aircraft," NADC Report No. 79211-60, July 30, 1979.
2.	Polk, Clyde H., and Phater, Anil V., "Evaluation of a Real Time Prediction Guidance Law for Landing VTOL Aircraft at Sea," AIAA 84-2673-CP, December 1984.
3.	Baitis, A. E., "The Influence of Ship Motions on Operations of SH-2F Helicopters from DE-1052-Class Ships: Sea Trial With USS Bowen (DE-1079)," Report No. SPD-556-01, July 1975.
4.	Sider, M. M., and Doolin, B. F., "On The Feasibility of Real-Time Prediction of Aircraft Carrier Motion at Sea," IEEE Transactions On Automatic Control, Vol. AC- 28, No. 3, March 1983.
5.	McMuldroch, C. G., "VTOL Controls for Shipboard Landing," University of Victoria, Canada, 1976.
б.	Nave, R. L., "A Computerized VSTOL/Small Platform Landing Dynamics Investigation Model," NADC-77024-30, 1977.
7.	D. T. McRuer, D. Graham, E. Kredel, "Manual Control of Single Loop System," Journal of the Franklin Institute Volume 283, No. 1, January 1967.
8.	Baitis, A. E., Meyers, W. G., and Applebee T. R., "A Non-Aviation Ship Motion Data Base for the DD963, CG 26, FF 1052, FFG 7 and the FF 1040 Ship Classes," DTNSRDC Report No. SPD-738-01, December 1976.
9.	Fortenbaugh, R. L., "Progress in Mathematical Modeling of the Aircraft Operational Environment of DD963 Class Ships," AIAA Paper No. 79-1677, August 6-8, 1979.
10.	Merrick, Vernon K., "Simulation Evaluation of Two VTOL Control/Display Systems in IMC Approach and Shipboard Landing," NASA TM 85996, December 1984.

REFERENCES, continued

Ref. No.	Reference
11.	Ferris, G. G., Merrick, V. K., and Gerdes, R. M., "Simulation Evaluation of Flight Controls and Display Concepts for VTOL Shipboard Operations," AIAA Paper No. 83-2173, August 1983.
12.	Cooper, G. E., and Harper, R. P. Jr., "The Use of Pilot Rating in the Evaluation of Aircraft Handling Qualities," NASA TN D-5153, April 1969.
13.	Roskam, J., "Airplane Flight Dynamics and Autcmatic Flight Controls,"Roskam Aviation and Engineering Corporation, 1975.

The computer program for the non-piloted simulation was discussed in general in the main body of the report. Some more detailed information regarding certain aspects of the program are described below.

A. APROXIMATE INVERSE LAPLACE TRANSFORM METHOD.

The numerical iteration method used for solving the differential equations used in the computer program is the Approximate Inverse Laplace (A.I.L.) method (Reference 13). It is assumed that the equations for the transfer functions are in the form:

$$X(s) = \frac{N(s)}{D(s)} = \frac{A_n s^n + A_{n-1} s^{n-1} + \dots + A_0}{B_n s^n + B_{n-1} s^{n-1} + \dots + B_0}$$

(A1)

(A2)

where m > n and B_m is not equal to zero.

Then using the following recurrence formula:

$$C_{i} = \frac{1}{B_{m}} \begin{bmatrix} A_{n-i+1} & -\sum_{j=0}^{m-1} B_{j}C_{i-m+j} \end{bmatrix}$$

where $A_x = B_x = 0$ for x < 0, and $C_x = 0$ for x < 0.

X(s) can be rewritten as

$$X(s) = C_1 s^{n-m} + C_2 s^{n-m-1} + C_3 s^{n-m-2} + \dots$$
 (A3)

The inverse transform of equation (A3) is

A2

$$X(t + dt)_1 = C_1 + C_2 dt + C_3 \frac{dt^2}{2!} + \cdots$$
 (A4)

The derivatives can then be found from differentiation:

$$\dot{x}(t + dt) = C_2 + C_3 dt + C_4 \frac{dt^2}{21} \dots$$
 (A5)

$$\ddot{x}(t + dt) = c_3 + c_4 dt + c_5 \frac{dt^2}{21} \dots$$
 (A6)

The A.I.L. method allows the use of time varying coefficients in the transfer function. The method is based on the assumption that a time interval, Δt , can be found during which all of the coefficients can be considered as constant. A set of points calculated in one interval of time is then used as the initial conditions for the next calculation, and the process is repeated. More information on the A.I.L. method may be obtained from Reference 13.

B. A.I.L. IMPLEMENTATION

م مر مريد

The specific equations used for the non-piloted simulation were derived as follows:

AЗ

Can be expressed as

Destruction of the second s

Then

Ŷ

$$+\frac{1}{TG}\gamma = dH$$

Using Laplace transformation,

Therefore,

$$s\Gamma - \gamma(0) + \frac{1}{TG}\Gamma = \frac{dH}{s}$$
 Where
a consider
or $\Gamma = \frac{\gamma(0)s + dH}{s^2 + 1/TG s}$ consider

Using the A.I.L. method:

A0 = 1 $A1 = \gamma(0)$ B0 = 0.0 B1 = 1/TGB2 = 1.0

And from the reversion forumula:

$$C_{i} = \frac{1}{B2} \left[A_{2-i} - \sum_{j=0}^{1} B_{j}C_{(i-j)-2} \right] \quad (A11)$$

$$C1 = A1$$

$$C2 = A0 - B1 + C1$$

C2A	= A0		C2B = -B1 + C1	
СЗА	≕ - B1	* C2A	C3B = -B1 + C2	B

(A8)

(A7)

where dH is considered a constant for the time interval under consideration. (A9)

(dH will be reintroduced at a later point)

(A10)

1 .

	C4A = -B1 + C3A	C4B	= -81	* C3B
	•	•		
	•	•		
	•	•		
Then				
	YA = C1 + C2A * IT1 + C3A * IT2 +	•••		
	YB = C2B * IT1 + C3B * IT2 +	•••		
	YA = C2A + C3A * IT1 + C4A * IT2 +	+		
	γB = C2B + C3B * IT1 + C4B * IT2 +	+ •••		

For the next iteration

$$\gamma(0)_{n} = \gamma_{n-1}$$

 $\dot{\gamma}(0)_{n} = \dot{\gamma}_{n-1}$ (A14)

And

$$KP \frac{TL}{TG} [(\mathring{Y}A * dH + \mathring{Y}B) + \frac{1}{TL} (YA * dH + YB)] = Ht$$
(A15)
$$-Ht \frac{g/ELC}{s^{3} + (1/ELC + Z_{w})s^{2} + Z_{w}/ELC s}$$

or

B)

 \ddot{z} + (1/ELC + Z_w) \ddot{z} + $\frac{Z_w}{ELC}$ \ddot{z} = $\frac{g}{ELC}$ Ht

(A16)

(A13)

Substituting (A15) for Ht:

$$z + \left(\frac{1}{ELC} + Z_{W}\right)z + \frac{Z_{W}}{ELC}\dot{z} = \frac{g}{ELC}\{KP \frac{TL}{TG} \left[\left(\dot{Y}A * dH + \dot{Y}B\right) + \frac{1}{TL}\left(\dot{Y}A * dH + \dot{Y}B\right)\right]\}$$
(A17)

But dH = S1 - z;

Therefore, (A17) can be rewitten as

$$\begin{array}{c}
B \\
\vdots \\
z + (1/ELC + Z_{W})z + \frac{Z_{W}}{ELC}z + \frac{g}{ELC} \left\{ KP \frac{TL}{TG} \left[\gamma A + \frac{1}{TL} \left(\gamma A \right) \right] \right\} z$$

$$= \frac{q}{ELC} \left\{ \text{KP} \frac{\text{TL}}{\text{TG}} \left[\left(\overset{\circ}{\text{YA}} * \text{S1} + \overset{\circ}{\text{YB}} \right) + \frac{1}{\text{TL}} \left(\text{YA} * \text{S1} + \text{YB} \right) \right] \right\}$$
(A18)

Or

$$\ddot{z} + (\frac{1}{ELC} + Z_w)z + \frac{Z_w}{ELC}\dot{z} + B = A$$
 (A19)

٠.

Using Laplace transform:

$$z = \zeta$$

$$z = s\zeta - z(0)$$

$$z = s^{2}\zeta - sz(0) - z(0)$$

$$z = s^{3}\zeta - s^{2}z(0) - sz(0) - z(0)$$

And therefore

. .

$$s^{3}\zeta - s^{2}z(0) - sz(0) - z(0) + (\frac{1}{ELC} + Z_{w})[s^{2}\zeta - sz(0) - z(0)] + \frac{Z_{w}}{ELC}[s\zeta - z(0)] + B\zeta = \frac{\Lambda}{s}$$
(A21)

A6

where B is considered a constant for the time

interval under consideration.

Or

$$\frac{z(0)s^{3} + [\frac{1}{ELC} + Z_{w}]z(0) + \dot{z}(0)]s^{2}}{s^{4} + (\frac{1}{ELC} + Z_{w})s^{3} + \frac{Z_{w}}{ELC}s^{2} + Bs} + \frac{\frac{Z_{w}}{[\frac{ELC}{ELC} + Z_{w}]\dot{z}(0) + \dot{z}(0)]s + A}{s^{4} + (\frac{1}{ELC} + Z_{w})s^{3} + \frac{Z_{w}}{ELC}s^{2} + Bs}$$
(A22)

Using the A.I.L. method:

AAO = A
AA1 =
$$\frac{Z_w}{ELC} z(0) + (\frac{1}{ELC} + Z_w)\dot{z}(0) + \dot{z}(0)$$

AA2 = $(\frac{1}{ELC} + Z_w)z(0) + \dot{z}(0)$
AA3 = $z(0)$
B0 = 0.0
B1 = R
B2 = $\frac{Z_w}{ELC}$
B3 = $(\frac{1}{ELC} + Z_w)$
B4 = 1.0

And from the recursion formula:

$$C_{i} = \frac{1}{B^{4}} \left[A_{4-i} - \sum_{j=0}^{3} B_{j}C_{(i-j)-4} \right]$$
 (A24)

(A23)

b

ћ7

÷.,

C1	=	A3
C2	-	A2 - B3 * C1
C3	ш.	A1 - B2 * C1 - B3 * C2
¢4	Ħ	A0 - B1 * C1 - B2 * C2 - B3 * C3
C5	=	-B1 * C2 - B2 * C3 - B3 * C4

(A25)

Then,

z	=	C1	+	C2	*	IT1	+	C3	*	IT2	+	•••
ż	=	C2	+	C3	*	ITI	÷	C4	*	172	+	•••
z	=	C3	+	Ç4	*	ITI	+	C5	*	İT2	+	•••

(A26)

For the next iteration,

$$z^{(0)}_{n} = z_{n-1}$$

 $z^{(0)}_{n} = z_{n-1}$
 $z^{(0)}_{n} = z_{n-1}$

(A27)

1

A block-type diagram showing how the A.I.L. equations are implemented in the computer program for the pilot servo and aircraft transfer functions is shown in Figure A1.

A series of runs were made to determine the number of A.I.L. coefficients and size of time step required to obtain accurate results and a stable program. It was found that 6 terms and a time step of 0.01 seconds provided good results.

TIES

A9

UT.

C. DEVELOPMENT OF THE SHIP MOTION MODEL

Country Constraint

To obtain the amplitudes for the individual sinusoidal components, the following method was employed. First, the twoparameter Bretschneider wave spectrum is used to obtain the wave spectrum:

$$S_{w}(\omega) = \frac{483.5 H_{s}^{2} e^{-1944.5/(\omega T_{o})^{4}}}{T_{o}^{4} \omega^{5}}$$
(A28)

This is transformed using the following relationship:

$$\omega_{e} = \omega - \frac{\omega^{2} v_{s} \cos(\mu_{s})}{q}$$
 (A29)

To obtain the effective frequency based on ship velocity and heading relative to the waves. The ship motion spectrum can then be obtained as follows.

$$\Phi_{ii}(\omega_e) = S_w(\omega_e) \frac{\delta\omega}{\delta\omega_e} RAO_i(\omega_e)$$
(A30)

A computer program, SHPREF.FOR, was developed to accept a table of RAO values corresponding to a set of values, and then store the information in a data file. This table is then read by the program, and the above calculations are made. A numerical table and a plot of ϕ versus ω_e is then output as the finished result; see Figures A2 and A3. The plot was then sectioned by hand into six components and the amplitudes for these six frequencies were determined by the following relationshir:

A10

ORIGINAL FACE IS OF FOOR QUALITY

Π

1

<u></u>	0.2155281	PH1=	0.0000000E+00	- 5₩(I)= ·	0.0000000000000000000000000000000000000	
1 +	0.2742626	PHI=	1.5390024E-15	SW(I)=	1.4029235E-14	
HE-	0.3349382	FHI=	4.5292239E-07	SW(I)=	4.1409426E-06	
UE-	0.3975548	PhI-	1.3130214E-03	SW(T) =	1.2105345E-02	
WE -	0.4621124	PHT-	4.6292055E-02	SW(T)=	0.4341457	
WE -	0.5286109	PhI-	0.2380974	$S_{\mu}(T) =$	2 309751	
WF =	0.5970505	PHT=	0 5212409	SU(T)=	4 963209	
ш Г =	0.6674311	PHT=	0 7592450	SU(T)=	6 730645	
iaE ⇒	0 7397528	PHT=	0 9081539	SU(T)=	7 144627	
ш Г =	0 7766414	PHT=	0 9543847	SL(T)=	6 667761	
WE -	0 8140153	PHT=	0.9798968		6 630970	
WF =	0.8518746	PHI-	0.9986890	SU(T)=	6 106294	
	0 6602100	PHTm	1 000000		5 711047	
LIE	0.0200497	PHT#	0 9313190	SH(1)-	5 212773	
	0.020007	PHT.	0.7605053	SW(I)-	A 722223	
	1 040440		0 3391105		7.122323	
NC-	1.010113		0.00543545-02		3.620434	
	1.130170		1 44040115 02	5W(1)=	3.039304	
WC T	1.214444		1.99090116-02	SW(1)=	2.441777	
WE =	1.300352		1.20030345-03	5W(1)=	1.950421	
WE =	1.388202	PH1-	1.73911446-04	2M(1)=	1.503070	•
씨는 **	1.477993	641=	3.70440926-04	SW(T)=	1.258010	
WE -	1.569724	FHI=	2.8305821E-04	5W(I)=	1.019108	
HE -	1.663397	- PHI =	1.3718315E-04	SW(I)-	0.8301120	
	1.759011	= 1 H4	5.8686554E-05		0.6803094	10 00000
HHIM	AX 7.771437	MUS-	2.054400	HS= 6.90	0000 10-	10.00000
	6 3 F. LF/7*					

Figure A2: Example Output from SHPREF.FOR with Plot of Ship Motion Specturm for the DD962 in Heave

....

A11

μË=	0.2155281	PHI-	0.0000000E+00	SW(I)=	0.000000E+0	0
µ⊂=	0.2742626	PHI=	1.0021215E-16	SW(I)=	1.4029235E-1	4
1. A.	0.3349382	PHI-	4.7250222E-08	SW(I)-	4.1409426E-0	6
WE=	0.3975548	PHI-	2.2123220E-04	SW(I)=	1.2105345E-0)2
wE=	0.4621124	PHI -	1.26125375-02	SW(I)≈	0.4341457	
WE=	0.5286109	PHI-	0.1025751	SW(I)=	2.309751	
WE-	0.5970505	PHI =	0.3154627	SW(I)=	4.963209	
WE -	0.6674311	PHI=	0.5932509	SW(I) =	6.730645	
NE -	0.7397528	PHI=	0.8416853	SW(I)=	7.144627	
WE-	0.7766414	PHT=	0.9302165	SW(I)=	6.907761	
₩E=	0.8140153	PHI-	0.9839358	SW(I)-	6.630970	
WE-	0.8518746	PHI =	1.000000	SW(I)=	6.196284	
WE -	0.8902190	PHI-	0.9649336	SW(I)=	5.711943	
WE -	0.9290487	PHT=	0.8602818	Sk(I)=	5.212773	
WE=	0.9683636	PHI-	0.6967936	SW(I)-	4.722323	
WĒ-	1.048449	PHI-	9.3589893	SW(I)=	3.820434	
ωE =	1.130476	PHI-	0.1623948	SW(I)=	3.059384	
WE -	1.214444	PHI-	6.8711556E-02	SW(I)=	2.441777	
μE-	1.300352	PHT=	2.5693722E-02	SW(I)=	1.950421	
WE=	1.388202	PHT=	8.2251765E-03	SW(I)-	1.563076	
μE =	1.477993	PHI-	1.2260162E-03	SW(I)=	1.258616	
WE -	1.569724	PHI-	8,9359164E-05	SW(I)-	1.019108	
WE =	1.663397	PHI-	7.98591578-05	SW(I)-	0.8301120	
₩E =	1.759011	PHI-	7.7392666E-05	SW(I)=	0.6803094	
PHIM	AX- 0.5683722	MUS-	2.094400	HS- 6.90	0000 TO-	10
CD96	3P.DAT		•			
		•				

.60000

16

.

Figure A3: Example Output from SHPREF.FOR with Plot of Ship Motion Spectrum for the DD962 in Pitch
$$n = \left[2\Phi_{ii}(\omega_{e}) \Delta \omega_{e} \right]^{1/2}$$

A component of the ship motion could then be calculated as:

$$i(t) = \sum_{n=1}^{6} A \cos(\omega t - \Phi_{ii} + E_{i})$$
(A32)

where Φ_{ii} is directly available from the ship data base information contained in Reference 8. E_n is a random phase angle which is calculated from a random number generator with the output scaled to give values between 0 and 6.242 radians.

In the computer-run simulation the ship motion is calculated in the GENeral Ship Motion, GENSM.FOR, subroutine. This subroutine uses the associated amplitudes and phase angles corresponding to a particular sea state as stored in the data file, GENSM.DAT.

D. TURBULENCE MODEL

2

Ε

i.1

The turbulence model for the computer-run simulation is located in the subroutine TURB3.FOR. It consists of a random number generator and the following principle equations:

$$\dot{A}_{R} = \omega_{n} A_{R} + \sigma_{v} (2\omega_{n}) n (1/TC^{1/2})$$
$$A_{R} = A_{R} + TC \dot{A}_{R}$$

The bandwidth, ω_{n} , was obtained from page 10, Figure 15, of Reference 9. The sigma values were obtained from a strip-chart recording of the acceleration of the vertical axis for the AV8-B

(A31)

(A33)

during a fixed-base simulation, as presented in Figure A4. The (1/TC ** 0.5) term is a correction for the effects of using digital computation. The random number input is represented by n. Becuase this is a filter acting to shape white-noise, it is necessary to precycle it initially before inputing values into the simulation. This is also accomplished as part of the subroutine.

E. HOVER HEIGHT INPUT

5

The subroutine IN4.FOR provides the values for the flight path command logic hover height. The sequence starts at an initial altitude and follows a shallow cosine path to a selected hover altitude as a function of time. The hover altitude is then maintained as a constant for the remainder of the run. It is also possible to configure the subroutine to change to a second hover height during the run, although this function was not used other than for initial testing of pilot lead and lag time constants. Variables which can be adjusted before running a simulation are, the initial altitude, AMPA + AMPB, the hover altitude, AMPA, and the rate of descent, through the frequency term of the cosine function, WNS.

F. DATA PLOTTING

The subroutine MPLT2.FOR provides the instruction to the system library and DISSPLA software to produce a plot of the desired data

3

. .

Figure A4: Strip Chart Recording of Vertical Acceleration Due to Turbulence as Obtained from the AV-8A Fixed-Base Simulation Facilities and Used to Determine Magnitude of Turbulence Values for the Turbulence Modeling in the Non-Piloted Simulation

at the end of program execution. Currently, plots of the T/W ratio used as a percentage of time, and statistical variations as a function of the number of runs made are output (for examples see Figures AS-A7). A plot of the aircraft flightpath and ship deck position time history can also be set up with small changes in program configuration (for examples see Figures 31 and 32). A tabular listing of the runs made for each test configuration is also output, an example is given in Figure A8.

The following table is a listing of variable names and their appropriate values which must be edited into the indicated programs when a change in sea state is made.

VARIABLES WHICH ARE FUNCTION OF SEA STATE							
Subroutine Variable Sea State Name 0 4 5 6							
TRANO.FOR	พท	2.70	6.15	7.79	7.79		
	SICMA	0.001	0.007	0.01	0.01		
IN4.FOR	AMPA	0.0	5.0	7.0	9.0		
	AMPB	40.0	35.0	33.0	31.0		
VPAIC	ABRTHT	0.0	1.5	3.0	6.0		
CENSM.DAT (Version No.	-	-	;4	;5	;6		
VASCON.DAT Supplies the input data for the test conditions							

Table A1: Valued for Variable Which Must Be Edited into Program with Change in Sea State

ASCON.DAT Supplies the input data for the test condition and is also changed as apporpriate.

Figure A5: Example Plot of Thrust-to-Weight Ratio Use as Output from the Non-Piloted Simulation

1

A19

....

14.2.13

ORIGINAL FACE IS DE POOR QUALITY

1.010000

1

ULF NO.: TAL= 0.1500000 SEA S.=

9

ELC= 0.7000000 6 KF= 7.0000002E-03 īk-

0.1000000 Zw=

RUN	I.T.	F.T.	TEVEL		THMEAN	THMAX	THMIN
1234567890112345678901234567890123456789012345678901214567 14447 14567	$\begin{array}{c} 2 \\ 2 \\ 5 \\ 7 \\ 121.4 \\ 2 \\ 3 \\ 2 \\ 5 \\ 2 \\ 5 \\ 7 \\ 2 \\ 5 \\ 2 \\ 5 \\ 7 \\ 2 \\ 5 \\ 2 \\ 5 \\ 7 \\ 2 \\ 5 \\ 2 \\ 5 \\ 7 \\ 5 \\ 2 \\ 5 \\ 2 \\ 5 \\ 2 \\ 5 \\ 2 \\ 5 \\ 5$	21247603580943692997104268961442432221825247792 14443977223214924698401274229057432808765302347792 2222124749984012742229057432808765302347751 2222212222124598401222212222113172221 2221153909436984012222222	51.8386331766744922962210853506673560325631897647 193863566580363404083143652093333852562103200817	7119008896909169861908911169797075949889205910807	$\begin{array}{l} 0.586\\ 0.595\\ 0.$	$\begin{array}{c} 1.010\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.000\\ 1.$	

Figure A8: Example Output of Run Conditions and Results for the Non-Piloted Simulation

1083.0 1784.8 2304.6 8.6 6.8 10.4 0.986 0.991 0.988 0.977 0.950 0.950 48** 16.0 27.9 23.7 3.4 4.2 1.1 1.010 49 50 1.010 1.010 t MEAN(SEC): 21.55800 FT SIG(SEC): 5.464322 FTMAX: 33.40000 FTMIN: 8.300000 TOVEL MEAN(FT/S): 5.526001 TOVEL SIG(FT/S): TOVELMAX: 11.40000 TOVELMIN: 0.4000000 3.060933 MTCUT MEAN: 0.9879200 MTCUT SIG: 2.3633221E-03 MTCUTMAX: 0.9940000 MTCUTMIN: 0.9840000 TIME:11:11:54 DATE: 4-JAN-85

FORTRAN STOP

Figure A8, continued: Example Output of Run Conditions and Results for the Non-Piloted Simulation

A21

S

G. LISTING OF NON-PILOTED SIMULATION COMPUTER VARIABLE DEFINITIONS AND PROGRAM LISTINGS.

Π

Γ

[

1

1

and the second sec

S:

NAME	DESRIPTION
AO	CONSTANT FOR THE ZEROTH ORDER NUMERATOR TERM OF THE PILOT TRANSFER FUNCTION.
A1	CONSTANT FOR THE FIRST ORDER NUMERATOR TERM OF THE PILOT TRANSFER FUNCTION.
AA0	CONSTANT FOR THE ZEROTH ORDER NUMERATOR TERM OF THE AIR- CRAFT TRANSFER FUNCTION.
AAOP	MAGNITUDE OF THE PILOT OUTPUT SIGNAL ATTRIBUTED TO THE NUMERATOR OF THE PILOT TRANSFER FUNCTION.
AA1	CONSTANT FOR THE FIRST ORDER NUMERATOR TERM OF THE AIR- CRAFT TRANSFER FUNCTION.
AA2	CONSTANT FOR THE SECOND ORDER NUMERATOR TERM OF THE AIR- CRAFT TRANSFER FUNCTION.
AA3	CONSTANT FOR THE THIRD ORDER NUMERATOR TERM OF THE AIR- CRAFT TRANSFER FUNCTION.
ABRTHT	ALTITUDE ABOVE THE DECK MOTION MEAN AT WHICH THE PILOT IS TO ABORT 'CHASING' THE SHIP DECK AND RETURN TO THE ASSIGNED HOVER ALTITUDE.
В1	CONSTANT FOR THE FIRST ORDER DENOMINATOR TERM OF THE PILOT TRANSFER FUNCTION.
B2	CONSTANT FOR THE SECOND ORDER DENOMINATOR TERM OF THE PILOT TRANSFER FUNCTION. SET = 0.0 IN CURRENT PROGRAM BECAUSE NOT IN CURRENT USE.
BA1	CONSTANT FOR THE FIRST ORDER DENOMINATOR TERM OF THE AIRCRAFT TRANSFER FUNCTION.
BA1P	MAGNITUDE OF THE PILOT OUTPUT SIGNAL ATTRIBUTED TO THE DENOMINATOR TERM OF THE PILOT TRANSFER FUNCTION.
BA2	CONSTANT FOR THE SECOND ORDER DENOMINATOR TERM OF THE AIRCRAFT TRANSFER FUNCTION.
BA3	CONSTANT FOR THE THIRD ORDER DENOMINATOR TERM OF THE AIRCRAFT TRANSFER FUNCTION.

ß

I...

ſ .-

BUF	DIMENSIONAL DUMMY VARIABLE USED IN THE TIME SUBROUTINE.
BUFF	DIMENSIONAL DUMMY VARIABLE USED IN THE DATE SUBROUTINE.
C1	FIRST RECURSION CONSTANT USED IN A.I.L. CALCULATION OF PILOT MODEL OUTPUT.
C1A	FIRST RECURSION CONSTANT USED IN A.I.L. CALCULATION OF AIRCRAFT MODEL OUTPUT.
C2	REMNANT FROM EARLIER PROGRAM. NOT USED IN THIS VERSION.
C2A	SECOND RECURSION CONSTANT USED IN A.I.L. CALCULATION. SAME VARIABLE NAME IS USED FOR BOTH PILOT AND A/C MODELS.
С2В	SECOND RECURSION CONSTANT USED IN A.I.L. CALCULATION OF PILOT MODEL OUTPUT USED AS INITIAL CONDITION INPUT TO PILOT MODEL.
СЗА	THIRD RECURSION CONSTANT USED IN A.I.L. CALCULATION. SAME VARIABLE NAME IS USED FOR BOTH PILOT AND A/C MODELS.
СЗВ	THIRD RECURSION CONSTANT USED IN A.I.L. CALCULATION OF PILOT MODEL OUTPUT USED AS INITIAL CONDITION INPUT TO PILOT MODEL.
C4A	FOURTH RECURSION CONSTANT USED IN A.I.L. CALCULATION. SAME VARIABLE NAME IS USED FOR BOTH PILOT AND A/C MODELS.
C4B	FOURTH RECURSION CONSTANT USED IN A.I.L. CALCULATION OF PILOT MODEL OUTPUT USED AS INITIAL CONDITION INPUT TO PILOT MODEL.
C5A, C51	3,C6A,C6B,C7A,C7B,C8A,C8B ARE SIMIALAR TO THE ABOVE.
СКРВ	REMNANT FROM EARLIER PROGRAM. NOT USED IN THIS VERSION.
CTNH	'CHOP THROTTLE NOW HEIGHT'; HEIGHT ABOVE THE DECK AT WHICH THE PILOT IS TO QUICKLY REDUCE THRUST FOR LANDING.
D1	REMNANT FROM EARLIER PROGRAM. NOT USED IN THIS VERSION.
D2	REMNANT FROM EARLIER PROGRAM. NOT USED IN THIS VERSION.
D3	AN OFTEN USED COMBINATION OF OTHER VARIABLES.

INSTRUCTION TO PLOT3.FOR SUBROUTINE INDICATING BEGINNING POINT OF THE GRAPH X-AXIS.

- Area

BEG

 \bigcirc

MAGNITUDE OF VERTICAL VELOCITY DAMPING THROUGH THRUST DAMP TERM. PILOT PRECIEVED ERROR IN HEIGHT (COMMANDED HEIGHT -ĿН ACTUAL HEIGHT + NOISE). DHD PILOT PRECIEVED ERROR IN VERTICAL VELOCITY. DHDD PILOT PRECIEVED ERROR IN VERTICAL ACCELERATION. DHDTR TRUE ERROR IN VERTICAL VELOCITY. DHTR TRUE ERROR IN HEIGHT. ELC ENGINE LAG TIME CONSTANT. . EN RANDOM PHASE ANGLE GENERATED AND USED IN THE GENSM.FOR SUBROUTINE. ERR ERROR TERM (RANDOM NOISE WITH MAGNITUDE FROM -0.5 TO 0.5). ERROR TERM (RANDOM NOISE WITH MAGNITUDE FROM 0 TO 1). ERROR FLAG2 REMNANT FROM EARLIER PROGRAM. NOT USED IN THIS VERSION. FLT FLIGHT TIME (INITIAL TIME MINUS TIME AT TOUCHDOWN). PREVIOUS FLIGHT TIME VALUE, HELD FOR USE IN STATISTIC FLT1 CALCULATIONS. 'FLIGHT PATH LOGIC SLOT'; INTEGER USED TO SHOW SECTION OF FPLS FLIGHT PATH COMMAND LOGIC IN USE WHEN MONITERING SIMULATION. FPLS1 VARIABLE USED IN FINAL PRINTOUT TO INDICATE IF THE FLIGHT PATH COMMAND LOGIC HAD CYCLED THROUGH THE 'CHOP THROTTLE' SEQUENCE AT LEAST ONCE. VARIABLE WHICH DETERMINES THE AMPLITUDE FOR A COSINE GAP SMOOTHING FUNCTION IN THE FLIGHT PATH COMMAND LOGIC. VARIABLE WHICH DETERMINES THE AMPLITUDE FOR A COSINE GAPP SMOOTHING FUNCTION IN THE FLIGHT PATH COMMAND LOGIC. DUMMY VARIABLE USED TO TRANSFER THE VALUE OF GHDOT GD BETWEEN VASCON.FOR AND VAIC.FOR.

GHDOT GAIN USED IN CALUCULATING THE VERTICAL VELOCITY DAMP-ING THROUGH THRUST VALUE.

VARIABLE WHICH DETERMINES THE AMPLITUDE FOR A COSINE SMOOTHING FUNCTION IN THE FLIGHT PATH COMMAND LOGIC.

HLIM VARIABLE WHICH CAN BE USED TO SET A LIMIT ON THE LOWER BOUNDS OF COMMANDED THRUST.

HTA THE NUMERATOR PORTION OF THE PILOT MODEL OUTPUT USED AS THE INPUT CONSTANT FOR THE ZEROTH TERM IN THE NUMERATOR OF THE AIRCRAFT TRANSFER FUNCTION AFTER ADDITION OF NOISE AND LIMITS.

THE DENOMINATOR PORTION OF THE PILOT MODEL OUTPUT USED AS THE INPUT CONSTANT FOR THE ZEROTH TERM IN THE DENOM-INATOR OF THE AIRCRAFT TRANSFER FUNCTION AFTER ADDITON OF NOISE AND LIMITS.

- HTPO MAGNITUDE OF THE PILOT MODEL OUTPUT BEFORE THE ADDITION OF NOISE OR LIMITS.
- HTPOA FIRST PORTION OF EQUATION USED TO CALCULATE HTPO.
- HTPOB SECOND PORTION OF EQUATION USED TO CALCULATE HTPO.
- I DUMMY VARIABLE FOR DO STATEMENT.

1 :

Number 1

GPP

HTB

IDO DUMMY VARIABLE FOR DO STATEMENT.

IFLAG10 LOGIC SWITCH USED TO CONTINUE 'CHOPPED THROTTLE' SEQUENCE IN THE FLIGHT PATH COMMAND LOGIC AFTER ITS INITIALIZATION.

IFLAG11 LOGIC SWITCH TURNED ON IN THE 'RUN FAST' SEQUENCE OF THE FLIGHT PATH COMMAND LOGIC AND USED TO DETERMINE THE INITIAL AMPLITUDE FOR THE COSINE SMOOTHING FUNCTION IN THE 'RUN' SEQUENCE OF THE FLIGHT PATH COMMAND LOGIC.

IFLAG12 LOGIC SWITCH TURNED ON IN THE 'RUN' SEQUENCE OF THE FLIGHT PATH LOGIC AFTER INITIALIZATION OF TIME CONSTANT FOR THE COSINE SMOOTHING FUNCTION, TO PREVENT REINITIAL-IZATION ON CONSECUTIVE PASSES.

IFLAG13 LOGIC SWITCH TURNED ON IN THE 'ABORT TO

HOVER ALTITUDE' SEQUENCE OF THE FLIGHT PATH LOGIC AFTER INITIALIZATION OF TIME CONSTANT FOR THE COSINE SMOOTHING FUNCTION, TO PREVENT REINITIAL-IZATION ON CONSECUTIVE PASSES. IFLAG3 LOGIC SWITCH TURNED ON IN THE 'ABORT TO HOVER ALTITUDE' SEQUENCE OF THE FLIGHT PATH COMMAND LOGIC AFTER INITIALI-ZATION OF A TIME CONSTANT FOR THE COSINE SMOOTHING FUNC-TION TO PREVENT REINITIALIZATION ON CONSECUTIVE PASSES.

- IFLAG5 DATA OUTPUT SWITCH, IF IFLAG5=1 THEN THE STATISTICAL INFORMATION IS CALCULATED AND OUTPUT.
- IFLAG7 LOGIC SWITCH TURNED ON IN THE 'CHOP THROTTLE SEQUENCE' OF THE FLIGHT PATH COMMAND LOGIC AND USED IN THE 'CHASE' SEQUENCE OF THE FLIGHT PATH COMMAND LOGIC TO DETERMINE THE INITIAL AMPLITUDE FOR THE COSINE SMOOTHING FUNCTION.
- IFLAG8 LOGIC SWITCH TURNED ON IN THE IN4.FOR SUBROUTINE AFTER INITIAL COMMANDED LETDOWN FLIGHTPATH REACHES THE CONSTANT HOVER ALTITUDE VALUE, PREVENTS REINITIALIZATION OF LETDOWN SEQUENCE DURING A RUN.
- IFLAG9 LOGIC SWITCH TURNED ON IN THE 'CHOP THROTTLE' SEQUENCE OF THE FLIGHT PATH COMMAND LOGIC, WHICH CAN BE USED TO CHANGE THE THRUST LOWER LIMITS FROM THE NOMINAL VALUE USED FOR THE REST OF FLIGHT PATH COMMAND SEQUENCES.
- INT DUMMY VARIABLE USED. IN DO LOOP.

THE THE SEAL STATE

- ISEAS INTEGER VALUE OF SEA STATE BEING SIMULATED. IT IS PASSED TO VARIOUS SUBROUTINES AS A SIMULATION PARAMETER AND FOR PARAMETER PRINTOUT FOR THE SIMULATION ON DATA OUTPUT.
- IT DUMMY VARIABLE USED IN VARIABLE DIMENSION STATEMENTS.
- IT1 TIME INCREMENT USED IN THE A.I.L. CALCULATIONS
- IT2 THROUGH IT8 ARE TIME INCREMENTS USED IN THE A.I.L. CALC-ULATIONS. IT2=IT1**2/2!, IT3=IT1**3/3!, ETC.
- IT9 THROUGH IT12 ARE REMNANTS FROM EARLIER PROGRAMING. NOT USED IN THIS VERSION.
- ITOT TOTAL NUMBER OF ENTRIES USED IN DETERMING A HISTOGRAM OF STATISTICAL DATA.
- J INITIAL SEED FOR USE IN THE RANDOM NUMBER GENERATING SUBROUTINE.
- JAY DUMMY VARIABLE FOR PASSING THE NUMBER OF GROUPS BEING RUN IN A GIVEN SIMULATION SESSION TO VARIOUS SUBROUTINES.

CONTRACT OF STREET, ST

JRAN	INITIAL SEED FOR USE IN THE RANDOM NUMBER GENERATING SUBROUTINE.
κ	NUMBER OF RUNS/GROUP OF A SIMULATION SESSION.
кач	DUMMY VARIABLE, NUMBER OF RUNS/GROUP OF A SIMULATION SESSION.
KDOO	INCREMENTED VARIABLE USED AS A DIMENSION IN A DO LOOP.
KMEAN	NUMBER OF ENTRIES IN A STATISTICAL MEAN CALCULATION.
KMN	NUMBER OF ENTRIES IN A STATISTICAL MEAN CALCULATION.
KP	NOMINAL PILOT GAIN.
кра	MODIFIED PILOT GAIN.
крв	MODIFIED PILOT GAIN.
KPC	MODIFIED PILOT GAIN.
L	INTEGER VALUE OF THE PILOTS PURE LAG TIME MULTIPLIED BY 100.
LIM	CALCULATED VARIABLE WHICH MODIFIES THE dT/W VALUE OUTPUT FROM THE PILOT MODEL TO KEEP IT IN PHYSICALLY REALIZABLE LIMITS.
MIVRD	VALUE OF THE MAXIMUM INSTANTANEOUS VELOCITY RELATIVE TO DECK ENCOUNTERED DURING A SIMULATION RUN.
MTOUT	MEAN THRUST/WEIGHT RATIO OUTPUT DURING A SIMULATION RUN.
POUT	VALUE OF THE PILOT MODEL OUTPUT, AFTER ADDITION OF NOISE AND LIMITS.
PRECYC	NUMBER OF CYCLES THE SUBROUTINE TRANO.FOR IS TO RUN THROUGH TO OBTAIN STEADY STATE OUTPUT BEFORE VALUES FOR NOISE AND TURBULENCE INPUTS ARE RETURNED TO THE MAIN PROGRAM.
RNP	VALUE OF NOISE CALCULATED IN TRANG.FOR INSERTED INTO THE PILOT MODEL AS INTERNAL PILOT MOISE.
rnq	VALUE OF NOISE CALCULATED IN TFANO.FOR ADDED TO THE POSITON ERROF. (PILOT PRECEPTICN NOISE).

S1 COMMANDED FLIGHT PATH ALTITUDE.

S2 COMMANDED FLIGHT PATH VELOCITY.

S3 COMMANDED FLIGHT PATH ACCELERATION.

SA1 COMMANDED HOVER ALTITUDE.

:);

80

- SA2 COMMANDED HOVER VELOCITY.
- SA3 COMMANDED HOVER ACCELERATION.
- SGAPP INITIAL POINT FOR A COSINE SMOOTHING FUNCTION IN THE 'RUN FAST' SEQUENCE OF THE FLIGHT PATH LOGIC.

L AD

- SGP INITIAL POINT FOR A COSINE SMOOTHING FUNCTION IN THE 'CHASE' SEQUENCE OF THE FLIGHT PATH LOGIC.
- SGPP INITIAL POINT FOR A COSINE SMOOTHING FUNCTION IN THE 'RUN' SEQUENCE OF THE FLIGHT PATH LOGIC.
- SS1 SHIP DECK POSITION.
- SS1Z RELATIVE DISTANCE BETWEEN SHIP DECK AND A/C DELAYED BY THE VALUE OF THE PURE PILOT LAG TIME.
- SS2 SHIP DECK VELOCITY.
- SS22D RELATIVE VELOCITY OF THE SHIP DECK AND A/C DELAYED BY THE VALUE OF THE PURE PILOT LAG TIME.
- SS3 SHIP DECK ACCELERATION.
- SSAMP AMPLITUDE OF THE COSINE SMOOTHING FUNCTION IN THE 'ABORT TO HOVER ALTITUDE' SEQUENCE OF THE FLIGHT PATH COMMAND LOGIC.
- SSGAP INITIAL POSITION FOR THE START OF THE COSINE SMOOTHING FUNCTION IN THE 'ABORT TO HEVER ALTITUDE' SEQUENCE OF THE FLIGHT PATH COMMAND LOGIC.
- SX DUMMY VARIABLE IN CALL TO INPUTI.FOR, NOT USED IN THIS VERSION.

T TIME (SECONDS).

- T1 MODIFIED VALUE OF T2, NOT USED IN THIS VERSION.
- T2 REMNANT FROM EARLIER PROGRAM, NOT USED IN THIS VERSION.
- T4 MODIFIED VALUE OF T2, NOT USED IN THIS VERSION.

TIME INCREMENT FOR RUNNING THE SIMULATION.

TE THROUGH TE4 TIME INITIALIZED AT THE BEGINING OF A SET OF CONSECUTIVE RUNS THROUGH ONE OF THE FLIGHT PATH COMMAND LOGIC SEQUENCES FOR TIMING OF THE COSINE SMOOTHING FUNCTIONS.

- TF FINAL TIME FOR WHICH THE SIMULATION ABORTS A RUN IF TOUCHDOWN HAS NOT BEEN ACHEIVED.
- TFIN DUMMY VARIABLE USED IN GRAPHICS SUBROUTINE TO INDICATE X-AXIS MAXIMUM VALUE FOR GRAPH.
- TG PILOT LAG TIME CONSTANT.

TC

- TGEE VALUE CALCULATED IN TRANO.FOR FOR INPUT AS TURBULENCE INTO THE A/C TRANSFER FUNCTION.
- TII THE INITIAL TIME A RUN WAS STARTED AT AS OUTPUTTED FROM A RANDOM NUMBER GENRATION SEQUENCE WITH BOUNDS FROM 0 TO 3600 SECONDS.
- TL PILOT LEAD TIME CONSTANT.
- TOUT THRUST-TO-WEIGHT RATIO.
- TOUTMAX MAXIMUM THRUST-TO-WEIGHT RATIO COMMANDED BY PILOT (WITH A/C LIMITS) DURING A GIVEN RUN.
- TOUTMIN MINIMUM THRUST-TO-WEIGHT RATIO COMMANDED BY PILOT (WITH A/C LIMITS) DURING A GIVEN RUN.
- TSDA PART OF THE SEQUENTIAL CALCULATION OF STANDARD DEVIATION FOR FLIGHT TIMES IN A GROUP OF RUNS.
- TW THE MAXIMUM THRUST-TO-WEIGHT RATIO ALLOWED FOR A GROUP OF RUNS.
- VSDA PART OF THE SEQUENTIAL CALCULATION OF STANDARD DEVIATION FOR TOUCH DOWN VELOCITIES IN A GROUP OF RUNS.
- VTD RELATIVE VELOCITY OF SHIP AND A/C AT TOUCHDOWN.
- VTD1 TOUCHDOWN VELOCITY FOR PREVIOUS RUN USED IN STATISTICAL CALCULATIONS.
- VTZ DUMMY VARIABLE PASSED TO SUBROUTINE TRANG.FOR. NOT USED IN THIS VERSION.

A30

and the second

AN INITIAL CONDITION OF POSITION FOR THE A.I.L. C	ALCULA-
TION OF THE DIFFERIENTIAL EQUATION DESCRIBING THE	PILOT
TRANSFER FUNCTION.	

Y1 POSITION OUTPUT OF THE PILOT TRANSFER FUNCTION.

Y0

- Y1A FIRST PART OF POSITION CALCULATION FOR OUTPUT OF PILOT TRANSFER FUNCTION.
- Y1B SECOND PART OF POSITION CALCULATION FOR OUTPUT OF PILOT TRANSFER FUNCTION.
- Y2 VELOCITY OUTPUT OF THE PILOT TRANSFER FUNCTION.
- Y2A FIRST PART OF VELOCITY CALCULATION FOR OUTPUT OF PILOT TRANSFER FUNCTION.
- Y2B SECOND PART OF VELOCITY CALCULATION FOR OUTPUT OF PILOT TRANSFER FUNCTION.
- Y3 ACCELERATION OUTPUT OF THE PILOT TRANSFER FUNCTION.
- Y3A FIRST PART OF ACCELERATION CALCULATION FOR OUTPUT OF PILOT TRANSFER FUNCTION.
- Y3B SECOND PART OF ACCELERATION CALCULATION FOR OUTPUT OF PILOT TRANSFER FUNCTION.
- YA1 POSITION OUTPUT OF THE PILOT TRANSFER FUNCTION AS USED FOR INPUT TO A/C TRANSFER FUNCTION.
- YA1A FIRST PART OF POSITION CALCULATION FOR OUTPUT OF THE PILOT TRANSFER FUNCTION AS USED FOR INPUT TO A/C TRANS-FER FUNCTION.
- YA1B SECOND PART OF POSITION CALCULATION FOR OUTPUT OF THE PILOT TRANSFER FUNCTION AS USED FOR INPUT TO A/C TRANS-FER FUNCTION.
- YA2 VELOCITY CUTPUT OF THE PILOT TRANSFER FUNCTION AS USED FOR INPUT TO A/C TRANSFER FUNCTION.
- YA3 ACCELERATION OUTPUT OF THE PILOT TRANSFER FUNCTION AS USED FOR INPUT TO THE A/C TRANSFER FUNCTION.
- YAA1 POSITION OUTPUT OF THE PILOT TRANSFER FUNCTION USED FOR MONITERING PILOT TRANSFER FUNCTION OUTPUT.
- YAA1A FIRST PART OF POSITION OUTPUT OF PILOT TRANSFER FUNCTION CALCULATION.

- YAA1B SECOND PART OF POSITION OUTPUT OF PILOT TRANSFER FUNCTION CALCULATION.
- YAA2 VELOCITY OUTPUT OF THE PILOT TRANSFER FUNCTION USED FOR MONITERING PILOT TRANSFER FUNCTION OUTPUT.
- YAA3 ACCELERATION OUTPUT OF THE PILOT TRANSFER FUNCTION USED FOR MONITERING PILOT TRANSFER FUNCTION OUTPUT.
- YD0 INITIAL CONSTANT FOR VELOCITY USED IN THE A.I.L. CALCULA-TION OF THE DIFFERIENTIAL EQUATION REPERSENTING THE PILOT TRANSFER FUNCTION.
- Z AIRCRAFT HEIGHT ABOVE MEAN DECK POSITION.
- ZA1 FIRST PART OF THE POSITON CALCULATION FOR A/C TRANSFER FUNCTION OUTPUT.
- 2A2 SECOND PART OF THE POSITION CALCULATION FOR A/C TRANSFER FUNCTION OUTPUT.
- ZB1 FIRST PART OF THE VELOCITY CALCULATION FOR A/C TRANSFER FUNCTION OUTPUT.
- ZB2 SECOND PART OF THE VELOCITY CALCULATION FOR A/C TRANSFER FUNCTION OUTPUT.
- 2C1 FIRST PART OF THE ACCELERATION CALCULATION FOR A/C TRANS-FER FUNCTION OUTPUT.
- ZC2 SECOND PART OF THE ACCELERATION CALCULATION FOR A/C TRANSFER FUNCTION OUTPUT.
- ZD A/C VELOCITY OUTPUT.

Ň

- ZDD A/C ACCELERATION OUTPUT.
- ZW VERTICAL VELOCITY DAMPING DUE TO AIRFRAME TIME CONSTANT.

ZWDTDT NUMERATOR CONSTANT FOR THE A/C TRANSFER FUNCTION.

LIST OF VARIABLES FOR IN4.FOR

NAME DESCRIPTION

Α

- THE INITIAL TIME FOR THE 'A' SEQUENCE OF THE HOVER ALT-ITUDE COMMAND LOGIC.
- AMPA FINAL HOVER COMMAND HEIGHT. ALSO THE AMPLITUDE FOR THE 'A' SEQUNCE OF THE HOVER COMMAND HEIGHT LOGIC (THE COSINE FUNCTION OF 'A' SEQUENCE IS NOT USED IN THIS VERSION).
- AMPB THE AMPLITUDE FOR THE COSINE FUNCTION OF THE 'B' SEQUENCE' OF THE HOVER HEIGHT LOGIC. AMPA+AMPB GIVES THE INITIAL STARTING HEIGHT ABOVE THE SHIP DECK MEAN. IN THIS VERSION.
- B THE INITIAL TIME FOR THE 'B' SEQUENCE OF THE HOVER ALT-ITUDE COMMAND LOGIC.
- IFLAG5 LOGIC SWITCH TURNED ON AFTER THE INITIAL COMMANDED LETDOWN FLIGHTPATH ('B' SEQUENCE) REACHES THE CONSTANT HOVER ALT-ITUDE VALUE (AMPA) TO PREVENT REINITIALIZATION OF THE 'B' SEQUENCE DURING A GIVEN RUN. THIS VARIABLE CORRESPONDS TO IFLAG8 IN THE IN4.FOR CALL STATEMENT FROM VPAIC.FOR.
- ISFLAGI LOGIC SWITCH TURNED ON AFTER THE TIME INITIALIZATION IN THE 'A' SEQUENCE TO PREVENT REINITIALIZATION OF THE TIME DURING A GIVEN RUN.
- S1 COMMANDED HOVER FLIGHT PATH ALTITUDE.
- S2 COMMANDED HOVER FLIGHT PATH VELOCITY.
- S3 COMMANDED HOVER FLIGHT PATH ACCELERATION.
- SX DUMMY VARIABLE USED IN CALL STATEMENT TO IN4.FOR, NOT USED IN THIS VERSION.
- T TIME (SECONDS).
- TAU TIME MINUS THE TIME OF INITIALIZATION OF EITHER THE 'A' OR 'B' SEQUENCE.
- TI THE INITIAL TIME A RUN WAS STARTED AT, AS OUTPUTTED FROM A RANDOM NUMBER GENERATION SEQUENCE WITH BOUNDS FROM O TO 3600 SECONDS.

TIMA VARIABLE USED IN THE INITIALIZING THE TIME FOR THE 'A' SEQUENCE. WNS FREQUENCY OF THE COSINE FUNCTION IN THE 'A' SEQUENCE. WNS1 FREQUENCY OF THE COSINE FUNCTION IN THE 'B' SEQUENCE.

LIST OF VARIABLES FOR TRANO.FOR

NAME DESCRIPTION

FLAG REMNANT FROM EARLIER PROGRAM, NOT USED IN THIS VERSION.

I DUMMY VARIABLE USED IN DO LOOPS.

IB IFIXED VALUE OF XB.

IS IFIXED VALUE OF S.

M THE NONINTEGER PART OF THE TIME (IN SECONDS) OF THE SYSTEM CLOCK.

PRECYC NUMBER OF CYCLES THE TRANO.FOR SUBROUTINE IS TO RUN THROUGH TO OBTAIN STEADY STATE OUTPUT BEFORE VALUES FOR NOISE AND TURBULENCE INPUTS ARE RETURNED TO THE MAIN PROGRAM.

RNO OUTPUT OF THE FIRST ORDER FILTER USED AS INTERNAL PILOT NOISE.

RNOD FIRST DERIVATIVE OF RNO.

RNP RNO MODIFIEL BY A GAIN.

RNQ OUTPUT OF THE FIRST ORDER FILTER USED AS PILOT PRECEP-TION ERROR.

RNQD FIRST DERIVATIVE OF RNQ.

S

RT SYSTEM TIME MINUS THE NONINTEGER PART OF THE SYSTEM TIME, IN SECONDS.

INDICATES IF XM IS EVEN OR ODD.

SIGMA	THE	SIGMA	VALUE	FOR	THE	FILTER	USED	IN	GENERATING	RANDOM
	TURE	BULENCI	Ε.						•	

SIGMAN THE SIGMA VALUE FOR THE FILTER USED IN GENERATING THE INTERNAL PILOT NOISE.

SIGMAQ THE SIGMA VALUE FOR THE FILTER USED IN GENERATING THE PILOT PRECEPTION NOISE.

TC THE PROGRAM TIME INCREMENT.

TGEE OUTPUT OF THE FRIST ORDER FILTER USED TO GENERATE RANDOM TUREULENCE.

TM SYSTEM TIME IN SECONDS.

VTZ SAME AS TGEE.

WN FREQUENCY TERM FOR THE TURBULENCE SHAPING FILTER.

WNN FREQUENCY TERM FOR THE INTERNAL PILOT NOISE SHAPING FILTER.

WNQ FREQUENCY TERM FOR THE PILOT PERCEPTION ERROR SHAPING. FILTER.

- XB MODIFIED VALUE OF RT.
- XM FLOATED VALUE OF M.
- XS FLOATED VALUE OF IS.
- Y VALUE OF 12 RANDOM NUMBERS ADDED TOGETHER IN THE PROCESS OF CREATING A GAUSSIAN DISTRIBUTION FROM A WHITE NOISE SOURCE.

YA A RANDOM NUMBER GENERATED FROM A WHITE NOISE SOURCE.

YB A RANDOM NUMBER GENERATED FROM A GAUSSIAN DISTRIBUTION SOURCE. VARIABLES FOR GENSM.FOR

NAME DESCRIPTION

EN RANDOM PHASE ANGLE.

HI THROUGH H6 ARE THE CONTRIBUTIONS TO THE SHIP HEAVE IN FEET, FROM EACH OF THE SIX SINE CONPONENTS TO THE SHIP HEAVE MOTION APPROXIMATION.

HD1 THROUGH HD6 ARE THE CONTRIBUTIONS TO THE SHIP HEAVE VELOCITY IN FEET/SEC, FROM EACH OF THE SIX SINE CONPONENTS TO THE SHIP HEAVE MOTION APPROXIMATION.

HDD1 THROUGH HDD6 ARE THE CONTRIBUTIONS TO THE SHIP HEAVE ACCEL-ERATION IN FEET/SEC**2, FROM EACH OF THE SIX SINE CON-PONENTS OF THE SIX SINE CONPONENTS TO THE SHIP HEAVE MOTION APPROXIMATIC:.

IB IFIXED VALUE OF XB.

M IFIXED VALUE OF S.

P1 THROUGH P6 ARE THE CONTRIBUTIONS TO THE SHIP PITCH POSITION IN RADIANS, FROM FACH OF THE SIX SINE CONPONENTS TO SHIP PITCH MOTION APPROXIMATION.

PD1 THROUGH PD6 ARE THE CONTRIBUTIONS TO THE SHIP PITCH VELOCITY IN RADIANS/SEC, FROM EACH OF THE SIX SINE CONPONENTS TO SHIP PITCH MOTION APPROXIMATION.

PDD1 THROUGH PDD6 ARE THE CONTRIBUTIONS TO THE SHIP PITCH ACCEL-ERATION IN RADIANS/SEC**2, FROM EACH OF THE SIX SINE CONPONENTS TO SHIP PITCH MOTION APPROXIMATION.

- RT SYSTEM TIME MINUS THE NONINTEGER PART OF THE SYSTEM TIME IN SECONDS.
- S INDICATES IF XM IS EVEN OR ODD.

S1 SHIP DECK POSITION RELATIVE TO THE MEAN DECK POSITION.

S2 SHIP DECK VELOCITY.

S2A SUM OF THE SHIP HEAVE VELOCITY CONTRIBUTIONS TO THE SHIP HEAVE MOTION.

SUM OF THE SHIP PITCH VELOCITY CONTRIBUTIONS, MULTI-PLIED BY THE DISTANCE FROM THE SHIP C.G. TO THE SHIP LANDING PAD BULLSEYE TO OBTAIN THE CONTRIBUTION OF THE SHIP PITCHING MOTION TO HEAVE AT THE LANDING PAD BULLS-EYE.

S3 SHIP DECK ACCELERATION.

S2B

Т

T1

XS

Y

Γ

Γ

S3A SUM OF THE SHIP HEAVE ACCELERATION CONTRIBUTIONS TO THE SHIP HEAVE ACCELERATION.

S3B SUM OF THE SHIP PITCH ACCELERATION CONTRIBUTIONS, MULT-IPLIED BY THE DISTANCE FROM THE SHIP C.G. TO THE SHIP LANDING PAD BULLSEYE TO OBTAIN THE CONTRIBUTION OF THE SHIP PITCHING MOTION TO HEAVE AT THE LANDING PAD BULLS-EYE.

TIME (SECONDS).

THE INITIAL TIME A RUN WAS STARTED AT, AS OUTPUTTED FROM A RANDOM NUMBER GENERATION SEQUENCE WITH BOUNDS FROM 0 TO 3600 SECONDS.

TM SYSTEM TIME IN SECONDS.

XB MODIFIED VALUE OF RT.

XM FLOATED VALUE OF M.

FLOATED VALUE OF IS.

RANDOM NUMBER WITH MAGNITUDE OF -0.5 TO 0.5.

SHPREFLIN.COM;1

2-FEB-1985 13:38:24.07

FSD0:[STEVENS.SHIPSTUFF]SHPRET IN.COM;1

A38

SET VERIFY

17

τ.,

\$ ASSIGN/USER SYS\$COMMAND SYS\$INPUT

.,**

\$ LINK SHPREF, DISPLOT, SYS\$LIBRARY: INTLIB/LIB, DISSPLA/LIB, INTLIB/LIB \$ SET NOVERIFY

1

 2-FEB-1985 13:23:47.97 2-FEB-1985 13:23:47.97 2-FEB-1985 13:23:47.97 FSD0:(STEVENS.SHIPSTUFF)SHPREF.LIS;1 FSD0:(STEVENS.SHIPSTUFF)SHPREF.LIS;1 FSD0:(STEVENS.SHIPSTUFF)SHPREF.LIS;1

SHPREF.LIS;1

A40 SHIPSTUFF)SHPREF.LIS;1 .HIPSTUFF)SHPREF.LIS;1 FSD0:[STEVENS.SHIPSTUFF]SHPREF.LIS;1

2-FEB-1985 13:23:4[.].97 2-FEB-1985 13:23:47.97 2-FEB-1985 13:23:47.97

 2-Feb-1985 13:21:49 10-Dec-1984 13:18:18

م من المن المن المن الم المان الم

VAX-11 FORTRAN V3.5-62 Pa FSDD:{STEVENS.SHIPSTUFF]SHPREF.FOR;23

Page 1

1

्र्यः ज्यान् स्

0001 0092	C2345	678901234567890etc.
0003		DIMENSION H(20), HE(30), PHI(30), SH(30)
C004		REAL HUS
0005		CHRACTER*12 FLNM
0005	C	VS=42.17 142.17 IFT/SEC
8007	C	HUS=2.0944 !RAD
0009	C	KS=12.0 !FT
0009		PRINT*, 'DO YOU WISH TO ENTER DATA IN NEW FILE? 1=YES"
0010		ACCEPT*, FLAGA
0011		PRINT*, 'DO YOU WISH A PLOT OF THE DATA? 1=YES'
0012		ACCEPT+,FLAGS
0013		PRINT*, "ENTER TO, VS, HUS, HS"
0014		ACCEPT+,TO,VS,HUS,HS
0015	C	T0=13.1 !SEC
0016		[1] A. Martin and M. Martin and M Martin and M. Martin an Martin and M. Martin and
0017	C ###	DATER FILENCE IN ACCEPT STATEMENT IN FORM OF 'filensee',
0018	C	i.e., IF YOU NOME IT STUFF.DAT, INPUT IT AS 'STUFF.DAT'
0019	•	TYPET, 'ENTER FILE NOVE' I INPUT FILENOVE AS 'filenzas'
8028		ACCEPT*, FLM
0021		IF (FLAGA .EQ. 1) 60 TO 5
0022		CPEN (UNIT=1,FILE=FLNH,TYPE='OLD')
0023		60 TO 10
6024	5	GPEN (UNIT=1,FILE=FUNN,TYPE='NEN')
0925	10	J×20
0026		
0027		17=50U
0028		
0029	12	
0030		M(K)=+1LG(())/1000. JE (CLACA ED K A) CO TO CO
0022	24	FCAD (1 25) DAD
0032	25	E00467(1) E10 2)
6024	23	EA TA 40
0035	30	TYPEL (LET W(K)
0036	•••	FRINTE, INPUT CORRESPONDING RAD USU IST
0837		ACCEPTA RAD
0039		BRITE (1.35) RAD
0033	35	F0314T(1X,F10_7)
C040	40	HE(K)=H(K)-H(K)++2+VS+COS(MUS)/32.2
0041		Sta=((483.5##S##2)/((T0##4)#(H(K)##5)))
0042		St8=DP(-1944.5/((H(K)*T0)**4))
0043		SH(K)=S+0:4548
C044	C	SH(K)=SHAtSH3
0045 -		RCHK=4+VS+COS(HUS)+HE(K)/32.2
0046	C	Prihtx,*###########,RCHK
0047		IF (ROX .LT. 1.0) GO TO 45
6349		DHELE=1.0/((ABS(RCIX)-1)##0,5)
0049		GO TO 47
0050	45	CHOHE =1.0/((1-RCHX) **0.5)
0051	C47	PRINT*, GAGNE
0052	47	PHI(K)=SH(K)+DHONE+RAD
0053		IF (FRICK) .bl. FRIPAX FRIPAX*PHICK)
0054	C	PKINIX, INI (K), PHINOX
0855		
0055	23	LUNITAR
0057		17 (K. al. 24) CV 10 CO

1

SHPREFEMAIN

QFAX 479

2-feb-1985 13:21:49 10-Dec-1984 13:18:18

والمعيد أدريه والمعاري والمستر المادية

VAX-11 FORTRAN V3.5-62 Page 2 FSD0:[STEVENS.SHIPSTUFF]SHPREF.TOR;23

059)F (K .GT.	15) 60 TO 5	5	
059		L=625			
060		H=750			
061		J=25			
062		60 TO 15			
863	\$5	L-800			
054		-1200			
065		J=50			
066		60 TO 15			
067	60	D0 65 I=1	.24		
068		PH1(1)=	PHI(1)/PHIMA	X	
069	65	CONTINUE			
870		IF (FLAGE	.IE. 1.0) GO	TO 66	
071		CALL HAR	LT(HE,PHI.K)		
072	SS	PRINT*,	H ·	HE	PHI'.
073		11	S¥*		•
074		TYPE:			
075		10 70 1=1.	24		
075		TYPE*,N	(1),HE(1),PH	1(1),94(1)	
077	С	TYPE*, 1	HE=', HE(1),'	PHI*', FHI(1),	' SH(1)=',SH(1)
378	7;	CONTINUE			•
079		PRINT*, 'FK	imax=", phima	X,' NUS=', HUS,	' HS=',HS,' TO=',TO
059		PRINT*,FLN	H		
081		CLOSE(1)			
C82		STOP			
083		ÐÐ			

PROSPAN SECTIONS

Nate	Bytzs	Attributes
D SCODE	1208	PIC COM REL LOL SHR EXE NO NOVAT LONG
1 SPCATA	279	PIC CON REL LOL SHR NOEXE RD NOURT LONG
2 SLOCAL	752	PIC CON REL LCL NOSHR NOEXE RD HAT LONG
Total Space Allocated	2239	

ENTRY POINTS

Address Type Name Referen	ance:
---------------------------	-------

0-00000000 SIPREFIMAIN

VARIABLES

Address	Type	Name	Attributes	References				
2-00000229	R#4	202		48-	50=	52		
2-000001F0	R±4	FLAGA		10=	21	31	•	
2-000001F4	R±4	FLAEB		12-	70			
2-000001E0	CHY	เกมษ		5	20=	224	244	83
2-00000200	R*4	HS		14=	41	79	· .	

SHPREFHAIN					1	2-Fzb-1985 0-Dec-1984	13:21:49 13:18:18	VAX-11 FSD0:[FORTRAN VI STEVENS.SH	3.5-62 Ipstuff]sh	Pa PREF.FOR;23	Ŋ
2-00000214	3±4	1		29=	30	67=	68(2)	75=	76(4)			
2-00000204	1±4	J	· · · ·	25=	29	61=	6 5 *		11 - F.S.			
2-00000210	1+4	ĸ		28=	30	35	40(3)	41	42	43	45	
	4 J ¹	×1, .		52(2)	53(2)	55(2)=	57	58	71A			
2-00000208	114	L		26*	- 29	59+	ស=					
2-0000020C	I #4	н		27=	29	60=	64=	•				
2-000001EC	R±4	HUS		4	14=	40	45	79				
2-0000022C	Rt4	Phinax		53(2)=	63	79						
2-00080218	R±4	rao		32=	37=	38	52					
2-00000224	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	RCHX		45=	47	48	51 5					
2-00000210	R#4	SHA		41=	43							
2-00000220	R#4	53		42=	43							
2-000001FB	R#4	TO		14=	41	42	79					
2-000001FC	R#4	VS		14=	40	45						
1.00												

3

ARRAYS

ł

[]

E

i N

Address	Type	Nane	Attributes	Bytes	Dimensions.	References				
2-000000F0	R#4	PHI		120	(30)	3	52=	53(2)	68(2)=	71A
						76				
2-00000168	R#4	54		120	(30)	3	43=	52	76	
2-00800080	R#4	н	· · · ·	120	(33)	3	33×	33	40(2)	41
						42	76			
2-00000073	R#4	ΗE		120	(30)	3	40=	45	71A	76

66

LABELS

Address	Label	References	;
0-0000010E	5	21	24
0-00000117	10 -	23	254
0-0000012A	15	292	62
** .	20	32#	
1-00000108	25*	32	330
0-00000168	30	31	351
1-00000111	35'	38	390
0-0000023E	40	34	409
6-000002E3	45	47	504
0-000002F1	47	49	521
##	50	23	568
0-00000356	55	58	630
0-00000369	60 ·	57	678
±±	65	67	691
0-000039C	66	70	72
**	78	75	789

SHPREFWAIN

]

2-Feb-1933 13:21:49 VAX-11 FORTRAN V3.5-62 Pa 18-Dec-1984 13:18:18 FSD0:[STEVEHS.SKIPSTUFF]SHPREF.FOR;23 Page

FUNCTIONS AND SUBROUTINES REFERENCED

Type	Nase	References			
	FORICLOSE	81			
	FORSOPEN	22 24			
	NEWFLT	71			
814	NTHISCOS	46 45			
R14	MTHEOP	42			

+-		KEY TO REFERENCE FLAGS	+.
İ.		- Value Modified	1
Ĺ		- Defining Reference	Ì.
Ł	A	- Actual Argument, passibly modified	L
L	D	- Data Initialization	Ł
L	(a)	- Humber of occurrences on line	L
			1

CONTINU QUALIFIERS

FORTENN /CRO/LIS SHPREF.FOR

/CIECX=(INCOLESS, OLERFLOH, NOLNOERFLOH) /DEENS=(INCSTIECE, TRACEDOCI) /STANEARD=(INCSTIECE, TRACEDOCI) /SICH=(NOTREPROCESSOR, MOINCLICE, IN2P) /FT7_/ACG_FLOATING_/I4_/OFTINIZE_/AWANINGS_/NOD_LINES_/CROSS_REFERENCE_/ASTANCHINE_CODE_/CONTINUATIOLS=19

COMPLIATION STATISTICS

Ran Time:	4.57 seconds
Elzysed Tize:	5.47 seconds
Page Faults:	248
Dynazic Hebery:	150 pages

Alter of the

******* 2-FEB-1965 13:30:33.32 FSD011STEVENS.SHIPSTUFFJORSHIFFIL.FOR13 Ħ 2-FEB-1905 13:30:33.32 FSCO1 (STEVENS, SHIPSTUFF) ON SHIPFIL, FOR 13 ********************* ŧŧ *********************** 2-FEB-1585 13:30:33.32 FS90:(STEVDIS.SHIPSTUFF)@HSHINF1L.F06:(3 ŧŧ

********************** ********************** *********

GNSMINFIL.FOR; 3

********** Ħ

7-618-1004 19:24.55 35

CONTINUEDO CATOCATECTORONINETE CUEVA

.....

Å45

C234557890234567890...etc.

CHARCTER+12,FLM TYPE+, 'IPPUT FILDWAYE ' ACCEPT+,FLM GPDH (UNIT+4,FILE+FLM,TYPE*'ISM') TYPE+, 'INPUT WALUE FOR ISEAS, THE SEA STATE' ACCEPT+,J KRITE (4,5) J 5 FGMAT (1X,14) TYPE+, 'INPUT WALUES FOR HE,AZ, CHIZ,ATH, AND PHIO' TYPE+, 'INPUT WALUES FOR HE,AZ, CHIZ,ATH, AND PHIO' TYPE+, 'INPUT WALUES FOR HE,AZ, CHIZ,ATH, AND PHIO' TYPE+, 'INPUT WALUES FOR HE,AZ, CHIZ,ATH, AND PHIO' TYPE+, 'INPUT WALUES FOR HE,AZ, CHIZ,ATH, CHID' ACCEPT+, JE, AZ, CHIZ,ATH, CHID' ACCEPT+, JE, AZ, CHIZ,ATH, CHID' IF (AZ .GE. 50) GD TO 50 WRITE (4,10) HE, AZ, CHIZ,ATH, CHID ID FORWAT (1X, 5(F8.4)) CO TO 7 50 CLOSE(4)

SQ CLOSE(4) STOP BID

· · · ·

f.

A46

Stant Stat

14

5

a ti

(

ī

**** 2-FEB-1905 11:57:54.13

FSD01 (STEVENS, SHIPSTUFF JUNSINFIL, LIS) 1 FSD01 (STEVENS, SHIPSTUFF JUNSINFIL, LIS) 1 ************************************

A47

VASINFIL.LIS;1

2-Frb-1935 11:49:89 VAX-11 FORTRAN V3.5-62 Pag 10-Dec-1984.16:23:10 FS00:[STEVENS.SHIPSTUFT]VASH#FIL.FOR;9 Page 1

Π.

0001	C234	1567890234567890etc.
0002		
0003		REAL KP
0004		CHARACTER#12.FUN
0005		TYPE+, "INPUT FILDWINE "
0006		ACCEPTA,FLNM
0007		OPEN (INITEL FILFERING TYPE= (NEL())
0009		TYPE+ (INPIT INHES FOR J THE NEWDER OF CONSTITUTE !
0000		TYPE AND K THE MEMORY OF PIECE OF FACH CONDITIONS,
6810		AMONTA I F
0010		1000CF1+1010
0011	-	RATE (1, J) J,K
0012	5	FORMAT (1X,2(14))
0013		TYPE*, 'INPUT VALUES FOR LAG, ELC, TH, ZH, AND KP'
C014		TYPE*, TYPE NUMBERS .GE. 50 TO QUIT'
0015	7	TYPE*, 'INPUT LAS, ELC, TH. 7H, KP'
0016		ACCEPT+, LAG, ELC, TH, ZH, KP
0817		IF (LAG .GE. 50) GO TO 50
0018	· • .	HRITE (1.10) LAG.ELC.TH.ZH.KP
0019	10	FORMAT (1X.14.4(F10.6))
0020		
0021		60 TO 7
0022	50	CLCSE(1)
0023		STOP
6074		PMD .

PROGRAM-SECTIONS

-

Nzne	Bytes	Attributes	
0 1CODE	446	PIC CON REL LOL SHR DE	RD NOLAT LONG
1 SPDATA	216	PIC CON REL LOL SHR NOEXE	KD HOLAT LONG
2 SLOCAL	128	PIC CON REL LOL NOSHR NOEXE	rd hrt Long
Total Space Allocated	790		

ENTRY POINTS

Address Type	Nane	References
0-00000000	VASINFILSHAIN	

VARIABLES

Address	Type	Nane	Attributes	References		
2-0000001C	R±4	ELC.		16=	18	
2-000000000	CHAR	FUNH	1	4	6=	7A
2-00000010	114	J		10=	11	
2-00006314	1#4	ĸ		10=	11	
2-0000000C	R±4	KP		3	16=	18
2-00000018	114	LAG		16=	17	18
VASINFILMAIN

:Ì

i anna i

4

نه ز

2-Feb-1985 11:49:09 10-Dec-1984 16:23:10

18 18 VHX-11 FORTRAN V3.5-62 Page 2 FSD0:(STEVENS.SHIPSTUFF)VASINFIL.FOR:9

2-00000020	R±4	TH		16=
2-00000024	R#4	ZH		16=

LASELS

Address	Label	References	References			
1-00000001	5'	11	12			
0-00000102	7	150	21			
1-000000008	10'	18	19			
0-000001AF	50	17	22			

FUNCTIONS AND SUBROUTINES REFERENCED

Type	Nane	•	References
	FORSCLOSE		22
	FORSOPEN		7
+			+
E.	KEY TO REFERENCE	E FLAGS	1
1 .	- Value Modified		1

	- Value Modified
•	- Defining Reference
A	- Actual Argument, possibly modified
D	- Data Initialization
61	- Number of accurrences on line

COTINO CUALIFIERS

FORTRAN /LIS/CRO VASINFIL.FOR

/CHECK=(NOBOLINDS, OVERFLOH, NOUNDERFLOH) /DEBUG=(NOSYNBOLS, TRACEBACK) /STANDARD=(NOSYNTAX, NOSOURCE_FORM) /SHOH=(NOPREPROCESSOR, NOINCLUDE, MAP) /F77 /NOG_FLOATING /14 /OPTIMIZE /HARMINGS /NOO_LINES /CROSS_REFERENCE /NOMACHINE_CODE /CONTINUATIONS*19

COMPLICATION STATISTICS

Run Time:	1.68 seconds
Elapsed Time:	2.53 seconds
Page Faults:	139
Dynamic Hemory:	125 pages

********************* ***** ŧŧ

2-FEB-1985 13:31:47.17 2-FEB-1935 13:31:47.17 2-FEB-1985 13:31:47.17

FSD0: (STEVENS, SKIPSTUFF) ONSHINFIL, LIS;1 FS00: (STEVENS, SHIPSTUFF) GNSMINFIL, LIS:1 FSD0:(STEVENS.SHIPSTUFF)GNSMINFIL.LIS:1

******************** ************************ ******************

GNSMINFIL.LIS;1

***** 1.CCD.1004 10.01.47 17

CONVECTORION CONCERNMENT FILLER

2-Feb-1985 13:21:30

VAX-11 FORTRAN V3.5-62 Page 10-Dec-1984 15:54:03 FSDD:[STEVENS.SHIPSTUP:]GHSHINFIL.FOR:3

C234	567890234567830etc.
	•
	CHPRACTER 12, FUNH
	TYPE*, "INPUT FILENWIE "
	ACCEPT+,FLNH
	OPEN (UNIT=4, FILE=FUNH, TYPE="HE")
	TYPE*, "INPUT VALUE FOR ISEAS, THE SEA STATE"
	ACCEPT#.J
	HRITE (4.5) J
5	FORMAT (1X,14)
-	TYPE+. "INPUT VALUES FOR HE.AZ. PHIZ.ATH. AND PHIL
	TYPE*. 'TYPE NUMBERS .GE. 50 TO CUIT'
7	TYPE+, 'INPUT HE AZ PHIZ ATH PHIO'
•	ACCEPT+ HE AZ PHIZ ATH PHID
	IF (AZ . SE. 50) 60 TO 50
	HRITE (4.10) HE AZ PHIZ ATH PHIO
19	FORMAT (1X.5(F8.4))
•••	
	60 T0 7
50	CLOSE(4)
	STOP
	ĐĐ
	C234 5 7 10 50

PROGRAM SECTIONS

Z

.1

1

.

Hame	Bytes	Attributes
O SCODE	403	PIC CON REL LOL SHR EXE RD NORRT LONG
1 SPTATA	161	PIC CON REL LOL SHR HOEXE RD NOHRT LONG
2 NLOCAL	116	PIC CON REL LCL NOSHR NOEXE RD HAT LONG
Total Space Allocated	680	

ENTRY POINTS

Address Type Name

0-00000000 **CHSMINFILMAIN**

VARIABLES

Adtess	Type	Name	Attributes	References		
2-0000001C	R*4	ATH		14=	16	
2-00000014	R#4	AZ	•	14=	15	16
2-00000000	CHAR	FUN		3	5=	6A
2-00000000	114	J		8=	g .	
2-00000020	R*4	PHIO		14=	16	
2-00000018	R#4	PHIZ		14=	16	
2-00000010	R*4	HE		14=	16	

A51

References

CNSHINFILMAIN

2-feb-1985 13:21:30 10-Dec-1984 15:54:03

VAX-11 FORTRAN V3.5-62 Page FSD9:[STEVENS.SHIPSTUFF]GHSHIPFIL.FOR;3 Page

2

LABELS

Address	Label			References		
1-00000091	5'			-	9	100
0-00000001	7				139	19
1-00000096	101				- 16	17#
0-00000184	50				15	200

FUNCTIONS AND SUBROUTINES REFERENCED.

Type Name

FORSCLOSE FORSOPEN

_			_
		KEY TO REFERENCE FLAGS	1
		- Value Modified	1
l		- Defining Reference	1
	A	- Actual Argument, possibly modified	1
	D	- Data Initialization	1
	(a)	- Number of occurrences on line	1

CONTINIO QUILIFIERS

FORTEAN /CRE/LIS GREMINFIL.FOR

/CHECL*(HOROLADS, OVERFLCH, MENDERFLCH) /DERUG*(NOSTHERLS, TRACERSCR) /STANDARD=(HOSTATAX, NOSGRICE_FORM) /SHOH*(NORREPROCESSOR, NOINCLIDE, HAP) /FT7 /ANG_FLOATING /14 /ORTINIZE /NARNINGS /NOD_LINES /CROSS_REFERENCE /NCHACHINE_CODE /CONTINUATIONS*19

References

20 6

COMPILATION STATISTICS

Run Time:	1.56 seconds
Elapsed Time:	2.33 seconds
Page Faults:	129
Dynzmic Memory:	125 pages

***** ********* ***********************

÷ ·----

2-FEB-1995 13:12:50.45 2-FE8-1985 13:12:50.45

د و دده د مدوست و سن منه د به و به ما د با د با د با د با د با د با FSD0: (STEVENS, STORAGE |GENSM.DAT; 4 FSD0: (STEVENS, STORAGE |GENSM.DAT; 4

****** ************

GENSM.DAT; 4

*********************** ***** *****

 2-FEB-1995
 13:12:50.45
 FS00:(STEVENS.STC%ACE)GENSH.DAT;4

 2-FEB-1995
 13:12:50.45
 FS00:(STEVENS.STC%ACE)GENSH.DAT;4

 2-FEB-1905
 13:12:59.45
 FS00:(STEVENS.STC%ACE)GENSH.DAT;4

********* ****** ***************************

DATA FOR DOPSE CLASS, SEA STATE 4						
HE	AZ	PH1Z	ATH	PHIO		

4						
0.3714	0.1234	0.0035	0.0004	-1.1447		
0.5485	0.5654	0.0035	0.0031	-1.1161		
0.7200	1.5111	0.0132	0.0068	-0.9926		
0.8914	1.6322	0.1242	8.0076	-0.7348		
1.0629	0.8724	0.5887	0.0043	-0.2552		
1.2400	0.1511	1.4188	0.0018	0.2711		

•

1

N

ļ

•

 2-FEB-1985 13:14:50.21 2-FEB-1985 13:14:50.21 2-FEB-1985 13:14:50.21 FSD0:(STEVENS.STORAGE)GENSH.DAT;5 FSD0:(STEVENS.STORAGE)GENSH.DAT;5 FSD0:(STEVENS.STORAGE)GENSH.DAT;5 2-FEB-1985 13:14:50.21 2-FEB-1985 13:14:50.21 2-FEB-1985 13:14:50.21

GENSM.DAT;5

FSD0:(STEVENS.STORAGE)GENSH.DAT;5 FSD0:(STEVENS.STORAGE)GENSH.DAT;5 FSD0:(STEVENS.STORAGE)GENSH.DAT;5 ╉╁╋╉╁╖┽┷┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿┿

 DATA FOR 00963 CLASS. SEA STATE 5

 HE
 AZ
 PHIZ
 ATH
 PHIO

 5:
 0.3543
 0.9917 -0.0035
 0.0019 -1.1439

 0.5134
 2.7355 -0.0035
 0.0026 -1.1467

 0.7029
 2.4986
 0.0093
 0.1008 -1.0109

 0.8743
 2.1737
 0.1031
 0.1009 -0.7674

 1.0457
 1.1326
 0.5180
 0.0052 -0.3152

 1.2229
 0.2533
 1.3551
 0.0019
 0.2378

Ľ

(

Λ.

2-FEB-1985 13:15:35.98 2-FEB-1985 13:15:35.98 2-FEB-1985 13:15:35.98

FSD0:[STEVENS.STORAGE]GENSH.CAT;6 FSD0:[STEVENS.STORAGE]GENSH.CAT;6 FSD0:[STEVENS.STORAGE]GENSH.CAT;6 ╪╁┿┽┼┿╪┽╅┼╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪

GENSM.DAT;6

╈╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪

2-FEB-1935 13:15:35.98 2-FEB-1985 13:15:35.98 2-FEB-1985 13:15:35.98

FSD0:[STEVENS.STORAGE]GENSY.DAT;6 FSD0:[STEVENS.STORAGE]GENSY.DAT;6 FSD0:[STEVENS.STORAGE]GENSY.DAT;6 ┿╁╆╫╅╗╅┺┽╅╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪ ╫╅╫╅╕┿╗╪┶╒╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪╪ ╫╪╫╅╫╅┿╲╅┺┊┟╪╞╒┇╛╴╪╻╡┙╴╝ ALC: NOT

DATA	FOR DO	963 CLASS	s, sea sta	ATE 6
HE	AZ	PHIZ	ATH	PHIO

6				
0.3485	1.0005	-0.0035	0.0019 -	1.1448
0.4685	4.4116	-0.0035	0.0113 -	1.1492
0.6343	3.6532	0.0002	0.0143 -	1.0743
0.8143	2.8583	0.0546	0.0135 -	0.8560
0.9829	2.6422	0.2984	0.0054 -	0.5174
1 1 257	6 5770	a onal	A A333 -	A 0204

A58

5

********* *********** *********

2-FEB-1985 13:40:23.90 2-FEB-1935 13:40:23.90 2-FE8-1985 13:40:23.90

A59

FSD0:[STEVENS.SHIPSTUFF]VASU#5.COH;3 FSD0:(STEVENS.SHIPSTUFF)VASUAS.COM;3 FSD0:(STEVENS.SHIPSTUFF)VASUAS.COM;3 ***************** ******* **********************

VASLNK5.COM; 3

******************* ******* *********************

FSD0: ISTEVENS. SHIPSTUFF) VASLAX5. CON; 3 FSD0:[STEVENS.SHIPSTUFF]VASLNK5.CCN:3 FSD0: (STEVENS. SHIFSTUFF) VASLAKS. COH; 3

********************* ******************* ************************

> E 1 ķ

A STATE OF THE STA

2-FEB-1985 13:40:23.90

2-FEB-1995 13:40:23.90

2-FEB-1985 13:40:23.90

٢,

- \$ SET VERIFY
 \$ LINK VASCON.VPA1C, IN4.GENSM, TRANO, VASSTAT, MPLT2, PLOT3, SYS\$LIBRARY: INTLIB/LIB,D
 \$ SET NOVERIFY

5

 2-FEB-1985 11:05:18.68 2-FEB-1983 11:05:13.68 2-FEB-1985 11:05:18.68 FSD0:[STEVENS.SHIPSTUFF]VPAIC.LIS:1 FSD0:[STEVENS.SHIPSTUFF]VPAIC.LIS:1 FSD0:[STEVENS.SHIPSTUFF]VPAIC.LIS:1

VPA1C.LIS;1

 2-FE8-1935 11:05:18.68 2-FE8-1985 11:05:18.68 2-FEB-1985 11:05:18.68

FSD0:(STEVENS.SHIPSTUFF)VPAIC.LIS;1 FSD0:(STEVENS.SHIPSTUFF)VPAIC.LIS;1 FSD0:(STEVENS.SHIPSTUFF)VFAIC.LIS;1

 A P. C. S. C. Martine

A61

والديليو - مار

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

WAX-11 FORTRAN V3.5-62 Page FSD0:[STEVENS.SH:PSTUEF]VPA1C.FOR:17

1

		19-Jan-19
0001	C1234	5678901234567890etc
0002	C	
0003		SUBROUTINE VASIP(ISEAS, K, JRAN, L, ELC, TH, GD, KP, HE, AZ, PHIZ,
0004	1	L ATH.FHIO, JAY)
0005		
0006		01/ENSION SLS(30), SLV(50), SLA(50), ZL(50), ZDL(50), ZDU(50)
0007		DIRENSION HE(10), A2(10), PHI2(10), AIM(10), PHIO(10), Sh(300)
0008		DIMENSION AC(200), LIPEL(200)
0009		DIMENSION SLUI(30), INCIN(30), IS(30), OUTS(30)
0010		DINENSITIN AUX (200) * 220 (200) * 114 (200) * 120 (200) * 1144 (200)
0011		NEW AR 111 112 112 114 115 116 117 118 119 110 1111
0012		RCAL 1T12 IT12 III MITCH MUSD
0013		RCAL FITZ, FITZ, CHING OF THE AND
0014		CHARACTERER RUF
0016		CHORACTER 19. BLEF
0010		CITATO DA I
0018		PRINTE, 'RUNNING UPALE AS HAIN PROGRAM'
0019		PRINT+.'SEASTATE='.ISEAS
0020		PRINT+, 'KP=', KP
0021		KPA=KP
0022		KPB=KP#1.3
C023		KPC=KP+2.0
0024		
0025		GD=GFD0T
0026		ZH=0.01
0027		1FLA65=0
0028		KAY=K
0029		DO 1 INT=1,50
0030		IS(INI)=U
0031		DUD3(INI)=0
0032	1	CONTROL
6034		60 113 100-11A
0035		
0036	Ct	TYPE+, 'DO YOU HANT A PLOT? NO=0"
0037	Č*	ACCEPT*_FLAG4
0039	Ċ#	TYPE*, 'INPUT INITIAL TIME'
0039	Ċ*	ACCEPT*,t
0040	C#	TYPE*, 'INPUT T/H, ELC, ZH, TLAGH'
0041	C#	ACCEPT*,TH,ELC,ZH,L
0042		
0043		t=360C+PAN(JRAN)
0045		
0045		
0040		10-0.01
0047		6400±0 0
0040		CHID-V.V
0050		0.0±9704
0051	CH.	Ht=T
0052	Ċ.	kh=0.25
0053	-	TF=t11+360
0054	C*	GRPHT+t
0055	Ci	GRPH##0.2
0056		ABRTHT=6.0 14.5
0057		CT\#4=-1.0

17. 1

4

:

A62

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

VAX-11 FORTRAN V3.5-62 Page 2 FSD0:[STEVENS.SHIPSTUFF]VPA1C.FOR;17

<u>___</u>(@

0058	Y1=0.0
0059	Y2=0.0
0060	Y3=0.0
0061	Y0=0.0
0062	YC0=0.0
0063	T2=0.01
ANGA CKP	KP=0.01
0065	TL=0.75
0066	TG=0.01 10.01
0067	FLAG2=1.0 ! 1=TURBULENCE IS UN
0968	IFLAG3=9
0069	IFLAG7=1
0070	1FLAG8=#
0971	1FLA69=0
0072	IFLAG10=0
0073]fLA611≠0
0074	IFLAG12=9
0075	1FLAG13=1
0076	
0077	TE=0.0
0078	FPLS1=0.0
0079	ZHDTDT=32.2
0080	51=40
0081	S2=0.0
0082	S3=0.0
0083	
0084	
0085	T1=T2*2
0086	T4=T2**2
0087	IT1=TC
0088	IT2=TC*TC/2
0089	113=10**3/6
0039	1T4=TC++4/24
0091	IT5=TC##5/120
0092	IT6=TC**6/720
0093	1T7=TC++7/5040
0094	IT8=TC#+8/40320.0
0095	G4TR=0.0
0096	CH=0.0
0097	Z=40.0
0093	ZD=0.0
0099	ZDD=0.0
0100	17=1
0101	nea+1
6102	TOUTHAX=0.0
0103	TOUTHIN=10.0
0104	MIVRD=0.0
0105	J=/9836423
0106	C1 C1 D1=1,-00
0107	C1111-40.0
0108	Stat12:0
0109	71 (1) = 40.0
0110	774 (1)=0.0
0111	202117-010 7001 (1)=0.0
0112	
0113	0_0+(+)++++
0114	INCLUED-010

. ;

VASHP

VASHP

223

[]

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

VAX-11 FORTRAN V3.5-62 Page 3 FSDD:[STEVENS.SHIPSTUFF]VPA1C.FOR:17

4

6115	5	CONTINE
0116	•	D0 6 1=1 500
0117		AC(1)=0
0118		TIME(1)=0
0119	6	CONTINUE
0120	•	
0121	CH	HRITE(5.10)
0122	0410	FORMAT (5X.'t', 8X.'S1', 6X. 'Ht', 8X.'dH', 8X. 'TG', 8X. 'TL',
0123	04 1	8X, 'KP')
0124	CH I	HRITE(6.15)
0125	0.15	FORMAT (1X.10(' ').//)
0126	•	
0127		
0129		CALL INPUTI(SAL, SA2, SA3, t, t11, 1FLAG8, SX)
0129		CALL INPUT2(SS1,SS2,SS3,t,tII,EN,WE,AZ,PHIZ,ATH,PHIO)
0130		CALL TURBULENCE (TGEE. TC. VIZ. PRECYC. R.P. KNO)
0131		
6132		60 TO 143
0133		
0134	20	CALL INPUTI(SAL, SA2, SA3, t, t11, IFLAG8, SX)
0135		CALL INFUT2(SS1, SS2, SS3, t, tII, EN, NE, AZ, FHIZ, ATH, PHIO)
0135		CALL TURBULENCE (TGEE, TC, VTZ, PRECYC, RVP, RNQ)
0137		
0138	C	********* FLIGHTPATH CONSWHO LOGIC *********
0139		
0149	- 30	SS1Z=SS1-Z
0141		\$\$ZZD=\$\$2-ZD
0142		IF (IFLAGIO .EQ. 1 .AND. TE4 .LT. 1.5) CO TO 50
0143		IF (SS2 .GT. 5.5) GO TO 35
0144		IF (SS1Z .GT9.0 .AM). SS2 .GT. 4.5) 60 TO 40
0145		IF (SSIZ .LT3.0) 60 TO 45
0146		IF (Z .LT. ABRTH) GO TO 45
0147		IF (SS1Z .GT. CTNH) GO TO 50
0149		
0149		IF (IFLAG3 .EQ. 0) THEN
0150		TE1=0.0
0151		IFLAG3=1
0152		IFLAG7=0
0153		IFLAG9=0
0154		IFLAGID=0
0155		IFLAG11=0
0156		IFLAG12=0
0157		IFLAG13=0
0158		53P=51
0159		CTNH=-1.0
0160		EKD 1F
0161		and an end of the second second second second second second second second second second second second second se
0162		S1=SS1+((SGP-SS1)+(SGP-SS1)+COS(6.2032+TE1))/2.0
U163		52=532 52=552
0164		50-505 *0-505
0102		
0100		IT ILATE .LU. 1) KP=KPA
0100		ILI-ILITIU IL (TC) CT A MI YOU A M
0100		IT LILL .DL. 0.3) 181=0.5
0120		
0170	25	
V1/1	33	IT (ITLAGEL .EU. D) THEN

	TE3=0.0
	IFLA63=0
	1FLA67=0
	IFLASS=0
	IFLAGID=0
	IFI 4G11=1
	FEI AGI 2-0
	fri Actore
	CCAD8-C1
	CACC-C 0
	S1*5GAPP+(GAPP-GAPP*CUS(6.2832*1E3))/2.0
	S2=SS2
	S3=SS3
	KP=KPC
	TE3=TE3+TC
	IF (TE3 .GT. 0.5) TE3=0.5
	FPLS=1
	60 70 65
	•
40	IF (IFLAG12 .EQ. 0) THEN
	TE=0.0
	IFLAG3=0
	IFL667=0
	181469=0
	IFLACTA=0
	TE (TELOCITE ED 1) THEN
	SCOD-CI
	5007-51 C00+-5 A
	CODE OF (ITCHULL .LU. U) INCN
	Supressi Con- a
	6PF=3.0
	END IF
	IFLAGI1=0
	IFLAG12=1
	IFLAG13=0
	CTT##-1.0
	ED IF
	S1=SEPP+(GPP-GPP*COS(6.2832*TE))/2.0
	52=552
	S3=SS3
	KP=KP8
	TE=TE+TC
	IF (TE .GT. 0.5) TE=0.5
	FPLS=2
	GO TO 65
45	IF (IFLAG13 .EQ. 0) THEN
	TE2=0.0
	SSGAP=S1
	SSAMP=SA1-SSGAP
	IFLAG3=0-
	IFLAG9=0
	IFLAG10=0
	1FLAG11=0

1.1.

WASHP

IFLAG12=0

•

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

ALT ANT THE AND

VAX-11 FORTRAN V3.5-62 Page FSD0:[STEVENS.SHIPSTUFF]VPA1C.FOR:17

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

VAX-11 FORTRAN V3.5-62 Page 5 FSD0:[STEVENS.SRIPSTUFF]VPA1C.FOR:17

		1
0229		151 6(13=)
0220		CTURA-1 0
0230		
0231		
0232		
0233		
0234		S1=SSGAP+(SSAP-SSAPP*COS(6.2832*1E2))/2.0
0235		GO TO 47
0236	46	51=SA1
0237	47	S2=SA2
0238		\$3=\$A3
0239		IF (240.5 .LT. S1) THEN
0240		KP=KP3
0241		ELSE IF (ZHO.5 .GE. SI) THEN
0242		KP=KPA
0243		END IF
0244		T5 2=TF2+TC
0245		16 (TE2 CT 0 5) TUEN
0245		TE2=0.5
0240		10 467-1
0297		
0248		
0249		
0250		60 10 65
0251		
0252	50	IF (IFLASIC .EQ. C) THEN
0253		KP=KFA
0254		FPLS=5
0255		1FLAG3=8
0255		1FLAS7=1
0257		1FLA59=1
3258		IFLAGIO=1
0259		IFLAG11=0
0260		1FLA512=0
0261		IFLAG13=0
0262		CTN==-1.7
0263		TF4=0.0
0264		GAP=S1
0265		END 1F
0266		H (Hz-1.0
0200		IC (TEA IT & 25) THEN
0207		17 (164 -614 0423) 1164 61-660449 6+666112 5664+1641-9 61/2 0
0200		51-04 1(3.0-003(12.3004-101)-3.0//2.0
0263		FILE-D FILE IT ATTA OF A DE AND TEA IT 1 DEN TUDA
0270		
02/1		51=54-5.0
0272		
0273		ELSE IF (114 .GE. 1.20) 192N
0274		S1=6AP+(9.0*CUS(12.5664*(1E4-1))-9.0)/2.0
0275		FPLS=8
0276		END IF
0277		TE4=TE4+TC
0278		
0279	65	IF ((SS1-Z) .GE. 0.0) GO TO 150
0280		
0291		DO 70 1=L,2,-1
0292		SLS(1)=SLS(1-1)
0283		SLV(1)=SLV(1-1)
0234		$SLA(1) \neq SLA(1-1)$
0285	70	CONTINUE

(ASPP

K

[]

A66

e - 4

VASIP

/.

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

VAX-11 FORTRAN V3.5-62 Page FSD0:[STEVENS.SHIPSTUFF]VPA1C.FOR;17

286		SLS(1)=51
297		SLV(1)=52
298		SLA(1)=53
200		
203	~	444444444 PTLOT T.F.F. 44444444
239	6	
291		
292		AU*0N
293		A1=Y0
294		B1=1/TG
295		P2=0.0
296		
297		C1=A1
298		C28=-B11C1
220		C33=-P1+C28-R2+C2
200		CAD
300		C4DD1-C3D D2-C3D
1301		
312		CP8*-E1#C28-35*C38
303		C78=-B1*C68-B2*C68
1304		C88=-B1*C7B-B2*C7B
)305		
1306		C2A=1.0
307		C34=-81*C2A'
1308		C4A=-B1*C3A
1309		C5A=-81+C43-92+C43
0210		C643-R1#C54-R2#C54
1211		C74x-P1+C64-P2+C64
0213		roaD1+r7A-P2+r7A
0312		
0313		NA - CALCORATTALCODALTOLCADALTOLCSCALTEACEDALTS
0314		
0315		YIB=C/Ex116+CE2#117
0316		Y24=C29+C38+I11+C48+I12+C58+I13+C68+I14
0317		Y28=C78+IT5+C88+IT6
0318		Y3A=C38+C48+IT1+C58+IT2+C68+IT3
0319		Y39=C7B*IT4+C6B*IT5
0320	C	Y4A=C4B+C5B*IT1+C6B*IT2+C7B*IT3+C8B*IT4
0321	•	
0322		YA1A=C7Ax1T1+C3Ax1T2+C44x1T3+C5Ax1T4+C6Ax1T5+C7Ax1T6
0222		VA18=680+117
0323		VA1-VA164VA1D
0329		101-101011010 VAD-00410041011000410010041001004104004104000410540904106
0323		
0326		IRJ=LJHTUHRIIIITUHRIIZIUURAIIJTU/RAIIHTUGAAITA
0327	C	TA4=LAATLAATIIItLAATII2tL/ATII3tLAATIA
0328		
0329		C2A=44
0330		C3A=-B1*C2A
0331		C4A=-B1*C3A
0332		CSA*-B1*C4A-82*C4A
0333		C6A=-B1+C5A-B2+C5A
0334		C7A=-81*C6A-82*C6A
0335		C84=-B1*C7A-B2*C7A
0225		
0330		Yeata=c2at111+C3at112+C4at113+C5at114+C6at115+C7at116
0337		YAA18=C90+117
0338		
0339		
0340		YAA2=U2A+U3A*111+U4A*112+U3A*113+U4A*114+U7A*115+U4A*116
0341		YAA3=CJA+C4A*IT1+C5A*IT2+C6A*IT3+C7A*IT4+C8A*IT5
0342	C	YAA4=C4A+C54*1T1+C6A*1T2+C7A*1T3+C8A*1T4

The later

21-Jan-1985 12:09:33 19-Jan-1985 21:06:48 . .

WAX-11 FORTRAN V3.5-62 Page FSD0:[STEVENS.SHIPSTUFF]VPAIC.FOR;17 W

0343		E = E
0344		Y1=Y1A+Y1B
0345		Y2=Y24+Y23
0346		Y3=Y34+Y3B
0347	C	Y4=Y4A+YA4
0348		
0349		D1=(1/TL-1/T2)
0350		02=1/(TL+T2)
0351		D3=(KP*TL/TG)
0352		H18=YA2+(1/TL)*YA1
0353	C	HtB=(YA3ID1*YA2-D2*YA1)
0354		HtA=(Y2+SLS(L)*YA2)+(1/TL)*(Y1+SLS(L)*YA1)
0355	C	HtA=(Y3+5LS(L)*YA3)+01*(Y2+SLS(L)*YA2)-D2*(Y1+SLS(L)*YA1)
0356	C	H1P08=-D2*(Y1+YA41)
0357	C	HIPDA=(Y3+YAA3)+D1+(Y2+YAA2)
0358		Htp03=(1/TL)*(Y1+(SLS(L)-ZL(L))*YA1)
0359	C	H1P08=-02*(Y1+(SLS(L)-ZL(L))*YA1)
0360		HtPun=Y2+(SLS(L)-ZL(L))*YA2
0361	C	HtPDA=(Y3+(SLS(L)-ZL(L))*YA3)+D1*(Y2+(SLS(L)-ZL(L))*YA2)
0362		HtPO=D3*(HtPOA+HtPOB)
0363		
0364		YO=YI+YAA1+FNP
0365		YD0=Y2+YAA2
0366		
0367		
0368		
0359		IF (HtPD .EU. 0.0) HtPD=0.00061
0370	~	IF (IFLAGS .EU. 1) 60 16 74
03/1	L A	H_HT=+((H-1)*1.3)
0372	L	IF (HLIM .GIU.US) HLIM=-U.US
0373	74	
0379	/9	IF (HTPU .UI. FLIM) GU IU 75
0375		
03/8	~	
0377	/5	IE (HTPU .LI. (IH-1)) GU IU EU
0370		
03/3		
0300	r	
0301	L	
0302	91	AND - (THINTOT I / (TOOD I DAND) A 1415 AT CLAI SHADDANS A
0234		ANT-TATIVELCITCHTCITCLTLAT
0385		ΔΔ2=74/1/C1 C1
0386		ΔΔ3=7
0387		PA1=((7UDTDT+((TOEE+DAHP) / THIS)/CLOSH THEODER-P
0388		BA2=74/FIC
0389		843=73417FLC
0390		
0391		AAOP=L111+D3+HtA
0392		BA1P=LIH+D3+HtB
0393		POUT=AA0P+BA1P+(-ZL(L))
0394		TOUT=POUT+1
0395		HTOUT=((KHEAN-))+HTOUT+TOUT)/KHEAN
0396		IF (TOUT .GT. TOUTHAN) TOUTHAN TOUT
0337		IF (TOUT .LT. TOUTHIN) TOUTHIN TOUT
0393	C	IF (TOUT .LE. 1.21 .AND. TOUT .GT. 1.101) THOU
0399	C .	60 TO 85

VASIP

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48 VAX-11 FORTRAN V3.5-62 Page F500:(STEVENS.SHIPSTUFF)VPA1C.FOR;17 Ø

ij

No. 12 - 14

N - 1

0400 IF (TOUT .LE. 1.101 .AND. TOUT .GT. 1.001) THEN 0401 GO TO 90 0402 ELSE IF (TOUT .LE. 1.001 .AND. TOUT .GT. 0.901) THEN 0403 GO TO 95 0404 ELSE IF (TOUT .LE. 0.991 .AND. TOUT .GT. 0.800) THEN 0405 60 TO 100 0406 DØ 1F 0407 68 TO 105 0408 C85 IF (TOUT .LE. 1.201 .AND. TOUT .GT. 1.191) THEN 0409 C IS(1)=IS(1)+1 0410 C ELSE IF (TOUT .LE. 1.191 .AND. TOUT .GT. 1.181) THEN 0411 C IS(2)=IS(2)+1 0412 C ELSE IF (TOUT .LE. 1.181 .AND. TOUT .GT. 1.171) THEN 0413 IS(3)=IS(3)+1-C 0414 C ELSE IF (TOUT .LE. 1.171 .AND. TOUT .GT. 1.161) THEN 0415 C IS(4)=IS(4)+1 0416 C ELSE IF (TOUT .LE. 1.161 .AND. TOUT .GT. 1.151) THEN 0417 IS(5)=IS(5)+1 C 0418 C ELSE IF (TOUT .LE. 1.151 .AND. TOUT .GT. 1.141) THEN 0419 C IS(6)=IS(6)+1 0429 £ ELSE IF (TOUT .LE. 1.141 .AND. TOUT .GT. 1.131) THEN 0421 C IS(7)=IS(7)+1. 0422 C ELSE IF (TOUT .LE. 1.131 .AND. TOUT .GT. 1.121) THEN 0423 C IS(8)=IS(9)+1 0424 C ELSE IF (TOUT .LE. 1.121 .AND. TOUT .GT. 1.111) THEN 8425 C 15(9)=15(9)+1 0426 C ELSE IF (TOUT .LE. 1.111 .AND. TOUT .GT. 1.101) THEN 0427 C IS(10)=IS(10)+1 0428 C DO IF 0429 C GO TO 105 0430 90 IF (TOUT .LE. 1.101 .AND. TOUT .GT. 1.091) THEN 0431 IS(11)=IS(11)+1 0432 ELSE IF (TOUT .LE. 1.091 .AND. TOUT .GT. 1.081). THEN 0433 IS(12)=IS(12)+1 0434 ELSE IF (TOUT .LE. 1.081 .AND. TOUT .GT. 1.071) THEN 0435 IS(13)=IS(13)+1 0436 ELSE IF (TOUT .LE. 1.071 .AND. TOUT .GT. 1.061) THEN 0437 IS(14)=IS(14)+1 0433 ELSE IF (TOUT .LE. 1.061 .AND. TOUT .GT. 1.051) THEN 0439 IS(15)=IS(15)+1 0440 ELSE IF (TOUT .LE. 1.051 .AND. TOUT .GT. 1.041) THEN 0441 IS(16)=IS(16)+1 0442 ELSE IF (TOUT .LE. 1.041 .AND. TOUT .GT. 1.031) THEN IS(17)=IS(17)+1 0443 0444 ELSE IF (TOUT .LE. 1.031 .HD. TOUT .GT. 1.021) THEN 0445 IS(18)=IS(13)+1 0446 ELSE IF (TOUT .LE. 1.021 .AND. TOUT .GT. 1.011) THEN 0447 IS(19)=IS(19)+1 0448 0449 IS(20)=IS(20)+1 0450 D-0 1F 0451 GO TO 105 0452 95 IF (TOUT .LE. 1.001 .40. TOUT .GT. 0.991) THEN 0453 IS(21)=IS(21)+1 ELSE IF (TOUT .LE. 0.991 .AND. TOUT .GT. 0.981) THEN 0454 15(22)=15(22)+1 0455 0456 ELSE IF (TOUT .LE. 0.981 .AND. TOUT .GT. 0.971) THEN

Ī

VASP

21-Jan-1985 12:09:35 UAX-1 19-Jan-1985 21:06:48 FSD0:

VAX-11 FORTRAN V3.5-62 Page 9 FSD0:(STEVENS.SHIPSTUFF)VPA1C.FOR:17

<u>د انه</u>

0457 IS(23)=IS(23)+1 0458 ELSE IF (TOUT .LE. 0.971 .AND. TOUT .GT. 0.961) THEN 0459 IS(24)=IS(24)+1 0460 ELSE IF (TOUT .LE. 0.961 .AND. TOUT .GT. 0.951) THEN. 0461 IS(25)=IS(25)+1 0462 ELSE IF (TOUT .LE. 0.951 .AND. TOUT .GT. 0.941) THEN 0453 IS(26)=IS(26)+1 0464 ELSE IF (TOUT .LE. 0.941 .AND. TOUT .GT. 0.931) THEN 0465 IS(27)=IS(27)+1 0466 ELSE IF (TOUT .LE. 0.931 .AND. TOUT .GT. 0.921) THEN 0467 15(29)=15(28)+1 0468 ELSE IF (TOUT .LE. 0.921 .AND. TOUT .GT. 0.911) THEN 0469 15(29)=15(29)+1 0470 ELSE IF (TOUT .LE. 0.911 .AND. TOUT .GT. 0.901) THEN 0471 IS(30)=IS(30)+1 0472 END IF 6473 GO TO 105 0474 IF (TOUT .LE. 0.901 .AND. TOUT .GT. 0.891) THEN 100 0475 IS(31)=IS(31)+1 0476 ELSE IF (TOUT .LE. 0.891 .AND. TOUT .GT. 0.881) THEN 8477 15(32)=15(32)+1 0478 ELSE IF (TOUT .LE. 0.881 .AND. TOUT .GT. 0.871) THEY 0479 15(33)=15(33)+1 0480 ELSE IF (TOUT .LE. 0.871 .AND. TOUT .GT. 0.661) THEN 0481 IS(34)=IS(34)+1 0482 ELSE IF (TOUT .LE. 0.861 .AND. TOUT .GT. 0.851) THEN 0483 15(35)=15(35)+1 0484 ELSE IF (TOUT .LE. 0.851 .AND. TOUT .GT. 0.841) THEN 0485 19(36)=15(36)+1 0486 ELSE IF (TOUT .LE. 0.841 .AND. TOUT .GT. 0.831) THEN 0487 IS(37)=IS(37)+1 0439 ELSE IF (TOUT .LE. 0.831 .AND. TOUT .GT. 0.821) THEN 0489 IS(38)=IS(38)+1 0490 ELSE IF (TOUT .LE. 0.221 .AND. TOUT .GT. 0.811) THEN 0491 IS(39)=IS(39)+1 0492 ELSE IF (TOUT .LE. 0.811 .AND. TOUT .GT. 0.801) THEN 0433 IS(40)=IS(40)+1 0494 END IF 0495 04% 105 C1A=443 0497 C2A=AA2-BA3*C1A 0498 C3A+AA1-BA2*C1A-BA3*C2A 0499 C4A=AA9-BA1*C1A-B12*C2A-B43*C33 0500 C5A=-BA1+C2A-BA2+C3A-BA3+C4A 0501 C6A=-BA1*C3A-BA2*C4A-BA3*C5A 0502 C7A=-BA1*C4A-BA2*C5A-BA3*C6A 0503 C84=-B41*C54-B42*C64-G43*C7A 0504 0505 ZA1=C1A+C2A+IT1+C3++IT2+C4A+IT3+C5A+IT4+C6A+IT5 0506 ZA2=C7A+1T6+C8A+1T7 0507 ZB1=C20+C30+IT1+C40+IT2+C50+IT3+C60+IT4 0508 ZB2=C7A*IT5+C8A*IT6 0509 2C1=C3A+C4A+IT1+C5A+IT2+C6A+IT3 0510 ZC2=C7A+IT4+C8A+IT5 0511 0512 Z=ZA1+ZA2 ZD=ZB1+ZB2 0513

VASHP

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

.

VAX-11 FORTRAN V3.5-62 FSD0:[STEVENS.SHIPSTUFF]VFA1C_FOR:17 Page 10

8514	:	ZDD=ZC1+ZC2
0515		
0516		DQ 110 I=L,2,-1
0517		71(1)=71(1-1)
0518		ZDL(1)=ZDL(1-1)
0519		Z00L(1)=Z00L(1-1)
0520	110	CONTINE.
1521		ZL(1)=Z
0522		7DL(1)=2D
0523		700(1)=700
0524		10HP=(7D+0.45+GHOOT)
0525		
0526		M(T2=SI S(L)-7L(L)
0520		EPROR_REN(.I)
0327		C00-0 5-22000
0369		
0323	•	AL-ANGLA 14CDD
0530	ч.,	CH-CHIATU.1*ENA
0331		4078-(CUUL)-7N (L)
0532		
0533	-	
0534	C	CHD=CHDIK+0.12*LKK
0535		
0536	C	C+DD=(53-H(DD)
0537		THE REPORT OF THE PROTECTION DELITION HONG
0538	CCH	HAEN CHANGING TO THE CURITINOUS PRINTING TRADE
0539	CCH	SUBSTITUTE BLACKS FUR THE LAT'S HAD CHARGE OF
0549	CCH	ON LINE 99 TO 71, AND THE 69 ON LINE 256 TO 71
0541	CH120	IF (t .LT. HT) GO TO 71
0542	04125	TYPE 130, t,SI.Z,SSI,TGEE,POUT,RTPU
0543	CH130	Format (1x,7(F10.5,X))
0544	머	ม⊺≠11#h
0545		
0546	CH135	IF (t.LT. GRPHT) GO TO 71
0547	C#	94(1T)=551
0548	C#	AC(::)=Z
0549	C#	TIMEE(IT)=t
0550	C*	17=17+1
0551	C#	GRPHT=GRPhT+GRPHh
0552	140	t≠t+TC
0553		KMEAN=KMEAN+1
0554	1.12	IF ((SS2-ZD) .GT. HIVRD) HIVRD=(SS2-ZD)
0555		IF ((t-TC) .6E. TF) GO TO 150
0556	145	GO TO 20
0557	150	PRINT*, 'T/H =', TH, ' ELC =', ELC, ' ZH =', ZH
2558		PRINT*, 'T.D. VEL -', (SS2-ZD), 'TIME =', (t-t11)
0559		PRINT*, 'HTOUT=', HTOUT, ' FPLS=', FPLS, ' RUN NO.:', 120
0560		PRINT*, '15(21)=',15(21),' FPLS1=',FPLS1
0561	Ct	IF (FLAG4EQ. G.O) GO TO 1E0
0562	Dt	TF114=T11+30
0563	CC#	TFIN=IFIX(t+1)
0564		HRITE (2,155) TII,T-TII,(SS2-ZD),HIVRD,HTOUT,TOUTHAX,
0565		1 TOUTHIN
0566	155	FORMAT (1X,2(2X,+5,1),2(2X,F5,1),3(2X,F6,3))
0567		IF (IFLAG5 .EQ. 0) GO TO 175
0569		FLT=T-TII
0500		UTD=(SS2-2D)
0.000		···· ·································

VASIP

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

UAX-11 FORTRAN V3.5-62 F5D01(STEVENS.SRIPSTUFF)VPA1C.FOR117 11 Page

ļ

0571		KTN=ICO
0572		THN(KHH)=((KHN+1)+THN(KHN+1)+FLT)/KHN
0573		Vt+(KH+)=((KT+-1)+V++(Kt+-1)+VTD)/Kt+
0574		
0575		IF (RN .EQ. 1) 60 TO 165
8575		IF (RH .GT. 2) GO TO 160
0577		TSD(RTH)=((FLT1-THN(#211))##2+(FLT-THN(RTH))##2)##0.5
6578		USD(10th)=((VTD1-Uth(10th))++2+(VTD-Lth(10th))++2)++0.5
0579		GO TO 165
0580		
0581	160	TSDA=((TSD(RTH-1)##2)#(KMH-2)#(FLT-THN(KHH))##2)
0592	••••	TSD(KMI)=(TSDA/(KMN-1))##0.5
0583		VSDA=((VSD(KHN-1)++2)+(KHN-2)+(VTD-LTN(KHN))++2)
0594		USD(KIN)=(USDA/(KIN-1))##0.5
0585		
0586	165	TINA(RN)=RN
0587		fl TI #LT
0583		
0589		HRITE (3,170) KHN, THN(KHN), TSD(KHN), VHN(KHN), VSD(KHN)
0590	170	FORMAT (1X.15.4(2X.F8.4))
0591	175	CINTINUE
0592		IF (IFLAGS .EQ. 0) 60 TO 180
0593		BEG=0
0594		TFIN=FLCAT(K)
0595		1T=K
0596		CALL PLOTS(TIMA, THN, TSD, UM, VSD, BEG, TFIN, IT, JAY, KAY)
0597	120	KD00=1
0598		00 185 1=1195,795,-10
0599		THRTR(KDOO)=FLOAT(I)/1000
0600		K000=K000+1
0601	185	CONTINUE
0602		ITOT=0.0
0603		DO 190 I=1,40
0604		ITOT=ITOT+IS(I)
8605.	190	CONTINUE
0606		DO 195 1=1,40
0607		SLOT(I)=FLOAT(IS(I))/FLOAT(ITOT)
0609	195	CONTINUE
0609		TFIN=1.2
0610		T11=0.8
0611		11=40
0612		CALL PLOT2(THATR, SLOT, SLOT, TII, TFIN, IT, JAY, KAY, TH, 2H, ELC,
0613		7 KPA, ISEAS)
0614	C*	CALL PLOTI(TIMEE, SH, AC, TII, TFIN, IT)
0615		CALL TIME(SUF)
0616		CALL DATE(BUFF)
0617		
0618		HRITE (2,200) EUF, BUFF
0619	200	FORMAT (1X,2(A12))
0620		T. RETURN
0621		DND

VA91P

ł,

Χ.

21-Jan-1985 12:09:35 VAX-11 FORTRAN V3.5-62 Page 12 19-Jan-1985 21:06:48 FSD0:[STEVENS.SHIPSTUFF]VPAIC.FOR;17

「日本にないるのでい

2

PROGRAM SECTIONS

VAS4P

Name	Bytes	Attributes	
SCODE	5759	PIC CON REL LOL SHR EXE	nd nowrt loyg
SPDATA	168	PIC CON REL LOL SHR NOEXE	nd nowrt long
2 SLOCAL	19116	PIC CON REL LOL NOSHR NOEXE	nd wrt long

25042

Total Space Allocated

ENTRY POINTS

Ļ.

<u>۱</u>.

/

Address T	ype Name	References
6-00000000	urgav	3
VARIABLES		
		Assaributes Refetences

Address Type Name	Attribute								
		292=	329						٠
-00004/A8 XX4 H0		293=	297						
2-000047AC R#4 A1		383=	499						
2-00004853 R*4 PPW		291 x	393						
2-00004878 Rt4 AAOP		2042	439						
2-00004860 R*4 FA1	· · · · ·	551							
		385=	497						
2-00004864 814 442		386*	496						
2-33004868 R*4 AA3		146							
2-0000476C Rt4 ABRTH		563					24.2	202	304
2-00004698 R*4 ABRTHT		294 #	298	299	300	301	302	220	331
2-00004780 R*4 B1		201-	308	309	310	311	312	204	
		307	333	334	335				
		352						20.4	309
		205-	229	303	301	302	303	2017	••••
2-00004784 Rt4 82		2334	211	312	332	333	334	222	
		310	311 AD3	500	501	502	503		
2-0000486C R*4 DA1		387*	122						
2-0000487C R#4 BAIP		392*	393	499	500	501	502	203	\$02
2-00004970 R*4 842		368*	458	400	499	500	501	502	505
2-00004874 Rt4 BA3		389*	477	170					
		507+	5950						
2-000048C8 R*4 EEG		353-	6154	618					
2-00004600 CHAR BUE		10	6164	618					
2-00004608 CHAR BUFF		10	202	314					
2-00004768 R#4 C1		23/1	497	498	499	505			
2-00004888 R#4 CIA		476=	437						
		299					321	337	340
2-000047C4 R#4 L2		2064	307	322	325	329*	507		
2-0000470C R*4 C2A		497=	498	499	509	202	507		
		299.	299	314	316	_		221	337
2-0000476C R±4 C28		230-	202	322	325	326	¥ 10 5	505	507
2-000047E0 Rt4 C34		30/*	245	498=	499	500	141	Juj	
		340	241						
		209	200(2)	31.4	316	318			
2-000047C0 Rt4 C33		<i>cm</i>	200(2)	•••					

VAST						21-Jan-192	5 12:09:35	VAX-11	FORTRAN V	3.5-62	Page
•						19-Jan-198	5 21:06:48	FSD0:	STEVENS.SI	(IPSTUEF) VPV	ALC.FOR;17
		~~~									
2-00009729	K×4	C4H		306	= 309(2)	322	325	326	331=	332(Z)	337
				340	341	499*	500	501	502	505	507
				509							
2-00004708	R#4	C49		300	= 301(2)	314	316	318			
2-00004/18	<u>8</u> #4	C5A		309	= 310(2)	322	325	326	332=	333(Z)	337
				340	341	500=	501 .	502	503	505	507
	• • •			509							
2-00094/00	RX4	0.8		301	= 302(2	). 314	316	318			
2-00084720	KEG	LEA		. 310	= 311(2)	322	325	326	333*	334(Z)	337
				340	341	501=	502	503	505	507	509
2-00004700	R±4	C68		392	= 303(2)	314	316	318			
2-00004750	R#4	C7A	· •	311	= 312(2)	322	325	326	334=	335(2)	337
		••••		340	341	502*	503	506	508	510	
2-00004704	R#4	C78		303	a 304/2	315	317	319			
2-000047F4	R±4	C8A		312	z 323	325	326	335.8	339	340	341
-		••••		503	× 506	50.9	510	000-	556	540	012
2-00004708	R±4	C28		304	= 315	317	314				
						447	515				
2-00034778	R±4	<b>CKPB</b>		166							
2-0000459C	R*4	CTNH		57	= 147	159=	182=	209=	230=	262=	
2-00004838	R±4	Ð1		349	3						
2-00004930	R±4	D2		350	<b>.</b>						
2-00004840	R#4	D3		351	= 362	383	387	391	392		
3-00004050	0.4.4	DAMD				<b>**</b> 1-					
2-00064204	044	DHER"		383	- 387	524=					
2-00004/04	5×4	510 1010		56	- 222	529*					
2-00004604	044	2000 20100		97	= <u>-</u>						
2-00004000	044	DUDT B		95	3 500-						
2-00001033	n-4	UNUIK		20	a 332a	233					
2-0000468C	<u>£</u> *4	DHTR	-	49	a 95a	526=	529				
AP-000000146	R#4	ELC		3	383	384(2)	385	337	388	389	557
				612	A .						
2-00004748	R#4	EN		129	a 135A						
2-000048A8	R#4	ERR		528	1						
2-000048A4	R*4	ERROR		527	= 529			•			
2-00004000		F1 403									
2-00004610	R*4 844	10462		67	*			603			
2-00004896	RX4	1L1		568	× 572	577	581	587			
2-00004863	044	1010		5//	587=			054-	260-	777.	375-
2-00004775	¥*4	rrLa		169	= 190≠	217=	249*	234×	263=	612*	2/3*
2-00004659	D+4	FPI CI	· · ·	נככ							
2 00001000	N. 1	11 231		78	x . 260						
2-000047A0	R±4	GAP .		264	= 268	271	274				
2-00004783	. R*4	GAPP		181	* 184(-2	)	••••				
AP-0000001C	R#4	60		3	25=						
2-00004660	R#4	GHI OT		25	524						
2-00004790	R*4	GPP		201	× 20'4×	211(2)					
3-00004744	D & A										
2-00004/144	5.84 54.4	DUTA		266	- 373-	374	3/5				
2-00004044	R#4	nin Muto		354	- 383	391					
2-00004844	614	NTPA		352	= 387	392					
#C8#UUUU-2	5×4	MITCON		362	= 369(2	J= 374	375	377	378		
2-00004830	N # 4	1111 UP		360	- · 35∠						

13

تبهينية الم

VICSTP					1	9-Jan-1985	12:09:35	FSD0:[5	TEVENS.SHI	PSTUFF JVPA	Page 1C.FOR;17
	• • •										
2-00004840	R14	RTPC8		358=	362						
2-00004728	144	I.		106=	107	108	109	110	111	- 112	113
				114	116=	117	118	281=	282(2)	283(2)	284(2)
				516=	517(2)	518(2)	519(2)	598=	599	603×	604
				606=	607(2)						
2-00004674	1+4	100		33=	559	571					
2-00004604	1±4	IFLAGIO		72=	142	154=	176=	198#	226#	252	259*
2-00084608	114	IFLAG11		73=	155=	171	177=	199	202	206=	2272
				259=			•••-	• • • •	244	200-	267-
2-000046DC	1+4	IFLAG12		74±	156=	178=	193	207=	229×	260=	
2-000046E0	1+4	IFLAGI3		75×	157*	179=	208=	220	2298	261=	
2-000046C4	1+4	IFLAG3		68=	149	151=	173#	195#	2242	255=	
2-00004669	1+4.	LEI AGS		272	\$57	592	410-	***	221-	200-	
2-00004608	1:4	IFLAS7		69=	152=	174=	196=	233	247=	256=	
2-00604600	1+4	IFLAG8		78*	1294	1345					
2-00004520	1+4	151 469		71 =	1532	175=	197+	225-	2574	270	
2-06084670	1±4	INT		29=	30	21	221-	££.J-	£94 -	370	
AP-09020004#	1+4	ISFAS		2	19	61:24					
2-00004714	1+4	IT		100×	595=	596A	611=	612A			
2-00004614	R±4	171		12	87#	21.4	216	310	\$23	225	375
				337	340	341	505	507	509	325	320
2-00004638	R±4	IT10	•	12							
2-0000463C	R±4	1711		12							
2-00004640	R*4	1712		13							
2-00004644	R#4	1713		13							
2-00004518	R±4	172		12	88=	314	316	318	322	325	326
		.*		337	340	341	505	507	509		
2-0000+61C	R#4	IT3		12	£9×	314	316	318	322	325	326
	•			337	340	341	505	507	509		
2-00004620	R#4	iT4		12	90=	314	316	319	322	325	326
				337	340	341	505	507	510		
2-00004624	R#4	115		12	91=	314	317	319	322	325	326
		•		337	340	341	505	508	514	•••	
2-00004629	R±4	116		12	92#	315	317	322	225	337	340
				506	508		-	VLA			0.0
2-00004620	R#4	117		12	93=	315	323	3:38	506		÷
2-00004630	R±4	ITB		12	94=						
2-00004634	R±4	179		12	•						1
2-00004804	1:14	ITOT		6023	604(2)=	607					
2-00004724	3#4	J		105=	527A	607					
AB_88888890	144	144									
AD-000000338	114	041 10 M		3	596A	61 2A					
AP-0000000CC	124	JIGHN		3	43A						
AP-000000580	114	K.		3	28	33	594	595			
2-00004660	1:14	KAY		28 <b>=</b>	596A	612A					
2-00004800	1*4	KD00		597=	599	600(2)=				· ·	
2-00004718	1#4	KHEAN		101=	395(2)	553(2)*	÷ .				
2-00004684	]±4	<b>RN</b>		571=	572(4)	573(4)	575 586/21	576 589/53	577(3)	578(3)	591(3)
AP-000000206	R±4	KP		2	12	201(2)	21	22	23	165=	166.
				-							AVV

VASIP					2	I-Jan-1985 I-Jan-1985	12:09:35 21:06:48	WAX-11   FSD0:[51	FORTRAN V3. TEVENS.SHIP	5-62 STUFF JVFA1	Pa C.FCR:17
				107.	21.4-	248-	242-	<b>25</b> 2-	261		
3-00004054	***	r Da		14	21.9-	100	242-	200=	331		
2-00004634	N×4	N/H K DQ		14	22*	165	292	233	61 <i>2</i> A		
2-00001000	K*4	N 0		17	22-	100	214	299			
2-0000465C	R*4	KPC		14	23=	187					
AP-000000100	1#4	L	· · · · ·	3	281	354(2)	358(2)	360(2)	393	516	526(2)
2-00004648	R±4	H TH		13	768#	375.	779-	393(2)	397(2)	201	393
3_08004650	D+4	NURA		12	104-	554/91-	5/0-	202(2)	307(2)	271	332
2-00004630	2+4	NTRIT		12	295/21+	558	564				
	<b>N~1</b>				222(2)-	<b></b>					
2-00004890	R*4	POUT		393×	394						
2-00004754	R*4	PRECYC		130A	136A						
2-00004758	R±4	RNP		130A	136A	364	529				
2-00004750	R#4	RNQ		130A	136A						
2-000046F0	R*4	51		×03	158	162=	160	184=	200	203	211=
				222	234=	236+	239	241	264	268=	271=
				274=	286						
- 2 80004054											
2-00004614	K*4	52		81 =-	163=	185*	212*	237=	287		
2-000046F8	R#4	53		82×	164=	186=	213=	238=	288		
2-0000472C	R#4	SAL		1284	134A	223	236				
2-00004730	R*4	SA2		1284	134A	237					
2-03004734	R±4	SA2		128A	1344	238					
2-00004784	R*4	SGAPP		160=	184						
2-00004774	R±4	SGP		158=	162(2)						
2-00004780	R+4	SGPP		200=	203=	211					
2-00004730	214	551		1294	1354	140	162(3)	279			
2-00004760	R±4	SSIZ		140=	144	145	147	<b>L</b> . <b>v</b>			
•				•	•		•				
2-00004740	R±4	SS2		129A	135A	141 .	143	144	163	185	212
				554(2)	558	564	569				
2-00004764	R*4	SS2ZD		141=							
2-00004744	R#4	SS?		129A	135A	154	186	213			
2-00004790	R±4	SSAMP	· ·	223=	234(2)						
2-00004798	R±4	SSGAP		2?2=	223	234					
2-00004239	8+4	SY .		1 204	1245						
2-00004678	R#4	T		434	45	1295	1294	1365	1 254"	552(2)=	555
		•		<50	564	520	****	10.41	1001		~~~
2-00004650	8*4	T1		255-	204	200					
2-00004684	R±4	12		62-	05	65	249	254			
2-00004700	Rt4	T4		86=	55	00	343 .	3.00			
2-00004650	Kt4	1C		46=	87	88(2)	89	90	91	92	93
				- 94	130A	136A	167	188	215	244	277
2-000044554	94 A	TE		332 77-	202		D4 E / D1 -	21.57.23			
2-00004024	244	151		150-	124=	21j	213(2)*	210(2)=			
2-00004778	944	152		100=	162	167(2)*	168(2)=				
2-00004/34	644 644	166		221=	234	244(2)=	245	246*			
2-00004780	¥¥4	163		1/2=	184	183(2)=	199(2)=				
2-00004768	<u>£</u> *4	TE4		142	263=	267	268	270(2)	273	274	277(2)=
2-00001694	. 6#4	15		53×	555			••			
2-000048CC	<u>R</u> #4	TFIN		594=	536A	£09=	61.2A				
2-0000466C	<u>ƙ</u> #4	TG		66=	294	351					

VASIP.					2	1-Jan-198 9-Jan-198	5 12:09:35 5 21:06:48	VAX-11 FSD0:{!	FORTRAN VS	.5-62 PSTUFF]VPF	Page LC.FDR;17	16
2-00004740	R±4	TGEE		130A	136A	383	387	•				
2-0000467C	R#4	TII		45= 5:01	53	129A	1294	1344	135A	558	564(2)	
2-00004699	0+A	т. Т		200	349	250	251	252	1 254	250		
2-00004884	Rt4	TOUT		794.s	395	395(2)	397/21	400(2)	432(2)	330 ANA(2)	420121	
2 0000 001	N~ 1			432(2)	434(2)	435(2)	420/21	A40(2)	442(2)	444(2)	130(2)	
				449721	452(2)	454(2)	455(2)	459(2)	460/25	462(2)	454(2)	
				455(2)	468(2)	470(2)	474(2)	476(2)	479(2)	481(2)	482(2)	
				484(2)	486(2)	488(2)	490(2)	492(2)	100(67	100(2)		
2-00004710	R±4	TOUTHAX		102=	395(2)=	564		-26(67				
2-00004720	R±4	TOUTHIN		103=	397(2)=	564						
2-00004200	R#4	TSDA		581=	582							
AP-00000018	R*4	TH		3	377	378	557	612A				
2-00004804	<u>R</u> *4	VSDA		583 <b>=</b>	584							
2-00004890	R±4	VTD		569=	573	578	583					
2-000048BC	R#4	VTD1		578								
2-00004750	R±4	VIZ		130A	1364							
2-000046AC	Rt4	YO		61=	293	364=						
2-000046A0	R*4	Y1		58 <b>*</b>	344=	354	358	364				
2-000047F8	R*4	YIA		314=	344							
2-000047FC	R*4	Y18		315=	344							
2-00004644	R±4	Y2		59±	345=	354	360	365				
2-00004800	R±4	Y2A		316=	345							
2-00004204	R#4	Y2B		317=	345							
2-00004648	R*4	Y3		60=	346=							
2-00004808	R*4	Y3A		318=	346							
2-00004800	R*4	Y38		319=	346							
2-00004618	R*4	YA1		324=	352	354	358					·
2-00004910	R*4	YAIA		322=	324							
2-00004814	R#4	YA1B		323=	324							
2-00004810	R*4	YA2		325=	352	354	360					•
2-00004820	R±4	YA3		326=								
2-0000482C	R*4	YAA1		339=	354							
2-00804824	R*4	YAAIA		337=	339							
2-00004828	R±4	YAA18		338* .	339							
2-00004830	R#4	YAA2		340=	365							
2-00004834	R*4	YAA3		341=								
2-00004680	R#4	YDO		62=	365×							
2-00004708	R*4	Ζ.		97=	140	145	239	241	279	384	385	
				386	512=	521						
2-00004890	R*4	ZA1		505=	512							
2-00084690	R#4	ZA2		50 <i>6</i> -=	512							
2-00004894	R*4	ZB1		507=	513							
2-00004898	R#4	ZB2		508=	513							
2-0000459C	R*4	ZC1		509=	514							
2-00004840	R±4	ZC2		510=	514							
2-0000470C	R*4	ZD	•	98=	141	384	385	513=	522	524	554(2)	
				558	564	569			-			

. .

412AU					21-Jan-19 19-Jan-19	85 12:09:35 85 21:06:48	VAX-11 FO	EVENS.SHIPS	-62 TUFF]VPA10	Fagi For:17	F
2-00004710 R*4 2-00004664 R*4	ZDD ZH ZHDTDT		99= 26= 79=	384 384(2) 383	514= 335 387	523 388	389	557	612A	•	
2-00004020 10-4	2										
ARRAYS											
Address Type	Nane	Attributes	Bytes	Dimen	sions	References	1.1.1				
2-00000000 844	AC.		2000	(500)		8	117=				
AD-00000000 844	ATH		40	(10)		3	7	129A	135A		
AD-000000000 A4	Δ7		40	(10)		3	7	129A	135A		
-000000208 ANT	DU HD		200	(50)		9	31=				
2-00001220 644	15		200	(50)		ġ	30×	431(2)=	433(2)=	435(2)=	
2-00001060 1**	1.5					437(2)=	439(2)=	441(2)=	443(2)=	445(2)=	
						447(2)=	449(2)=	453(2)=	455(2)=	457(2)=	
						459(2)=	461(2)=	463(2)=	465(2)=	457(2)=	
						469(2)=	471(2)=	475(2)=	477(2)=	479(2)=	
						481(2)=	483(2)=	485(2)=	487(2)=	489(2)=	
						491(2)=	493(2)=	560	604	607	
				(10)		3	. ,	1299	135A		
AP-00000034# R*	F PHIO		40	(10)	• `	<b>-</b>	· · ,	1294	135A		
AP-0000002C8 R#	4 PHIZ		90	(10)		6	109=	284(2)=	288×		
2-00000140 R*	sla		200	(30)		Q -	113=	607=	612(2)A		
2-00001800 R*	4 SLOT		200	(50)		, r	107=	282(2)=	286=	354(2)	
2-00000000 R*	4 SLS		120	(30)		358	360	526			
	·					550					
2_00000079 P+	4 510		200	(50)		6	108=	283(2)=	287=	532	
2-00000070 RA	4 OH		2000	1500	)	7		•			
2-00000000 84	A TIMA		2000	(500)	ì	10	586×	596A			
2-00003630 64	A TIMEE		2000	(500		8	118=				
2-00001400 84	4 1146		2000	(500	5	10	572(2)=	577(2)	581	589	
2.00002230 KA	- 11 IV					596A					
2-00003660 Rt	4 TSD		2000	) (500	)	10	577=	581	592=	589	
						596A		F 44 .	C1 74		
2-00001C98 R	4 THRTR		201	0 (50)		9	114=	222=	6128		
2-00001EF0 R	H VHN		200	0 (500	))	10 596A	573(2)*	578(2)	583	283	
2-000026C0 R	*4 VSD		200	0 (500	))	10	578=	583	584=	589	
AP-00000024# R	*4 HE		4	0 (10)	1	3	7,	129A	135A		
			-				1120	519/21	5233		
2-00000398 R	*4 ZDDL		20	0 (50)	)	6	111-	519/21-	522=	522	
2-000002D0 R	*4 ZDL		20	0 (50)	)	ь 2	110-	358	360	393	
2-00000208 R	*4 ZL		- 20	0 (50	)	517/314	521=	526	000		
								and a			

WIN PART IN /

17

# LABELS

Address	Label	Reference	s
**	1	29	324
Ħ	5	106	115#
**	6	116	1191

21-Jan-1985 12:09:35 19-Jan-1985 21:06:48

Fin

VAX-11 FORTRAN V3.5-62 Page FSD9:[STEVENS.SHIPSTUFF]VPA1C.FOR;17

THE PARTY

18

1

· ·					
0000000 20	1344	556			
-00000300 20	1400				
** 50		1718			
-00000434 35	143	1034			
-00000480 40	144	1934	2208		
-00000120 45	145	140	2644	•	
-00000303 10 -000005D1 46	233	2360			
	235	23/1			
9-08000350 11			2528		
a-00000522 50	142	14/	218	250	279\$
A-00000022 55	170	191	610		
4+ 70	251	2854			
A 0000005 74	370	3748			
	374	3774			
0-00000663 13			0008		
A AAAAAABE7 80	376	377	20.24		
	401	4304			
8-0000017 50 a accord(11 65	403	452#			
0-00000E11 3J	405	4744		4968	
0-00000F68 100	407	451	4/3	4204	
<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>					
	516	520*			
AR 110	132	552			
0-00001229 140	5564				
## 14J	279	555	20/#		
0-00001254 150	564	5664			
1-0000006E 155					
5.50	576	581\$	****		
0-00001491 150	575	579	2694		
0-00001518 165	589	590#			
1-0000008F 1/0	33	567	5911		
0-00001580 1/5	592	597			
0-000015AD 180					
	598	601#			
** 155	603	6054			
tt 150	606	608			
## 195	618	619			
1-000009E 200"					

# FUNCTIONS AND SUBROUTINES REFERENCED

M

-7

VASHP

Type	Nane	Referen	CES				
R*4	Forsdate_t_ds Forstime_t_ds Input1 Input2 MTH*COS	616 615 128 129 162	134 135 184	211	234	268	274
R±4	NTHSRANDON PLOT2 PLOT3 THREAS ENCE	43 612 596 130	527				

21-Jan-1995 12:09:35 VAX-11 FORTRAN V3.5-62 Page 19 19-Jan-1985 21:06:48 FSD0:(STEVENS.SHIPSTUFF)VPA1C.FOR;17

0001

- T			•
Î.		KEY TO REFERENCE FLAGS	Т
1		- Value Modified	1
1	+	- Defining Reference	1
Ł	A	<ul> <li>Actual Argument, possibly modified</li> </ul>	1
÷	D	- Data Initialization.	I.
I.	(n)	- Number of occurrences on line	ļ
+-			+

## COMIND QUALIFIERS

# FORTRAN /LIS/CRO VPAIC.FOR

/CHECK= (NOBOUNDS, OVERFLOH, NOUNDERFLOH) /DEBUG=(NOSYNBOLS, TRACEBACK) /STANDARD=(NOSYNTAX, NOSOURCE_FORM) /SHCH=(NORREPROCESSOR, NOINCLUDE, MAP) /F77 ANDG_FLOATING /14 /OPTIMIZE AMARNINGS AND_LINES /CROSS_REFERENCE ANDMACHINE_CODE /CONTINUATIONS=19

. .

## COMPLIATION STATISTICS

Run Time:	26.45 seconds
Elapsed Time:	29.38 seconds
Page Faults:	492
Dynamic Hemory:	333 pages

************************ *********** ************************* 2-FEB-1985 11:37:52.93 2-FEB-1985 11:37:52.93 2-FEB-1985 11:37:52.93

FSD0:(STEVENS.SHIPSTUFF)IN4.LIS;1 FSD0:(STEVENS.SHIPSTUFF)IN4.LIS;1 FSD0:(STEVENS.SHIPSTUFF)IN4.LIS;1

************************* ********** ************

IN4.LIS;1

***** ****** ********

· 2-FE8-1985 11:37:52.93

 2-FEB-1985
 11:37:52.93
 FSD0:(STEVENS.SHIPSTUFF)IN4.LIS;1

 2-FEB-1985
 11:37:52.93
 FSD0:(STEVENS.SHIPSTUFF)IN4.LIS;1

 2-FEB-1985
 11:37:52.93
 FSD0:(STEVENS.SHIPSTUFF)IN4.LIS;1

********* ***** ******* 2-Feb-1995 11:27:41 VAX-11 FORTRAN V3.5-62 2-Feb-1985 10:52:12 FSD0:[STEVENS.SHIPSTUFF]IN4.FGR:44

Page

1

0001		SUPRIMITINE INPUTI(S1.S2.S3.t.t1.IFLAG5.SX)
0002		
0002		244202 9 . N
0003		AMPR=31.0
0004		HED-ST.V
0003		LNCx1 A
0005		LNC1-0 12 IO 54
0007		C1-0.0
0008		51-0:0 52-0 B
0039		52-7.0
0010		15 (15)ACE 50 01 00 TO 20
0011		IF (IFLF65 .Eq. 0) Co 10 20
0012		
0013		IF (ISPLADI .EQ. 0) TIMAT
0014		APTIMA
0015		IF (1.02. A+3.14159/HMS) 60 10 10
0016		
0017		SI=AMPA*(0.5+0.5+005(HNS*(AU+3.14155))
0018		\$2=-AMPAt0.5+ANS+SIN(WYS+IA0+3.14135)
0019		\$3=-AMPAt0.5#WS##2#COS(WNS#1AU+3.14159)
0020		ISFLAGI=1
0021		60 TO 30
0022	10	S1=ANPA
0023		S2=0.0
0024		\$3=0.0
0025		GO TO 30
0026		
0027	20	B=tI
0028		IF (t .GE. 8+3.14159/1NS1) GO TO 25
0029		TAU=+(T-B)
0030		s1=Ampa+AmpB*(0.5+0.5*COS(HNS1*TAU))
0031		52=-AMP8*0.5*ANS1*SIN(W4S1*TAU)
0032		53=-AYPB+0.5+HNS1++2+COS(HNS1+TAU)
0033		ISFLAG1=0
0034		60 TO 30
0035	25	51=4tPA
0036		ť0
0037		S3≠0
0038		ISFLAG1=0
0039	30	RETURN
0040		DØ

INFUT1			•				2-Feb-19 2-Feb-19	85 11:27:41 85 10:52:12	VAX-11 F500:[!	FORTRAN V	/3.5-62 [[PSTUFF]]	IN4.FOR;44	Page	2
PROGRAM SECT	IONS	. ·												
Nane				Byt	es Aftrib	utes .								
A 60005										•				
2 SLOCAL				2	36 PIC CO	N REL LOL N REL LOL	NOSHR NO	exe ronor Exe ro h	rt long at long					
Total Spa	ice A	llocated		3	28									
ENTRY POINTS														
Address	Tvpe	Name			References		•							
0-00000000		INPUT1			1									
								•						
VARIABLES						:	,				. 1			
Address	Typ∉	Name	Attri	butes	References	•								
2-00000018	R±4	A			14=	15	16							
2-00000000	R#4	ampa			3=	17	18	19	22	30	35			
2-00000004	R#4	AHP8			4=	30	31	32		~	~			
AP-000000020	R#4 1 1 1	B			27=	28	29							
	•••			· .	1	11								
2-00000010	1#4	I SFLAGI			13	20=	33=	33=						
AP-000000044	R*4	S1			1	8=	17=	22=	30=	25=				
AP-000000084	R#4	S2			1	9=	18=	23=	31=	26x				
AP-0000000Ce	R#4	S3		· ·	1	19=	24=	32=	37=	-00				
AP-0000001C@	R#4	SX			1									
AP-000000108	R*4	T			1	13	15	16	20	20	•			
2-0000001C	R*4	TAU			16=	17	18	19	20-	23		22		
AP-000000140	R#4	TI			1	27	•••	••	0-	30	31	32		
2-00000014	R±4	Tima			13=	14								
2-00000008	R±4	HNS			6=	15	17	18(2)	19(2)					
2-0000000C	R±4	HNS1			7 <del>=</del>	28	30	31(2)	32(2)					
LABELS														
Address	Labe	1 .			References				•					
0-00000002	10					204								
0-00000043	20				12	221								
0-000000044	20				11	278							1.1	
0-00000122	20				25	30# 25	24				• *			
- 00000123	90				21	Q	34	- 394						

# INPUT1

2-Feb-1985 11:27:41	VAX-11 FORTRAN V3.5-62
2-feb-1985 10:52:12	FSD0:[STEVENS.SHIPSTUFF]IN4.FCR;44

Page 3

ċ

FUNCTIONS AND SUBROUTINES REFERENCED

Type	Nzie		Reference	\$		
R±4 R±4	MTHISCOS MTHISSIN		17 18	19 31	30.	32

+-		، حد حقق و جه ها من من من من من من من من من من من من من	-
i		KEY TO REFERENCE FLAGS	Ì
L	=	- Value Hodified	1
L		- Defining Reference	1
1	A	- Actual Argument, possibly modified	1
I	D	- Data Instialization	1
ł.	(n)	- Number of occurrences on line	1
			-

# COMMOND QUALIFIERS

## FORTRAN /LIS/CRO. IN4.FOR

/CHECK=(NOBOLINDS, OVERFLOH, NOTHDERFLOH) /DEBUG=(NDSYNBOLS, TRACEDACK) /STANDARD=(NDSYNTAX, NOSOURCE_FORM) /SHCH=(NDPREPROCESSOR, HOINCLUDE, MAP) /F77 /NDG_FLOATING /14 /OPTIMIZE /MARNINGS /NOD_LINES /CROSS_REFERENCE /MCMACHINE_CODE /CONTINUATIONS=19

# COMPILATION STATISTICS

Run Time:	2.16 seconds
Elapsed Time:	2.84 seconds
Page Faults:	127
Dynamic Memory:	117 pages
C.W.Y. A.B. 6. 16.2

Ń

2-FEB-1985 11:32:46.87 2-FEB-1985 11:32:46.87 2-FEB-1985 11:32:46.87 FS00:[STEVENS.SHIPSTUFF]GENSH.LIS;1 FS00:[STEVENS.SHIPSTUFF]GENSH.LIS;1 FS00:[STEVENS.SHIPSTUFF]GENSH.LIS;1

 ~77

GENSM.LIS;1

2-FEB-1985 11:32:46.87 2-FEB-1985 11:32:46.87 2-FEB-1985 11:32:46.87

FSD0:(STEVENS.SHIPSTUFFJGENSH.LIS;1 FSD0:(STEVENS.SHIPSTUFFJGENSH.LIS;1 FSD0:(STEVENS.SHIPSTUFFJGENSH.LIS;1

#### 2-Feb-1985 11:29:19 10-Dec-1984 17:13:40

VAX-11 FORTEAN V3.5-62 Page FSCA: (STEVENS, SHIPSTUFF)GENSH, FOR; 9

1

È,

SUBPOUT INE INPUTZ(S1,S2,S3,t,11,DN,HE,AZ,PHIZ,ATH,PHID) 0001 0002 DIMENSION HE(10), AZ(10), PHIZ(10), ATH(10), PHIO(10) 0003 0004 IF (t .6T.tl) 60 TO 10 0005 2000 0007 0008 ***RANDON PHASE ANGLE GENERATED*** ĉ 0003 TN = SECNOS(0.0) 0015 0011 H = NINT(TH) XH = FLOAT(H) 0012 0013 RT = TM - XM0014 S = HOD(XH,2.) 0015 IF ( S .EQ. 0.0 ) THEN 0015 XH = XH + 1. 6017 END IF 0019 H = IFIX(XH)0013 X8 = -2147493619.0 * RT 0023 S = XB / 2. 0021 IS = IFIX(S)0022 XS = FLOAT(IS) 0023 S = S - XS. 0024 IF ( S .NE. D.D ) THEN X8 = X8 + 1. 0025 0026 DØ H 0027 19 = 1FIX(XB) 0029 H = 18 - H 6023 Y = RAN(H) - 0.5 0033 B≱6.2932+1 0031 E¥=0.0 0032 0033 C ###SHIP HEAVE (FT.) ### 0034 0035 10 H1=AZ(1)+COS(HE(1)+t+PH)Z(1)+EN) 0038 H2=AZ(2)+COS(+E(2)+t+PHIZ(2)+EN) 0037 H3=AZ(3)+COS(HE(3)++PHIZ(3)+EN) 0033 H4=AZ(4)+COS(LS(4)++PHIZ(4)+EN) 0039 H5=AZ(5)+COS(+E(5)+t+PHIZ(5)+DH) 0048 HS=AZ(6)+CCS(KE(E)+t+FHIZ(6)+EN) 0041 0042 C ###SHIP PITCH (RAD)### 9043 0044 P1=ATH(1)+CCS(WE(1)+t+PHI0(1)+DI) P2=ATH(2)+COS(KS(2)+t+PHID(2)+EN) 0045 P3=ATH(3)*COS(HE(3)*t+PHIO(3)+DN) 0046 0047 P4=ATH(4)+CCS(KE(4)+tH10(4)+D1) 0049 P5=ATH(5)*COS(KE(5)*t+FHI0(5)+EN) 0049 P6=ATH(6) + COS(HE(6) + + PHIO(6) + DN) 0050 0051

.....

0052 C ***HEAVE AT LANDING PAD*** 0053

0057

0054 \$1=H1+K2+H3+H4+K5+H6+(160.8+\$IN(F1+F2+P2+F4+P5+F6)) 0055 C S1=-S1 0056

C HHANP HEAVE VELOCITY (FT/S) +++

4450		
0028		· · · · · · · · · · · · · · · · · · ·
0829		HDI=-AZ(1)##E(1)#SIN(HE(1)#t+PHIZ(1)+EN)
0060		HD2=-AZ(2)+SE(2)+SIN(HE(2)+t+PHIZ(2)+EN)
0361		103=-AZ(3)#E(3)+SIN(HE(3)+L+PH1Z(3)+EN)
8262		HD4=-AZ(4)##E(4)#SIN(HE(4)#t+PHIZ(4)+EN)
0963		HD5=-AZ(5)#JE(5)#SIN(JE(5)#1+PHIZ(5)#DN)
CC64		HD6=-AZ(6)#4E(6)#SIN(HE(6)#1+PHIZ(6)+EN)
0363		
0066	C	###SHIP PITCH VELOCITY (RAD/S1###
CÓ67		
0068		PD'z-ATH(1)+UF(1)+SIN(UF(1)++APU10(1)AFW)
0069		PD
0025		FU2
0030		PD3+ 1410(3)#02(3)#010(02(3)#(1PH(U(3)+EN)
0871		P1/4=-AIH(4)==E(4)=SIN(E2(4)=E+PHIO(4)+E+)
0072		Pto=-ATH(5)#HE(5)#SIN(HE(5)#1+PHIO(5)+EN)
00.73		PD6=-ATH(6)#4E(6)#SIN(HE(6)#1+PHIO(6)+DN)
0874		
0075	· Ĉ	***SHIP LANDING PAD HEAVE VELOCITY (FT/S) +++
0576		· · · · · · · · · · · · · · · · · · ·
00.77		S2A=H01+H02+H03+H04+H05+H06
0079		528=168.8*5IN(PD1+PD2+PD3+PD4+PD5+FC4)
0079		
0099		\$7=\$264\$29
0081	r	\$72\$7
0093	1	94- 95 ·
0000	•	ANAPULD ITALS ACCOUNTS TRATICULARY CANADIANA
6000		ANYOUL DON'T HELELENIION (LIVERCIAR
0004		
0000	•	
0055		P201*-HE(1)**2*AZ(1)*CUS(HE(1)**+PH(2(1)+EN)
CEDO		HDD2=-HE(2)++2+AZ(2)+CDS(HE(2)++PHIZ(2)+EN)
0089		HDD3=-HE(3)##2#AZ(3)#CDS(HE(3)#tHFH(2(3)+DH)
0089		H004=-HE(4)##2#AZ(4)#CDS(HE(4)#t+PHIZ(4)+EN)
0050		H005=+HE(5)++2+AZ(5)+CDS(HE(5)+++FH12(5)+EN)
C091		HDD6=-HE(6)##2#AZ(6)#CDS(HE(6)#1+FHIZ(6)+EN)
0092		
0093	3	SHIP PITCH ACCELERATION RAD/SHI2
8894		
0095		PD/1=-RF(1)##2+ATH(1)+CDS(UF(1)#++PS(IC(1)+FS)
0095		P002=-467 -164+24516(2)+C00(16(2)++49610(2)+60)
0097		P003-1 (12)++2+ATR(2)+C03(RC(2)+(11/2)(2)+C0)
0092		
0090		
0100		PUD3=HE(3)#2*AIH(3)#CUS(HE(3)*(++**(2(3)+EN)
0100		PODE=+E(6)**2*ATH(6)*COS(HE(6)*C+PHIC(6)*EN)
0101	~	
0102	Ľ	***SHIP LANDING PAD HEAVE ACCELERATION (FT/SH#2)***
0103		•
0104		53A=H001+H002+H003+H004+H005+H006
0102		SJB=160.84SIN(POD14P0024P0034P0044P0054P006)
0106		
0107		\$3=\$34+\$3B
0109	C .	\$3>-\$3
0109		
0118		RETURN
0111		0.0

M

.

----

 $\leq$ 

The martine Row Ch

2-feb-1385 11:28:19 10-0ec-1384 17:13:40 INX-11 FORTRAN V3.5-62 Page 2 FSC0:[STEVENS.SHIPSTUFF]GENSH.FOR;9

)

1

Ξ.

INPUT2	ŀ					·	2-Feb-15 10-Dec-15	55 11:28:19 54 17:13:49	VAX-11 FSD0:	L FORTRAN I	V3.5-62 HIPSTUFF]CE	NSH.FOR;9	Page	3
PROGRAM STITL	ONS		۰.			•		•						
Hane				Øvtes	Attrib	utes								
O SCIDE				1657		N 861 17	י פטס וי		TINC					
1 SPDATA				1001		N 861 10		ראב אשראטא ראב אשראטא	ALI LUNGI ATIONO					
2 SLOCAL		· .		368	PIC CO	N REL LO	1. NOSHR NO	DOE RO H	RT LONG					
Total Spa	ce Al	located		2043										•
ENTRY POINTS										÷				
Address	Type	Nase		Re	ferences									
8-80000000	•	INPUT2		. •	1									
											•			
VAUABLES				÷										
Address	livbe	Nane	Attrib	utes Rei	ferences	i						· .		
AP-000000168	R#4-	EN			1	30=	31=	35	36	37	38	39	e de la	
					40	. 44	45	46	47	48	49	59		
					60	61	<u>62</u>	63	64	68	69	70		
					/1	12	73	25	87	63	89	50		
2-00000029	P+4	. 11			21	32	36	. 97	38	23	. 100			
2-00040025	044	110 1100			3Q≇ %~	24.								
2-88663830	04#	112 113			30-	- 64								
2-00000034	R+4	14 14			37= 38=	54								
2-00000038	Rt 6	15			20.	54								
2-00000030	Rtt	HS			37-	- 24 54								
2-00000059	Rta	10			50-						÷.,			
2-00000050	Rt4	HD2			50- 60-	77								
2-00000060	Rt4	H03			61=	. "								
2-00000023	64A	UNA												
2-80000068	Rt4	107			t2#	11								
2-00000060	644	100			6.5*									
2-00020090	Rt4	ROOT			64×			•				• •		
2-00000094	R#4	H002			87=	104								
2-00000000		1000												
2-00000000	Da.	1003			66 ³	184								
2-00000000	044	1505			89=	104								
2-00000004	0+4	NUD2			90*	104								
2-00000000	144	10			91*	104								
C-00000029	1.4	15			27=	28								
2-00000018	1+4	15			Z1=	22								
2-00000004	114	н			11=	12	18=	26(2)*	234					
2-00000048	R±4 -	P1 -			44=	54	••							
2-00000044	Rt4	F2			45×	54								
2-000000 48	R±4	P3			46=	54					•			
2-00000010	R±4	Pil			47=	54								

A88

.) |:

-

INPUT2					2-Feb-1985 1	1:28:19	U4X-11	FORTRAM	V3.5-62	
		· · · ·			10-Dec-1984 1	7:13:40	FS00:15	TEVENS.S	HIPSTUFF]GE	NSH.FOR;9
2-00000050	R*4	P5	48=	54						
2-00000054	R#4	P6	49=	54						
2-00000070	R#4	PDI	68=	78						
2-00000074	R*4	P02	69 <b>=</b>	78						
<b>2-00</b> 000073	Rt4	FD3	70=	78						
2-0000007C	R#4	P04	71=	78						
2-00000080	R*4	P05	72=	78	a sana a					
2-00000084	R#4	P06	73 <b>=</b>	78	e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l					
2-000000A8	R±4	PDD1	95*	105				•		
2-000000AC	<u>P#4</u>	P002	96×	105						
<b>2-0</b> 00000B0	R#4	P003	97=	105						
2-00000084	R#4	P004	<b>98</b> =	105						
2-00000088	R*4	P005	99 <b>=</b>	105						
2-000000BC	R*4	PDD6	100=	105						
2-00000000	R*4	RT -	13=	19						
2-00000010	R#4	s	14=	15	20=	21	23(2)=	24		
AP-00000004e	R*4	51	1	54=	-					
AP-80000006	R#4	S2	- 1	80=						
2-00000088	R*4	S2A	77=	80						
2-0000008C	<u>R</u> #4	\$2 <b>8</b>	78=	80						*
AP-000000000	R=4	53	1	107=						
2-000000C0	2:*4	S3A	104=	107						
2-00000C4	R*4	S38	105=	107	· ·					
AP-000000109	R#4	T	1	4	35	36	37	38	39	40
			44	45	46	47	48	49	59	60
			61	62	63	64	63	69	70	71
•			. 72 .	73	85	87	88	89	99	91
			. 95	95	97	58	99	100		
AP-000000144	R*4	TI	1	4						
2-00000000	R#4	TH	10=	11	13					
2-00000014	R±4	XB	19=	20	25(2)=	27				
2-0000008	R*4	XH	12=	13	14	16(2)=	18			
2-0000001C	R*4	XS	22=	23						
2-00000024	<u>R</u> *4	Y	29=	30					.•	

Page

#### ARRAYS

Address	Tupe	Name	Attributes	Bytes	Dimensions	References				
AP-00000028	R*4	АТН		40	(10)	1	2	- 44	45	46
						47	49	49	68	69
						70	71	72	73	95
						96	97	98	99	100
AP-000000201	R*4	AZ		40	(10)	1	2	35	36	37
						38	39	40	59	60
						61	62	63	64	85
						87	68	69	90	91
AP-0000002C	P R*4	PHIO		40	(10)	1	2	44	45	46
						47	49	49	60	69
				· · ·		70	n	72	73	95

l I

1--

57

<u>);</u>

7

Į

2-Feb-1985 11:28:19 10-Dec-1984 17:13:40	VAX-11 FORTRAN	V3.5-62 SHIPSTUFFIGED	Page ISM.FCR:9
), 1	37 98 2 35	99 36	100. 37
38	39 40	59	60
61	62 63	64	86
) 1	2 35	36	37
38	39 40	44	45
46	47 48	49	59(2)
60(2)	61(2) 62(2	) 63(2)	64(2)
68(2)	69(2) 70(2	) 71(2)	72(2)
73(2)	86(2) 87(2	) 88(2)	89(2)
90(2)	91(2) 95(2	) 96(2)	97(2)
0	2-Feb-1985 11:28:19 10-Dec-1984 17:13:40 0) 1 38 61 87 0) 1 38 46 60(2) 68(2) 73(2) 90(2)	2-Feb-1985 11:28:19 10-Dec-1984 17:13:40 96 97 98 0) 1 2 38 99 0) 1 2 38 99 0) 1 2 38 99 0) 1 2 35 87 88 89 0) 1 2 35 38 940 61 62 63 87 88 89 0) 1 2 35 38 940 61 62 63 87 88 89 0) 1 2 35 38 940 61 62 63 87 88 89 0) 1 2 35 38 940 61 62 63 87 88 89 0) 1 2 35 88 90 0) 1 2 35 38 39 40 61 62 63 87 88 89 0) 1 2 35 38 39 40 46 47 48 60 (2) 61(2) 62(2) 61(2) 62(2) 61(2) 62(2) 61(2) 62(2) 61(2) 62(2) 70(2) 91(2) 95(2) 90(2) 91(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2) 95(2)	2-Feb-1985 11:28:19 10-Dec-1984 17:13:40 96 97 98 97 98 97 98 99 0) 1 2 33 39 40 59 61 62 63 62 63 64 87 68 89 90 0) 1 2 35 36 61 62 63 64 87 68 89 90 0) 1 2 35 36 61 62 63 64 49 60 2 38 39 40 59 61 62 63 64 49 60 2 35 36 64 87 88 89 90 0) 1 2 35 36 64 87 88 89 90 0) 1 2 35 36 64 87 88 89 90 0) 1 2 35 36 64 87 68 89 90 0) 1 2 35 36 64 87 68 89 90 0) 1 2 35 36 64 87 68 89 90 0) 1 2 35 36 64 64 64 64 64 64 64 64 64 6

LABELS

-1

1

Ī

1

. جسر :

į

Add	ress	Label	References		·				•	
8-000	000CF	10	4	358						
FUNCTIO	ns ano	SUBROUTINES REFERENCED								
Type	Nane		References		•					
R±4	FORSS	ECHOS	10							
R#4	MTHSA	HOD	14							
R*4	MTHSC	xos	35	36	37	38	- 39	40	44	
			46	47	48	49	86	87	68	
			90	91	95	96	97	98	- 99	
R*4	HTHSP	NON	29							
R±4	HTHS	51N	54	59	60	61	62	63	64	
			69	70	71	72	73	78	105	

45 89 100

68

2-Feb-1985 11:28:19 VAX-11 FORTRAN V3.5-62 10-Dec-1964 17:13:40 FSD0:[STEVENS.SHIPSTUFF]GENS4.FCR:9

Page 6

KEY TO REFERENCE FLAGS - Value Hodified z a - Value Housing
 befining Reference
 A - Actual Argument, possibly modified
 D - Data Initialization
 (n) - Number of occurrences on line 1 Ł 1

í.

#### COMMO QUALIFIERS

#### FORTRAN /LIS/CRO GENST.FOR

/CHECK=(NOBOUNDS.OVERFLOH, NOUNDERFLOH) /DEBUG=(NOSTHBOLS, TRACESACK) /STANDARD=(NOSTHTAX, NOSOURCE_FORM) /STANDARD=(NOSTHTAX, NOSOURCE_FORM) /STANDARD=(NOSPREPROCESSOR, NOINCLUDE, HAP) /FT7 _NOG_FLOATING _/14 _ /OPTIMIZE _ /AVENINGS _/NGO_LINES _/CROSS_REFERENCE _/NOMACHINE_CODE _/CONTINUATIONS=19

#### COMPILATION STATISTICS

Run Time:	8.42 seconds
Flansed Time:	9.33 seconds
Page Faults:	244
Dynamic Memory:	178 pages

0001

************************ ***** ******

7

2-FE3-1985 11:40:26.97

2-FEB-1995 11:40:26.97 FSD0:[STEVENS.SHIPSTUFF]TKANO.L15:1 2-FEB-1985 11:40:26.97 FSD0:[STEVENS.SHIPSTUFF]TKANO.L15:1 2-FEB-1985 11:40:26.97 FSD0:[STEVENS.SHIPSTUFF]TKANO.L15:1

A. A.

******* ******** **********

TRANG.LIS;1

********************** ********** *********************** 2-FEB-1985 11:40:26.97 2-FEB-1985 11:40:26.97 2-FE8-1985 11:40:26.97

FSD0: (STEVENS, SHIPSTUFF)TRAND, LIS:1 FS00: [STEVENS.SHIPSTUFF]TRANO.LIS;1 FSD0: (STEVENS.SHIPSTUFF JTRANO.LIS:1 ****** **** **********************

2-Feb-1985 11:28:01 2-Feb-1985 10:48:16 VAX-11 FORTRAN V3.5-62 Page FSD0:(STEVENS.SHIPSTUFF)TRANO.FOR;56

1

h

C2345678901234567890...etc. 0001 0002 SUBROUTINE TURBULENCE (TEE, TC, VTZ, PRECYC, RNP, RNO) 0003 HN=7.79 0004 51044=0.032 0005 HN+=2.8 11.8 12.8 SIGHN=0.0003 10.005 1.0003 0006 0007 0008 HNQ=0.0 !1.6 !2.6 0009 SIEHAQ=0.0 124.0 10.5 0010 8011 5 PRECYC=PRECYC+1 0012 TH = SELNOS(0.0) 0013 M = NINT(TM)0014 XH = FLOAT(H) 0015 RT = TH - XH 0016 S = H00(201,2.)0017 IF ( S .EQ. 0.0 ) THEN 0018 XH = XH + 1. 0019 DO IF H = IFIX(XH)0020 XB = -2147483648.0 * RT 0021 0022 S = XB / 2. 0023 IS = IFIX(S)0024 XS = FLOAT(IS) S = S - XS 0025 IF (S .NE. 0.0) THEN X8 = X8 + 1. 0026 0027 END IF 0028 0029 IB = 1FIX(XB)0030 M = 18 - M 0031 FLAG=0.0 0032 Y9=0.0 0033 Y=0.0 0034 DO 10 I=1,12 0035 YA=RAN(M) 0036 Y=Y+YA 0037 CONTINUE 10 YB=(Y-6.0) 0038 0039 VTZD=++++VTZ+SIGH++(2++++)++2+(1/(TC++0.5))+YB 0040 VTZ=(VTZ+TC+VTZ0) 0041 TGEE=VTZ 0042 0043 Y8=0.0 0044 Y=0.0 0045 0046 00 15 1=1,12 0047 YA=RAN(H) 0048 Y=Y+YA CONTINUE 0049 15 0050 YB=(Y-6.0) RNOD=-HAN*RHOTSIGHAN*(2+HAN)**2*(1/(TC#+0.5))*YB 0051 RNO=(RNO+TC+RNOD) 0052 RIP=PNO+0.066 0053 0054 0055 YB=0.0 Y=0.0 0056 0057

R

1 :

ţ

Ł

1

1

TURBULENCE

Ľ

# 2-Feb-1985 11:28:01 2-Feb-1985 10:48:16

VAX-11 FORTRAN V3.5-62 P FSDD:(STEVENS.SHIPSTUFF]TRANO.FOR:56 Page

: :

0058		DO 20 1=1.12
0059		YA=RAN(H)
0060		Y=Y+YA
0061	20	CONTINUE
0062		YB=(Y-6.0)
0063		RNC0=+++++RNQ+SIGHAQ*(2++++)++2+(1/(TC++0.5))+YB
0064		RNQ=(RHQ+TC*RHQD)
6065		RNQ=RNQ+0.066
0066		
0067		
8300		IF (PRECYC .LT. 100) 60 TO 5
0069	50	RETURN
0070		<b>nn</b>

#### PROGRAM SECTIONS

Name	· · ·	Bytes	Attribu	tes 🧠					
8 \$CODE		437	PIC CON	REL LO	L SHA	ĐE	RĎ	NOHRT	LON
1 \$PDATA		8	PIC CON	REL LO	L SHR	NOEXE	RD	NOURT	LON
2 SLOCAL		124	PIC CON	REL LO	L NOSHR	NOEXE	RÐ	HRT	LON
Total Space	Allocated	569							

#### ENTRY POINTS

Address	Type	Nane	References
0-000000000		TURBULENCE	2

#### VARIABLES

Address	Type	Name-	Attributes	References						
2-000003C	R#4	FLAG		31=						
2-00000048	1*4	1		34=	46=	58=				
2-00000033	1*4	IB		29=	30	••				
2-00000030	1*4	IS		23=	24					
2-0000001C	<b>[</b> ±4	H internet		13=	14	20=	30(2)=	35A	47A	594
AP-00000010	R#4	PRECYC		2	11(2)=	63				
2-00000059	R*4	RNO		51	52(2)=	53				
2-00000054	R#4	RNOO		51*	52	•••		•		
AP-00000140	R#4	PNP		2	57#					
AP-00000018	F R*4	RNQ	•	2	63	64(2)=	65(2)=			
2-00000050	R±4	RNOD		63=	64					
2-00000024	R*4	RT		15=	21					
2-00000028	R#4	S		16=	17	222	23	25(2)=	26	
2-00000004	R#4	\$10 <del>1</del> 4	· .	42	29					
2-0000000C	R*4	SIGHAN		7=	51			-		

	1 t t .	•							
TURBULENCE		· · · ·	2	-feb-1985 11 2-Feb-1985 1	l:28:01 0:48:16	VAX-11 FO FSD0:(ST	RTRAN V3. EVENS.SHIP	5-62 Stuff]tra	Page NO.FOR:56
2-00000014 R+4 SIC AP-00000088 R+4 TC AP-00000018 R+4 TG 2-00000018 R+4 TM AP-000000018 R+4 TM		9= 2 2 12= 2	63 39 41= 13 39	40 15 40(2)=	51	52	63	64	
2-00000050 R+4 UT. 2-00000000 R+4 HN 2-00000008 R+4 HN 2-00000010 R+4 HN 2-00000010 R+4 HN	ZD N D	39= 3= 6= 8=	40 39(2) 51(2)	63(2)	41		- - 		
2-00000020 R+4 XH 2-00000034 R+4 XH 2-00000034 R+4 XS 2-00000044 R+4 Y		21= 14= 24= 33=	22 15 25 35(2)+	27(2)= 16	29 18(2)=	20			
2-0000004C R*4 YA 2-00000040 R*4 YB		62 35= 32= 63	36 354	38 47= 39	44= 49 43=	48(2)= 59= 50=	50 60 51	56= 55=	60(2)= 62=

#### LABELS

/. .

2

1

1

Address	Label	References.		
0-0000002E	5	11#	63	
±±.	10	34	374-	
· ***	15	46	49#	
**	20	58	61#	
**	50	694		

| |

## FUNCTIONS AND SUBROUTINES REFERENCED

Туре	Nane		References		
R#4	FOR\$SECHOS			12	
R#4	HTHERANDON			35	47

- **			-++
ł		KEY TO REFERDICE FLAGS	i
1	3	- Value Modified	1
1	1	- Defining Reference	Ì
1	A	- Actual Argument, possibly modified	Ì
1	D	- Data Initialization	Ì
1	(n)	- Number of occurrences on line	Ĩ

2-Feb-1985 10:48:16 FSD0:[STEVENS.SHIPSTUFF]TRAND.FOR:56

# COTINO QUALIFIERS

/CHECK=(NOBOLINOS, OVERFLOH, NOLINDERFLOH) /DEBUG=(NOSYIHBOLS, TRACEBACK) /STANDARD=(NOSYIHBOLS, INSOURCE_FORM) /SHOH=(NOPREPROCESSOR, NOINCLUDE, MAP) /FT77 /NOG_FLOATING /14 /OPTIMIZE /HARMINGS /NOO_LINES /CROSS_REFERENCE /NOMACHINE_CODE /CONTINUATIONS=19 /FT77 /NOG_FLOATING /14 /OPTIMIZE /HARMINGS /NOO_LINES /CROSS_REFERENCE /NOMACHINE_CODE /CONTINUATIONS=19

# COMPILATION STATISTICS

tun Time:	3.09 seconds
Linerad Time:	3.84 seconds
Dage Faults:	133
Dynamic Hemory:	137 pages

0

St. 1 ......

E

2-FEB-1985 11:54:35.32 2-FEB-1985 11:54:35.32 2-FEB-1985 11:54:35.32

MPLT2.LIS;1

FSD0:(STEVENS.SHIPSTUFF)HPLT2.LIS;1 FSD0:(STEVENS.SHIPSTUFF)HPLT2.LIS;1 FSD0:(STEVENS.SHIPSTUFF)HPLT2.LIS;1

2-FEB-1985 11:54:35.32 2-FEB-1985 11:54:35.32 2-FEB-1985 11:54:35.32 FS00:{STEVENS.SHIPSTUFF}MPLT2.LIS;1 FS00:{STEVENS.SHIPSTUFF}MPLT2.LIS;1 FS00:{STEVENS.SHIPSTUFF}MPLT2.LIS;1

 A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A

2-Feb-1985 11:48:38 29-Jan-1985 18:00:55

VAX-11 FORTRAW V3.5-62 Page 1 FSD0:[STEVENS.SHIPSTUFF]HPLT2.FOR;43

		C23436/8901234567890etc.				
. 00	02	SUBROUTINE PLOT2(X,Y,R,XI,	XF. 101.	AY YAY	117100	
001	03	DIMENSION X(101), Y(101), R(	1011			Nr,150)
000	04	REAL KP	,			
000	)5	CHARACTER+9, RIF				
000	)6	CHARACTER+8 RIFE				
000	7	CHORACTER+1 LART ( 20)				
000	8	CHERACTERAL LOCAL (20)				
000	4	CHARGE LELZ(48), LEL3	(59)			
001	<u>.</u>	CINDACTER 48 LABEL2	•	1		
	•	CHARACTERESS LABELS				
001		EUUIVALENCE (LABEL2, LBL2(1)	)			
001	2	EQUIVALENCE (LADEL(1), BUF)				
001	3	EQUIVALENCE (LABEL(10), SPAC	E)			
0014	4	EQUIVALENCE (LASEL(13), BUFF				•••
001	5	EQUIVALENCE (LABEL 3. 1 BL 3(1)	5			
0016	5		•			
0017	<b>7</b> .					
0018	3	DATA LASEL 2/152010 NO .		A1810		
0019	1	1 STATE: //	NU.	KUNS:	SEA	
0020		DATA LADET D//T AL MAY				
0021			ZH:		TAUENS:	
0022				÷ 1		1.1
0023		DICOCE (3,5,LBC2(12)) JAY				
0024		DICOCE (3,5,LEL2(29))KAY	-			
0025		DEUCE (3,5,LEL2(46))ISE				
0025	. J	FUICTAL (13)				
0020		<b>-</b>				
0027		EXCODE (4,10,LEL3(10))TH				
0028		ENCODE (4,10,L6L3(23))ZH			•	
0029		ENCODE (4,10,LEL3(40))ELC				
C030		ENCODE (6,15,LBL3(54))XP				
0031						
0032	- 10	FORMAT (F4.2)				
0033	15	FORMAT (F6.4)		11		
0034		CALL TIME (BUFF)				
0035		CALL DATE ( BUE )			1.1	
0036		SPACE		•		
0037						
0038					· · · · ·	
0039		10=101-1				
0040		CALL COMME				
2041		CALL PACE (11 A C				
0042		CALL YNAME (11.,8.5)				
0043	c'	CALL NAME ( T/H RAILOS ,100)			•	
0044	•	FALL NAME ( TIME (SEC) 100	)			
0045	r	CALL INVITE ( FEPCENT OF TIMES	100)			
0045	<u>۲</u>	CALL INTRE ("HEIGHT (FT)\$",10	0)			
0040		CALL FACA2D (9.,5.75)				
0040		LALL READIN ('TAN RATIO STATI	STICS#1	20.1.41		
0040		UNLL HEADIN (SREF(LABEL), 20.0.	.7,4)			
0043		LALL HEADIN (XREF(LAEEL2), 48,1	0.7.4)			
0000	•	UALL HEADIN (XREF(LASEL3) 59.0	.7.4)		· · · ·	
0051	C	CALL HEADIN ( 'TIME HISTORY OF	SHIP 4	10 A/C HO		
0052		CALL THEFRA (0.01)			11010-32	,1.,1)
0053	C	CALL GRAF (X1,2.,XF,-10520				
C054	C	FOLLOHING GRAPH CALL IS FOR UPAN	C.FOR			
0055		CALL GRAF (X1, 02, XF.0. 1.0.4	1			
0056		CALL GRID (1,1)				
0057		CALL MARKER(16)				

Y.

PLOT2 ·

1

ېر.

# 2-Feb-1985 11:48:38 VMX-11 FORTRAM V3.5-62 Page 2 29-Jan-1935 18:00:55 FS00:[STEVENS.SHIPSTUFF]MPLT2.FOR;43

0058		CALL CURVE (X,Y,10,1)
0059	· C	CALL HARKER(6)
0060	C ·	CALL CURVE (X,R, 10,10)
0061		CALL ENDPL(0)
0062		CALL CONEPL
0063		PRINT*,'101=',101
0064		RETURN
0065		£0

#### PROGRAM SECTIONS

Pane		Bytes	Attributes	
O SCODE		548	PIC CON REL LCL SHR EXE	RD NOURT LONG
1 SPDATA		141	PIC CON REL LCL SHR NOEXE	RD NOWRT LONG
2 SLOCAL		528	PIC CON REL LCL, NOSKA NOEXE	RD HRT LONG
Total Soace	Allocated	1217	•	

ENTRY POINTS

8-00000000

Address	Type	Name	5

PLOT2

References 2

#### VARIABLES

Address	Type	Name	Attributes	References		•	
2-00000038	CHAR	BUF	EQUIV	5	12	35A	
2-00600047	CHAR	BUFF	EQUIV	6	14	344	
AP-0000002C#	R#4	ELC		2	29		
2-00000080	1+4	10		39*	584	2	
AP-00000018	1*4	101		2	3(3)	39	63
AP-00000034	114	ISE		2	24		
AP-0000001C#	1+4	JAY		2	22		
AP-00000020	1±4	KAY		2	23		
AP-000000308	R#4	KP		2	4	30	
2-0000004F	CHAR	LABEL2	EQUIV	9	11	180	49
2-00000000	CHAR	LABEL 3	EQUIV	10	15	200	53
2-00000044	R±4	SPACE	EQUIV	13	36=		••
AF-0000024	R#4	TH		2	27		
AP-00000014	Rt4	XF		2	55A		
AP-000000104	R#4	XI -		2	55A	·	
AP-00000028	R±4	ZH		2	. 28		

A99

C. 1. 14

2-Feb-1985	11:48:33	WAX-11 FOR
29-Jan-1985	18:00:55	FSD0:(STEV

٩Ų

CRTRAN V3.5-62 Page EVDIS.SHIPSTUFFIHPLT2.FCR:43

3

ARRAYS

PLOTZ

(

Ľ

1

Address	Type	Name	Attrib	vtes -	Dytes	Dicensions	References	•			
2-00504839	Ora	LASEL	E		29	(23)	7	12	13	14	48
2-4903504F	ON	LEL2	Ē	0177	43	(48)	8	11	22	23	24
2-69300010	C A	1013	Ð		59	(59)	8	15	27	28	- 29
						•	- 30				
AP-COCCORC	P 814	£			**	(*)	2	3			•
AP-00506004	9 £14	X			. ++	(*)	2	3	50A		
AP-05305088	? R±4	Y	•		n	(*)	2	3	584		

#### LASELS

Address	Label	Reference		-		
1-00000082.	- 51	22	23	24	25	
1-000000000	10'	27	28	29	22	
1-05295000	15'	30	339			

#### FURTIONS AND SUPPORTINES REFERENCED

Type	Hate	References		
	ALEAZO	46		
	COTPRS	43		
	CLEVE	58		
	00271	Q		
	DOR	61		
	FORMONTE T DS	35		•
	FORSTING T DS	34		
	GRAF	55		
	GRID	56		
	HEADIN	47	48	49
	MAXER	57		
	PAGE	41		
	THURS	- 52		
	XIVE	õ		
	WAR			

+-		
i		KEY TO REFERENCE FLAGS
L		- Value Modified
-E		- Defining Reference
1		- Actual Argument, possibly madified
1	D	- Data Initialization
1	(a)	- Number of occurrences on line

-3

A100

۰.

510

- - -

#### PL072

11

(

and the second of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s

1

1.

1

Ŀ

1.

#### 2-Feb-1905 11:48:38 29-Jan-1955 18:00:55

WX-11 FORTRAN V3.5-62 Page FSC0:[STEVENS.SHIPSTUFF]HPLT2.FOR:43

COTINO QUALIFIERS

#### FORTRAN /LIS/CRO HPLT2.FOR

/DEECK=(NO3OUNDS,OUERFLOH,NOINDERFLOH) /DEEKG=(NOSTN'BOLS,ITACEENCK) /STANDARD=(NOSTNTAX,NOSOURCE_FORM) /SHOH=(NOPREPROCESSOR,NOINCLUGE,HMP) /F77 /NOG_FLOATING /14 /OPTIMIZE /NARNINGS /NOD_LINES /CROSS_REFERENCE /NGMACHINE_CODE /CONTINUATIONS+19

#### COMPILATION STATISTICS

Run Time:	2.67 seconds
Elaosed Times	3.45 seconds
Page Faults:	145
Dynamic Henery:	125 pages

*:

***********************

**********************

***********************

[]

•

5

د

2-FEB-1985 11:52:08.68 2-FEB-1985 11:52:08.68 2-FEB-1985 11:52:08.68 2-FEB-1985 11:52:08.88

FS00:(STEVENS.SHIPSTUFF)PL013.L15;1 FS00:(STEVENS.SHIPSTUFF)PL013.L15;1 FS00:(STEVENS.SHIPSTUFF)PL013.L15;1 ***********************

***********

**********************

PLOT3.LIS;1

2-FEB-1985 11:52:08.08

2-FEB-1985 11:52:68.68

2-FEB-1985 11:52:08.28

A102

FSD0:[STEVENS,SHIPSTUFF]PL013.L15;1

FSD0:(STEVENS, SHIPSTUFF)PLOT3.L15:1 FSD0:(STEVENS, SHIPSTUFF)PLOT3.L15:1

2-Feb-1985 11:48:25 UAX-11 FORTRAH V3.5-62 Page 3-Jan-1995 15:22:46 FSD0:(STEVENS.SHIPSTUFF)PLOT3.FOR:3

1

14

C2345578901234567854...etc. 0001 0002 SUGROUTINE FLOT3(X,Y,R,S,U,XI,XF,101) DIMENSION S(101), U(101), X(101), Y(101), #(101) 0003 0004 0005 10=101 0006 CALL COPPES 0007 CALL PAGE (11.,8.5) CALL XNEFE ('NAPER OF RUNS',100) CALL YNEFE ('NAGHTUDES',100) 6008 0009 0010 CALL AREA20 (9.,5.75) 0011 CALL HEADIN ("STATISTICAL TRENDS IN V.A.S. SIMULATIONS\$",49,1.,1) CALL THEFRM (0.01) 0012 CALL GRAF (X1,25.,XF,-0.5,.2,3.5) CALL GRAF (X1,25.,XF,0.,5.,25.) C 0013 0014 0015 CALL GRID (1,1) 0016 CALL MARKER(18) CALL CURVE (X,Y, 10, 10) 0917 CALL MARKER(17) CALL CLEVE (X,R,10,100) C018 0019 0020 CALL MARKER(15) 0921 CALL CURVE (X, S, 10, 125) 0022 CALL MARKER(16) CALL CURVE (X,U, 10, 125) CALL DUPL(0) CALL DUPPL 0023 0024 0025 0026 FRINT*,"IDI=",IDI 0027 CLOSE(3) 0028 RETURN 0029 ĐO

Ľ

;

ţ

1.

114

L

1

ŀ

FL073

i,

The second second second

E

į 1

1

6

2-Feb-1585 11:48:25 3-Jan-1985 15:22:46

VAX-11 FORTRAN V3.5-62 FSOD: (STEVENS. SHIPSTUFF)PLOT3.FOR;3

2 Page

PROGRAM SECTIONS

Hane	Bytes	Attributes
8 SCODE	354	PIC CON REL LOL SHA EXE NO HOURT LONG
1 SPDATA	145	PIC CON REL LOL SHE NODE NO HOURT LONG
2 SLOCAL	440	PIC CON KEL LOL NOSHR NOEXE RD HAT LONG
Tetal Space Allocated	579	

Tetal Space Allocated

ENTRY POINTS

Address	Type	Name	References			
6-00000000		PL073	2			

#### VARIAGLES

Address Type	Name	Attributes	References				
2-00000000 1*4	10		5=	17A	194	21A	234
AP-000000200 1+4	101		2	3(5)	5	26	
AP-0000001C0 8+4	XF		2	144			
AP-00000018# R+4	XI		2	144			

#### **ARJ**AYS

Address Type	Name	Attributes -	Bytes	Dimensions	References				
AP-0000000C# R±4	R		tt.	(*)	2	3	15A		
AP-00000010# R#4	S .		**	(*)	2	3	21A		
AP-000000140 R+4	U		**	(*)	. 2	3	231		
AP-00000004# 8+4	X		**	(*)	2	3	17A	194	21/
					234				
AP-00000088 R*4	Y		**	(#) ·	2	3	17A		

#### FUNCTIONS AND SUBROUTINES REFERENCED

Type	Nane	References			
	AREA2D	10			
	COMPRS	6			
	CLAVE	17	19	Z1	23
	DONEPL	25			
	DIDPL	24			- 1
	FORICLOSE	27			
	GRAF	14			
	GRID	15			
	HEADIN	11			,
	MARKER	16	18	20	22

PLOT3

PAGE

THEFRH XWHE

THHE

EĽ

12

۰.

ľ,

1

KCO 3

2-Feb-1985 11:48:25

VAX-11 FORTRAN V3.5-62 Page 3 3-Jan-1985 13:22:46 FS00:(STEVENS.SHIPSTUFF)FLOT3.FOR;3

KEY TO REFERENCE FLAGS - Value Modified . . - Defining Reference A - Actual Argument, possibly medified 1 - Data Instialization D 1 (n) - Number of occurrences on line .

#### CONTINO QUALIFIERS

#### FORTRAN /LIS/CRO PLOT3.FOR

/DECK+(INGGUNGS, OVERFLCH, HOLINDERFLCH) /DEBUG+(HOSTHEGLS, TRACEB4CK) /STAHDARD+(HOSTHTAX, HOSOUZCE_FORM) /SHCH+(HOPREPROCESSOR, HOLINGLUGE, HAP) /F77 /NOG_FLCATING /14 /OPTIMIZE /HARNINGS /HOD_LINES /CROSS_REFERENCE /HOMACHINE_CODE /CONTINUATIONS+19

#### COMPILATION STATISTICS

Run Tipet	1.83 seconds
Elapsed Time:	2.58 seconds
Page Faults:	128
Dynamic Hemory:	124 pages

a. 1944.

					$(x_{ij}) \in \{x_{ij}\}$	•
	· · · · · · · · · · · · · · · · · · ·		·····			
	· · · · ·				· ·	
			, er			
			1 d. 54			
• • • • • • • • • • • • • • • • • • •	• • • • • • • • •		•	•		· ·
					e di sere	
						•
					er de la composition de la composition de la composition de la composition de la composition de la composition	
	$(A_{i}, A_{i}) = \sum_{j \in \mathcal{I}} (A_{j}, A_{j}) = \sum_{j \in \mathcal{I}} (A_{$	1	n di kana ka	e ala generativ	8 9 C 1 C	1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -
		•				
· · · ·				•		
			•	,		
					۰. · · ·	
						· .
			•			
						·
	4					
					·	
		•				
			•			
1	•	*******	*******			
		.*		н. •		
		* VIII. APP	ENDIX B			
1		*	*******			
						a de la composición de la composición de la composición de la composición de la composición de la composición d
		· · · · · · · · · · · · · · · · · · ·				
k se se se se se se se se se se se se se						
÷						
		÷				
	•					

•

B1

L

#### A. TEST VARIABLES

The following table gives a listing of the variables used in the test matrix.

Table B1: Fixed-Base Simulation Computer Variables and Related Variables and Values

LIST OF VARIAB	LES USED IN	FIXED-BASE SIMU	LATION					
TEST VARIABLES								
Sea State	0, 4, 6	· ·						
EUD	1, 3							
1/N	1.1, 1.07,	1.05, 1.03, 1.0	01					
Damping	0.0, -0.2,	-0.4 sec-	1					
Engine Log	0.3, 0.7	0.3, 0.7 sec						
IIM	RELATED IT	<u>- 115</u>	. <u>corr</u> ut	ER VARIABLE				
Engine Lag								
Teng (sec)			TAU	ENG (sec)				
0.3			0	.3				
0.7			0	.1				
	·							
Vertical								
Velocity	1. A.							
DEEP INT		A/C CAIN	CRID	στ				
Z (sec ⁻¹ )	T (sec)	(ft/sec ² )/ ^o PLA	PLA/(f	t/sec)				
0.0	-	= 0.45	· 0	.0				
-0.2	5.0	= 0.45	0.43					
-0,4	2.5	= 0.45	0.87					
THRUST/WEIGHT		· · · ·						
T/Y			WAT	r [*] (15)				
			5.5.0	5.5.4-6				
1.00			16574	18739				
1.01			18786	18554				
1,03			18422	18193				
1.05			18071	17847				
1.07			17733	17513				
1.10	-		17249	17036				
Different weights are used, due to the changing mean wind as a function of sea state, in order to eliminate the effects of the aerodynamic forces.								

The mean aerodynamic force for a given sea state was determined

by:

1.5.1

Ē

5121

Lis Mini

in the second

H

$$FAZN = \frac{WAIT}{HKTW} - FGS$$

Where:

FAZN - Mean aerodynamic force WAIT - Aircraft weight HKTW - Scale factor FGS - Gross thrust

The following table shows the values used for the above variables as a function of sea state.

Table B2:Variable Values Used in Correcting<br/>for the Mean Aerodynamic Forces

TRIM FOR T/W = 1.0							
Sea State	HKTW	WAIT	FGS	FAZN			
0	0.99046	17036	17530.3	-330.25			
4	0.99046	17036	17363.3	-163.23			
5	0.98734	17249	17509.7	- 39.48			

B. HUD DYNAMICS

The following equations describe the hover point dynamics used in the HUD system:

$$e_x = (s.f.) \kappa_{pos}(x_{position}) - \kappa_{vel}[(\tau_h x +$$

$$(v_x) + K_{\delta} \delta_{\text{long stick}}$$

(Expressions for  $e_y$  are similar to those for  $e_x$ .)

Where:

s.f. = Scale factor  $K_{\delta} = 1.0$  $K_{pos} = 1^{\circ}/17$  ft X = True X position (B2)

۰. ÷

(B1)

$$K_{vel} = 0.29^{\circ}/(ft/sec) \qquad V_{x} = True longitudinalvelocity (B3)
$$\hat{T}_{h} = 1.1 sec \qquad (B3)$$
$$\hat{T}_{1} = \frac{\tau_{1}X_{1} + X}{(\tau_{1}s + 1)} \qquad \hat{T}_{1} = \frac{-g \tau_{2}s\theta}{(\tau_{2}s + 1)}$$$$

(B4)

Where:

and the second

= True longitudinal acceleration X 2 X = Estimated true acceleration :

 $X_1$  = Estimate of high frequency acceleration

Figure B1 shows a graphical definition of the error  $e_x$  and  $e_y$ .



Figure B1: HUD Hover Point Dynamics

C. DATA OUTPUT OF THE PILOTED SIMULATION

Figure B2 is an example of the output data from the fixed-base simulation. Information used includes the following:

Page 1 - All of the title information

Page 2 - Start and stop times, and T/W information

Page 3 - Maximum gear z velocity, and the position error when the side task (attitude command

system) was being flown.

### NOTE:

41.54

1.

Ľ

I..

1:

ł

Since the simulation was primarily concerned with the vertical axis, the highest main gear, designated N (nose) or T (tail), z velocity was used, and the outrigger readings were ignored.

#### D. PILOTS

Pilot A - Vernon K. Merrick Pilot B - Glenn G. Ferris CVSONG 15:47 JAN 23. 85 RUN 427 PILOT; V. MERRICK

12.22

CET11

E.7.2.3

1

HAR AVEA DATA PRINTOUT

[....]

1.22.1

Y BLACK

PAR

4.4.4.1111111111111111111111111

1

1

FINAL PRINTOUT HOVER APPROACH - VER TEST SHIP MOTION ON . NSTATE - I. LOADING - CLEAN . LEIGHT - 17513.0LBS LAKE TURBULENCE ON . BACKGROUND TUPB - .00 FT.SEC ICSYS - 6 ISUBSYS - 2 IDCASE - 5 IAVPB - 0

Figure B2: Example Data Output from the Piloted Simulation

PHASE III · VERTICAL DESCENT

B7

TIME START A	NT .00	END AT	28.41	DURATION OF	28.48 SECS				
DESCRIPTION	UNITS	MEAN	STD DEV	MIH	MAX	ALTITUDE (FT) MIN	AIRSPEED (F./S) MIN	ALTITUDE (FT) MAX	ATESPUED (E-S) PAX
HORZ VEL VERT VEL	F./S	7796E-03 1504E 01	.3918E-01 .1062E 01	1804E 00 3493E 01	.1610E 00 .1156E 01	.5714E 02 .5998E 02	.4495E 02 .3164E 02	.4174E 02 .5063E 02	.6019E 01 .5010E 02
X PILOT ACCEL. Y PILOT ACCEL. Z PILOT ACCEL.	G G G	.1129E 00 .1564E-02 9910E 00	.8118E-02 .2276E-01 .4844E-01	.6923E-01 5983E-01 1121E 01	.1404E 00 .6765E-01 7716E 00	.5759E 02 .4520E 02 .5024E 02	.5253E 02 .5545E 02 .5347E 02	.5714E 02 .4302E 02 .4009E 02	.44956 02 .46858 02 .42648 02
PC DEFLECTION RC DEFLECTION YC DEFLECTION	% % % .	.2271E 02 .1550E 00 .1869E 01	.3267E 01 .1254E 02 .1268E 02	.1165E 82 4679E 82 3888E 82	.3462E 02 .5191E 02 .3736E 02	.5976E 02 .4288E 02 .5549E 02	.3873E 02 .5027E 02 .3838E 02	.4044E 62 .4491E 02 .5141E 02	.2862F 22 .57001 22 .38165 22
PC AERO RC AERO YC AERO PC ENGINE RC ENGINE YC ENGINE	R/S2 R/S2 R/S2 R/S2 R/S2 R/S2	.5195E-01 2091E-04 3597E-03 1028E 00 .4820E-02 7042E-02	.2010E-01 .1798E-01 .1945E-02 .3509E-01 .2571E 00 .4638E-61	.1502E-01 8363E-01 6397E-02 2171E 00 7964E 00 1639E 00	. 1916E 00 .0653E-01 .1091E-01 .5191E-01 .0099E 00 .1750E 00	.4920E 02 .5774E 02 .5125E 02 .4043E 02 .4274E 02 .5146E 02	.3696E C2 .7114E C2 .4266E C2 .4220E C2 .3900E C2 .4220E C2	.5759E 02 .4491E 02 .5759E 02 .5954E 02 .4470E 02 .5544E 02	.5253E 02 .5700F 02 .5253E 02 .5074E 02 .4795E 02 .3437E 02
TOT ENGINE BLEE	D LB/S	.3948E P1	.1894E 01	.7099E 88	.1214E 02	.5042E 02	.2957E 02	.5141E 02	.3016E 02
RPM	PCT	.1002E 03	.1180E 01	.9157E 02	.1825E @3	.3994E 82	.4476E 02	.403SE 02	.4506E 02
T.1U		.9334E PP	.3284E-01	.7396E 88	.1048E 01	.3934E 82	.4476E 02	.4033E 02	.5147E 02
NOZZLE ANGLE	DEG	.7837E 82	.3578E 00	.7738E 02	.0002E 02	.5714E 82	.4495E 82	.4174E 02	.6013E 02
THE TA PH I	DEG DEG	.6500E 01 9468E-01	.3220E-01 .6885E 00	.6428E 01 1634E 01	.6610E 01 .1869E 01	.4053E 02 .4491E 02	.4128E 02 .5700E 02	.4044E 02 .4797E 02	.2062F 02 .4262E C2
FLAP DEFL	DEG	.5000E 02	.5840E-06	.5000E C2	,5000E 02	.8250E C2	.4330E 02	.8250E 02	.4330E 02
T.W TIME ABOVE T.J. T.W TIME ABOVE T.W	SEC SEC	.60 .28355 02 .88 .27905 02	.18 .2835E 02 .90 .2784E 02	.34 .2835E @2 .92 .2776E @2	.48 .28355 82 .94 .27455 82	.60 .28555 02 .95 .25925 02	.70 .2835E 03 .97 .2035E 02	.79 .2822E 02 .98 .1440E 02	.84 .2003E 02 .90 .9856E 01
TIME ABOVE TAU	SEC	.6400E 21	.4864E 01	.3264E P1	.2112E 01	.7630E 90	99 30000.	.0000E 00	.0000E 00
RELATIVE DESCEN TO DECK TO SEA LEVE	IT RATE F./S EL F./S	.1532E 01 .1504E 01	.6356E 01 .1062E 01	9101E 02 1156E 01	.1193E 02 .3493E 01	.8250E 02 .5063E 02	.4618E 02 .5010E 02	.6275E 02 .5993E 02	.3849E 02 .3164E 02
LATER USED -	.8 LBS.	FUEL USED	• 113.0 LB	S. WEIGHT -	17399.1LBS				•

10.7

Figure B2, continued: Example Data Output from the Piloted Simulation

••	<u> </u>	• • • • •		1		•
13	TOUCHDOWN	AT TIME - 28.41		•	•	
<u>E</u> .	VEL - DECK AXES	POSITION ERROR	A C ATTITUDE	SHIP ATTITUDE	SHIP VELOCITY	
	X2745E PO F -S	X4945E 00 FT	PH11144E PI DEG	PHI2706E C1 DEG	24 .2107E 02 F -S	,
	Z . 1371E 81	DIST . 3963E DI	PSI 3013E 02	PSI - 4500E CP	2*3444E 02	
	MAX OLEO FORCES	ATTITUDE-REL. DECK	MAX GEAR X VEL.	THE GENP Y VEL.	INDI GEAP 2 MEL	
	117701E 04 LBS	PH1 9319E PP DEG	N 3067E CO F'S	H 1103E P1 F S	11 .35675 01 F ·S	
	R= .1653E C4 L= .1864E (3	THT4E35E 01 PSI3074E 02	R• .2202E PP . L• .1159E PP	R• .3154E 00 L• .8154E 00	P* 16228E 01 5 L* 12303E 01	
	T1115E 05		T2280E 00	90 33700. •T	T4153E 01	

THE MINIMUM MISS DISTANCE LAS LONY EQUAL TO 11.4 FT.

Figure B2, continued: Example Data Output from the Piloted Simulation

88

E. LISTING OF PILOTED SIMULATION RUNS AND RESULTS

• • •

Ð

1.14

	<u>P</u> ]	LOTED SIMULATI	ION TEST	MATRIX	
ZUT	$\frac{T/W = 1.1}{0.3}$	0.7	Z	$\frac{T/U = 1.6}{0.3}$	<u>)7</u> 0.7
0.0	O5-B Δ5-B D5-A, 10-B O5-B Q10-B	O 5-B △ 5-B □ 5-A, 10-B O 5-B ◇ 5-B	0.0	△ 5-8 □ 5-A, 10-B ○ 5-A, 5-8	△ 5-B □ 5-A, 5-B ○ 5-A, 5-B
-0.2	O 5-B Δ 5-B D 5-A, 10-B O 5-B O 10-B	O 5-B △ 5-B □ 5-A, 10-B O 6-3 ◇ 5-B	-0.2	△ 5-B □ 5-A, 10-B ○ 5-A, 5-B	△ 5-B □ 5-A, 5-3 ○ 5-A, 5-B
-0.4	$\begin{array}{c} O 5-B \\ \Delta 5-B \\ D 5-A, 10-B \\ O 5-B \\ \diamondsuit 10-B \end{array}$	O 5-B △ 5-B □ 5-A, 10-B O 5-B ◇ 5-B	-0.4	△ 5-B □ 5-A, 5-B ○ 5-A, 5-B	△ 5-B □ 5-A, 5-B ○ 5-A, 5-B
2,5	$\frac{T/W = 1.0}{0.3}$	<u>05</u> 0.7	ZUT	T/W = 1.0 eng 0.3	0.7
0.0	O 6-3 △ 5-B □ 5-A, 5-B O 5-B ◇ 5-B	O 5-B △ 5-B □ 5-A, 5-B O 5-B ◇ 5-B	0.0	∆ 5-B □ 15-A, 10-B ○ 6-B	△ 5-B □ 11-A, 10-B ○ 5-B
-0.2	O 5-B △ 5-B □ 5-A, 5-B O 5-B ◇ 5-B	O 5-B △ 5-B □ 5-A, 5-B O 5-B ◇ 4-B	-0.2	△ 5-B □ 15-A, 15-B ○ 5-A, 10-B	△ 5-B □ 15-A, 15-B ○ 5-A, 10-B
-0.4	O 5-B △ 5-B □ 6-A, 5-B O 5-B ◇ 5-B	O 5-B △ 5-B □ 5-A, 5-B O 5-B ◇ 5-B	-0.4	△ 5-B □ 15-A, 10-B ○ 5-B	△ 5-B □ 10-A, 10-B ○ 5-B
Z	$\frac{T/W = 1.1}{0.3}$	<u>01</u> 0.7			
0.0	$ \begin{array}{c} O & S-B \\ \Delta & S-B \\ \hline D & S-A, & S-B \\ O & S-A, & S-B \\ \hline O & S-B \\ \hline \end{array} $	O 5-B △ 5-B □ 5-A, 5-B O 5-A, 5-B ◇ 5-B		O n−1 S.S.0 △ n−1 S.S.4	НИДЗ V.C. НИДЗ V.C.
-0.2	$ \begin{array}{c} O 5-B \\ \Delta 5-B \\ \Box 5-A, 5-B \\ O 5-A, 5-B \\ \Diamond 5-B \\ \Diamond 5-B \end{array} $	$\bigcirc 5-B \\ \triangle 5-B \\ \Box 6-A, 6-B \\ \bigcirc 5-A, 5-B \\ \diamondsuit 5-B $		□ n-t S.S.6 O n-t S.S.6 O n-t S.S.6 n-t S.S.6	HUD3 V.C. HUD1 V.C. HUD3 A.C. r of runs
-0.4	$\begin{array}{c} O 5-B \\ \Delta 5-B \\ \Box 5-A, 5-B \\ O 4-A, 5-B \\ \diamondsuit 5-B \end{array}$	O 5-B △ 5-B □ 5-A, 5-B O 5-A, 5-B ○ 5-B		~- riiot	•

Figure B3: Piloted Simulation Test Matrix

B10

• 😰 -

The second

¥.

SEA STATE 0 HUD3 VELOCITY COMMAND SYSTEM  $\tau_{eng} - (sec)$   $Z_{w} - (sec^{-1})$   $\overline{T.D.}_{ve1} - (ft/sec)$ 

				· · ·	Fligh	nt Time -	(sec)
T/W max	τeng	Z w	Pilot	Run No.s	T.D.vel	FLICHT TIME	P.R.
1.01	0.3	0.0	В	916-920	1.87	26.0	3
••	- 11	0.2	11	911-915	1.70	22.9	2
11 -	11 A. A.	0.4		906-910	2.17	25.0	1 1/2
••	0.7	0.0	11	891-895	3.15	20.2	3 1/2
. 11	11	0.2	11	896-905	1.42	27.8	2 1/2
11	11	0.4	<b>19</b>	901-905	1.58	31.5	1 1/2
1.05	0.3	0.0		921-925	2.04	23.3	3
**	<b>11</b>	0.2	11	926-930	1.61	21.6	2
**	н ^с	0.4	**	931-935	1.36	28.0	1
11	0.7	0.0	11	946-950	2.04	17.5	3 1/2
11	••	0.2		941-945	1.14	28.4	2 1/2
11	17 -	0.4	**	936-940	1.57	28.0	1 1/2
1.10	0.3	0.0		976-980	1.95	15.1	3
11	11	0.2	. <b>11</b>	971-975	1.26	23.8	1 1/2
**	11	0.4	11	966-970	0.68	42.1	1
11	0.7	0.0	11	951-955	1.49	24.2	3 1/2
11	11	0.2	**	956-960	1.29	33.2	3
••	. H	0.4		961-965	1.21	28.4	2
SEA STAT HUD3 VELOCITY	E 4	SYSTEM	r				
1200111	OOILLIND	01010.	•				1 - 10
1.01	0.3	0.0		861-865	2.9	26.1	4 1/2
		0.2		866-870	4.0	23.2	3 1/2
		0.4		871-875	2.8	30.0	3
17	0.7	• 0.0	11	886-890	3.5	27.2	6
		0.2		881-885	3.7	24.1	5
		0.4		876-880	3.4	33.1	4
1.03	0.3	0.0	11	856-860	3.0	27.7	3 1/2
11	**	0.2	**	851-855	2.3	24.0	3 1/2
11	11	0.4	. 11	846-850	1.9	20.1	2 1/2
11	0.7	0.0	11	831-835	3.9	17.2	4 1/2
11	11	0.2	. 11	836-840	2.8	19.7	3 1/2
	11	0.4	11	841-845	3.5	23.0	3 1/2
1.05	0.3	0.0	••	801-805	4.6	14.7	3 1/2
1,1 <b>H</b>	11	0.2	11	806-810	3.4	17.0	3 1/2
11	**	0.4	11	811-815	5.3	23.3	4
н	0.7	0.0	11	826-830	5.4	17.3	5
11 - 1		0.2	. "	821-825	4.0	27.7	4 1/2
	11	9.4	11 .	816-820	3.7	21.9	4

B11

SEA STATE 4 Cont. HUD3 VELOCITY COMMAND SYSTEM

ł.,

L

E

[]

£.

7

							1
T/W max	τ _{eng}	Zw	Pilot	Run No.s	T.D. vel	FLIGHT TIME	P.R.
1.07	0.3	0.0	B	796-800	2.3	15.9	3
	11	0.2	11	786-790	2.8	17.3	- 3
11 J	- 11	0.4	14	791-795	3.0	20.9	2 1/2
11	0.7	0.0		771-775	4.2	21.3	5
**	**	0.2	11	776-780	3.7	20.5	- <b>4</b>
tt .	11	0.4	tt .	781-785	4.4	21.2	4
1.10	0.3	0.0	18	741-745	3.5	14.7	4
••	н.	0.2	**	746-759	3.5	18.3	3
**	11	0.4	11	751-755	3.5	21.3	1 1/2
	0.7	0.0	11	766-770	3.6	18.6	4
11	FT	0.2		761-765	4.0	22.3	3
11	11	0.4	11	756-760	3.7	22.6	2
SEA STAT HUD1 VELOCITY	e 6 Command	SYSTEM	[				
1.01	0.3	0.0	A	506-510	8.0	26.2	7
	"		В	616-620	11.6	26.0	10
11		0.2	Ā	511-515	6.6	29.3	6 1/2
tr	11	11	В	611-615	9.4	22.7	7 1/2
<b>11</b>	11	0.4	A	431-435	6.2	39.0	5
.11	16 - 1	11	В	606-610	6.9	31.0	7
<b>11</b>	0.7	0.0	A	526-530	6.5	24.9	7
11	11	5 <b>H</b>	В	591-595	7.2	18.2	8 1/2
11	11	0.2	A	521-525	8.6	25.1	6 3/4
<b>11</b>	11	11	В	596-600	9.1	15.4	8 1/2
		0.4	À	516-520	5.3	29.0	5 1/2
11	11	11	В	601-605	7.9	24.5	8 1/2
1.03	0.3	0.0	В	561-565B	9.3	15.4	8
11	11	0.2	A	411-415	6.2	23.0	5
78	11	r #1	B	416-420	8.1	24.1	5
11		11	Ħ	566-570	8.7	18.9	7 1/2
8 B		0.4	. <b>LT</b>	571-575	6.7	29.9	7
11	0.7	0.0	11	586-590	9.6	25.9	8 1/2
11	йн 1. Н	0.2		421-415	8.6	20.5	5 1/2
**	н		- A	426-430	9.1	20.9	6
19		11	В	581-585	9.5	17.7	8
с н. Н	11	0.4	11	576-580	7.2	16.7	7

B12

1:

4 ſ. ł., SEA STATE 6 Cont. HUD3 VELOCITY COMMAND SYSTEM

T/W max	Teng	Z W	Pilot	Run No.s	T.D. vel	Flight Time	P.R.
1.05	0.3	0.0	В	621-625	6.2	30.0	6
11	11	0.2	11	626-630	7.8	32.3	6
11	11	0.4	11	631-635	7.0	34.3	5 1/2
17	0.7	0.0	11	636-640	6.4	22.7	6
11	**	0.2.	H	641-645	9.2	39.8	7
tt t	11	0.4	11	646-650	7.2	24.1	7
1.07	0.3	0.0	Α	501-505	8.2	27.9	6
11 A.	17		В	661-665	10.0	16.8	7 1
11		0.2	A	496-500	8.2	21.2	5 1/4
- <b>17</b>	11	н	В	656-660	4.5	28.7	3 1/2
**	**	0.4	Ā	491-495	5.5	32.5	4 3/4
11		11	В	651-655	5.3	22.5	3 1/2
et -	0.7	0.0	Ā	476-480	6.2	20.5	$5 \frac{1}{2}$
. 11		11	B	666-670	8.1	13.1	7
**	11	0.2	Ā	481-485	7.2	17.0	5 1/2
11 E	17	11	В	671-675	8.1	20.4	6
11		0.4	Ā	486-490	5 3	23.0	5
H S	**		В	676-680	7.9	34.5	6
1.10	0.3	0.0	В	696-700	7.6	19.1	7
11		0.2	**	701-705	7.0	35.4	5 1/2
17		0.4	11	706-710	5.7	38.1	4
F1	0.7	0.0	*1	691-695	10.2	22.3	7 1/2
**	**	0.2		686-690	7.1	43.4	6 1/2
11	11	0.4		681-685	7.3	43.8	5
SEA STAT	E 6					•	
VELOCITY	COMMAND	SYSTEM	[			1	
1.01	0.3	0.0	A	156-160	6.1	33.3	5
17	11	<b>H</b>	В	186-190	6.5	24.2	6 1/2
ff .	. 11	0.2	Α	151-155	5.7	34.1	4 1/2
rt .	11	11	B	181-185	8.5	34.9	6 1/2
**		0.4	A	146-150	5.6	31.2	4 1/4
· •	18		В	176-180	9.4	18.3	5 1/2
**	0.7	0.0	A	171-175	6.7	28.5	5
11	11		В	201-205	6.4	35.4	$\frac{1}{6}$ 1/2
11		0.2	A	166-170	6.5	26.1	5 5
11	11	11	В	196-200	7.9	29.6	7
11	11	0.4	Ā	161-165	7.7	34.2	5 1/2
	11		3	191-195	6.7	38.6	$5 \frac{1}{2}$

SEA STATE 6 Cont. HUD3 VELOCITY COMMAND SYSTEM

<u>رد</u> `

[.

÷ 1

 $\Gamma^{\circ}$ 

				· · · · · · · · · · · · · · · · · · ·			
T/W Max	reng	Zw	Pilot	Run No.s	T.D. vel	Flight Time	P.R.
1.03	0.3	0.0	A	55-100	7.0	37.7	4 1/2
11	"	11	11	131-135	7.1	28.7	5
11 1	11	11	11	271-275	6.7	22.0	5
91	11	11	В	291-295	5.5	21.2	5 1/2
11	11	11	ī	556-560	6.0	23.8	5 -/-
11	11	0.2	A	91-95	6.6	32.3	4 1/4
. 11	11	"		136-140	4.2	32.2	4 1/2
**	tt -		R	286-290	6 5	26.6	5
11	11		Δ	401_405	6 5	20.0	5 1 / 4
- <b>B</b>			- R	401-405	53	44 0	5 1/7
	11	. 11		551-555	5 1	10 1	6
**	• • • •	0 /		96 00	7.4	28.2	6 1/2
	11		н. Н	161-165	6 5	26.5	4 1/2
		Ξù.		141-143	0.J 7 1	24.J 1.3 1	4 1/4 5 1//
11		11		200-270	/.1	42.4	5 1/4
			. D Н	201-205	2.4	20.0	4 1/2
	0.7	0.0		246-220	1.5	29.8	6 1/2
	0.7	0.0	A	111-115	0.5	20.9	4 3/4
				116-120	0.3	37.1	4 3/4
			· B	306-310	1.2	1/.1	6 1/2
				531-535	7.6	23.3	1
		0.2	A	106-110	8.0	36.7	4 3/4
				121-125	6.3	25.6	4 1/2
				276-280	1.1	22.6	5 1/2
			B	301-305	5.2	19.9	5 1/2
			W	536-540	4.7	24.5	5 1/2
			A	101-105	8.1	35.8	4 1/2
11	11		11	126-130	7.1	33.7	4 1/2
11			В	296-300	5.8	24.6	5 1/2
**	**	11	••	541-545	4.9	25.7	5
1.05	0.3	0.0	А	216-220	8.9	24.2	5 1/2
11	••	11	В	251-255	7.0	30.7	5
11	**	0.2	A	211-215	4.4	26.6	4 1/2
••	11	11	В	256-260	5.5	33.6	5
**	11	0.4	· A	206-210	6.6	27.7	5
	11	11	В	261-265	7.1	42.4	4 1/2
11	0.7	0.0	A	221-225	7.1	31.5	5 1/2
11	11	н	B	246-250	5.0	44.5	6 1/2
11	**	0.2	A	226-230	7.0	38.3	5
11	- <b>tt</b>	. 11	B	241-245	8.0	37.2	$\frac{1}{6}$ 1/2
	11	ο 4	Ã	231-235	6.5	30.9	5
	11	1	В	236-240	9.8	39.9	6 1/2

HANNER DE

SEA STATE 6 Cont. HUD3 VELOCITY COMMAND SYSTEM

1.05       0.3       0.0       A       216-220       8.9       24.2       5       1/2         "       "       "       3       251-255       7.0       30.7       5         "       "       0.2       A       211-215       4.4       26.6       4       1/2         "       "       "       B       256-260       5.5       33.6       5         "       "       0.4       A       206-210       6.6       27.7       5         "       "       B       261-265       7.1       42.4       4       1/2         "       0.7       0.0       A       221-225       7.0       31.5       5       1/2         "       "       0.2       A       226-230       7.7       38.3       5         "       "       0.4       A       231-235       6.5       30.9       5         "       "       0.4       A       231-235       6.5       30.9       5         "       "       0.4       A       231-235       6.5       30.9       5         "       "       0.4       A       231-235       7.8
"       "       "       B $251-255$ 7.0 $30.7$ 5         "       "       0.2       A $211-215$ $4.4$ $26.6$ $41/2$ "       "       B $256-260$ $5.5$ $33.6$ 5         "       "       B $226-210$ $6.6$ $27.7$ 5         "       "       B $226-250$ $5.0$ $44.5$ $61/2$ "       "       B $226-230$ $7.0$ $38.3$ 5         "       "       B $226-230$ $7.0$ $38.3$ 5         "       "       B $226-230$ $7.0$ $38.3$ 5         "       "       B $226-240$ $9.8$ $39.9$ $61/2$ "       "       B $236-240$ $9.8$ $39.9$ $61/2$ 1.07 $0.3$ $0.0$ B $386-390$ $5.0$ $24.7$ $41/2$ "       "       A $426-400$ $5.8$ $22.2$ $4$ "       "       A $446-455$
"         "         0.2         A         211-215         4.4         26.6         4         1/2           "         "         B         256-260         5.5         33.6         5           "         "         0.4         206-210         6.6         27.7         5           "         "         B         261-265         7.1         42.4         4         1/2           "         "         B         246-250         5.0         34.5         5         1/2           "         "         B         246-250         5.0         34.5         6         1/2           "         "         B         241-245         8.0         37.2         6         1/2           "         "         B         236-240         9.8         39.9         6         1/2           1.07         0.3         0.0         B         386-390         5.0         24.7         4         1/2           "         "         "         436-440         5.8         29.5         1/2           "         0.2         B         396-390         5.0         24.7         4         1/2           "
"         "         "         B         256-260         5.5         33.6         5           "         "         0.4         A         206-210         6.6         27.7         5           "         "         B         261-265         7.1         42.4         4         1/2           "         "         B         246-250         5.0         44.5         6         1/2           "         "         B         246-250         5.0         44.5         6         1/2           "         "         B         241-245         8.0         37.2         6         1/2           "         "         B         236-240         9.2         39.9         6         1/2           "         "         A         446-450         5.9         25.2         5         1/4           "         "         A         446-450         5.9         31.3         5           "         "         A         451-455         5.9         31.3         5           "         O.2         B         391-395         7.8         22.2         4           "         O.4         B         39
"       "       0.4       A       206-210       6.6       27.7       5         "       "       B       261-265       7.1       42.4       4       1/2         "       "       B       226-250       5.0       31.5       5       1/2         "       "       B       226-230       7.0       38.3       5         "       "       B       241-245       8.0       37.2       6       1/2         "       "       0.4       A       231-235       6.5       30.9       5         "       "       0.4       B       386-390       5.0       24.7       4       1/2         "       "       0.2       B       391-395       7.8       22.2       4         "       "       0.2       B       396-400       5.5       26.2       3       1/2
"         "         B $261-265$ $7.1$ $42.4$ $41/2$ "         0.7         0.0         A $221-225$ 7.0 $31.5$ $51/2$ "         "         B $246-250$ $5.0$ $44.5$ $61/2$ "         "         0.2         A $226-230$ $7.3$ $83.3$ $5$ "         "         B $241-245$ $8.0$ $37.2$ $61/2$ "         "         0.4         A $231-235$ $6.5$ $30.9$ $5$ "         "         B $236-240$ $9.8$ $39.9$ $61/2$ "         "         0.4         A $231-235$ $6.5$ $30.9$ $5$ "         "         B $236-240$ $9.8$ $29.5$ $41/2$ "         "         A $436-440$ $5.8$ $29.5$ $41/2$ "         "         A $451-455$ $5.9$ $31.3$ $5$ "         0.2
"       0.7       0.0       A $221-225$ 7.0 $31.5$ $51/2$ "       "       B $246-250$ $5.0$ $44.5$ $61/2$ "       "       0.2       A $226-230$ $7.7$ $38.3$ $5$ "       "       B $241-245$ $8.0$ $37.2$ $61/2$ "       "       0.4       A $231-235$ $6.5$ $30.9$ $5$ "       "       0.4       A $236-240$ $9.3$ $39.9$ $61/2$ 1.07       0.3       0.0       B $386-390$ $5.0$ $24.7$ $41/2$ "       "       " $436-440$ $5.8$ $29.5$ $41/2$ "       " $446-450$ $5.9$ $25.2$ $51/4$ "       0.2       B $391-395$ $7.8$ $22.2$ $4$ "       " $441-445$ $6.1$ $26.7$ $31.3$ $5$ "       0.4       B $396-400$ $5.5$ $26.2$ $31/2$ "       <
"""       ""       B $246-250$ $5.0$ $44.5$ $61/2$ """       B $241-245$ $8.0$ $37.2$ $61/2$ """       B $241-245$ $8.0$ $37.2$ $61/2$ """       D.4       A $231-235$ $6.5$ $30.9$ $5$ """       B $236-240$ $9.8$ $39.9$ $61/2$ 1.07 $0.3$ $0.0$ B $386-390$ $5.0$ $24.7$ $41/2$ """       "" $436-440$ $5.8$ $29.5$ $41/2$ """       " $446-450$ $5.9$ $25.2$ $51/4$ """       0.2       B $391-395$ $7.8$ $22.2$ $4$ """ $0.2$ B $396-400$ $5.5$ $26.2$ $31/2$ """ $0.4$ $B$ $396-400$ $5.5$ $26.2$ $31/2$ """ $0.4$ $B$ $396-380$ $7.0$ $27.7$ $41/2$ """" $A$ $456-360$ $5.0$ $23.5$ $51/2$
"       "       0.2       A       226-230       7.7       38.3       5         "       "       B       241-245       8.0       37.2       6       1/2         "       0.4       A       231-235       6.5       30.9       5         "       "       B       236-240       9.8       39.9       6       1/2         1.07       0.3       0.0       B       386-390       5.0       24.7       4       1/2         "       "       "       436-440       5.8       29.5       4       1/2         "       "       A       446-450       5.9       25.2       5       1/4         "       0.2       B       391-395       7.8       22.2       4         "       "       441-445       6.1       26.7       3       1/2         "       "       A       456-460       6.0       30.3       4       1/2         "       "       A       456-460       6.0       30.3       4       1/2         "       "       A       456-360       7.4       23.5       5       1/2         "       "
""""""""""""""""""""""""""""""""""""
"       "       0.4       A       231-235       6.5       30.9       5         "       "       B       236-240       9.8       39.9       6       1/2         1.07       0.3       0.0       B       386-390       5.0       24.7       4       1/2         "       "       "       "       436-440       5.8       29.5       4       1/2         "       "       "       A       446-450       5.9       25.2       5       1/4         "       "       0.2       B       391-395       7.8       22.2       4         "       "       "       441-445       6.1       26.7       3       1/2         "       "       "       451-455       5.9       31.3       5         "       0.4       B       396-400       5.5       26.2       3       1/2         "       "       A       456-460       6.0       30.3       4       1/2         "       0.7       0.0       B       381-385       7.4       23.5       1/2         "       "       0.2       B       376-380       7.0       27.7
"       "       B $236-240$ $9.2$ $39.9$ $6$ $1/2$ 1.07 $0.3$ $0.0$ B $386-390$ $5.0$ $24.7$ $4$ $1/2$ "       "       " $436-440$ $5.8$ $29.5$ $4$ $1/2$ "       "       "       A $446-450$ $5.9$ $25.2$ $5$ $1/4$ "       "       0.2       B $391-395$ $7.8$ $22.2$ $4$ "       "       "       441-445 $6.1$ $26.7$ $31/2$ "       "       A $451-455$ $5.9$ $31.3$ $5$ "       "       0.4       B $396-400$ $5.5$ $26.2$ $31/2$ "       "       0.4       B $391-385$ $7.4$ $23.5$ $51/2$ "       "       0.4       B $376-380$ $7.0$ $27.7$ $41/2$ "       "       0.4       B $371-375$ $7.1$ $24.7$ $41/2$ "       "       0.4       <
1.07       0.3       0.0       B $386-390$ 5.0 $24.7$ $41/2$ "       "       "       436-440       5.8 $29.5$ $41/2$ "       "       A $446-450$ $5.9$ $25.2$ $51/4$ "       "       0.2       B $391-395$ $7.8$ $22.2$ $4$ "       "       "       441-445 $6.1$ $26.7$ $31/2$ "       "       " $441-445$ $6.1$ $26.7$ $31/2$ "       "       "       A $451-455$ $5.9$ $31.3$ $5$ "       "       0.4       B $396-400$ $5.5$ $26.2$ $31/2$ "       "       A $456-460$ $6.0$ $30.3$ $41/2$ "       "       A $456-460$ $6.0$ $30.3$ $41/2$ "       "       A $471-475$ $5.4$ $39.9$ $6$ "       "       0.2       B $371-375$ $7.1$ $24.7$ $41/2$ "
1.07       0.3       0.0       B       386-390       5.0       24.7       4 1/2         "       "       "       436-440       5.8       29.5       4 1/2         "       "       A       446-450       5.9       25.2       5 1/4         "       "       0.2       B       391-395       7.8       22.2       4         "       "       "       441-445       6.1       26.7       3 1/2         "       "       "       441-445       6.1       26.7       3 1/2         "       "       "       4456-460       6.0       30.3       4 1/2         "       "       0.4       B       396-400       5.5       26.2       3 1/2         "       "       0.4       B       396-400       5.5       26.2       3 1/2         "       "       0.4       B       381-385       7.4       23.5       5 1/2         "       "       0.2       B       376-380       7.0       27.7       4 1/2         "       "       0.4       B       371-375       7.1       24.7       4 1/2         "       "       0.0
"""""       436-440 $5.8$ 29.5       4 1/2         """"       A       446-450 $5.9$ 25.2 $5$ $7/4$ """"       0.2       B       391-395 $7.8$ 22.2 $4$ """"       """ $441-445$ $6.1$ $26.7$ $3$ $1/2$ """"       "" $441-445$ $6.1$ $26.7$ $3$ $1/2$ """" $A$ $451-455$ $5.9$ $31.3$ $5$ """" $A$ $456-460$ $6.0$ $30.3$ $4$ $1/2$ """" $A$ $456-460$ $6.0$ $30.3$ $4$ $1/2$ """" $A$ $471-475$ $5.4$ $39.9$ $6$ """" $A$ $471-475$ $5.4$ $39.9$ $6$ """" $A$ $466-470$ $7.4$ $35.6$ $5$ $1/2$ """" $A$ $466-470$ $7.4$ $35.6$ $5$ $1/2$ """"" $A$ $461-465$ $5.7$ $35.4$ $4$ $3/4$
""""       "A $446-450$ $5.9$ $25.2$ $51/4$ """"       0.2       B $391-395$ $7.8$ $22.2$ $4$ """"       """ $441-445$ $6.1$ $26.7$ $31/2$ """"       A $451-455$ $5.9$ $31.3$ $5$ """" $A$ $451-455$ $5.9$ $31.3$ $5$ """" $A$ $456-460$ $6.0$ $30.3$ $41/2$ """" $A$ $456-460$ $6.0$ $30.3$ $41/2$ """" $A$ $471-475$ $5.4$ $39.9$ $6$ """" $A$ $471-475$ $5.4$ $39.9$ $6$ """" $A$ $471-475$ $5.4$ $39.9$ $6$ """" $A$ $466-470$ $7.4$ $35.6$ $51/2$ """" $A$ $466-470$ $7.4$ $35.6$ $51/2$ """"" $A$ $466-470$ $7.4$ $35.6$ $51/2$ """"" $A$ $461-465$ $5.7$ $35.4$ <
"""""       0.2       B $391-395$ 7.8 $22.2$ 4         """""       "441-445       6.1 $26.7$ $31/2$ """"       A $451-455$ $5.9$ $31.3$ $5$ """"       0.4       B $396-400$ $5.5$ $26.2$ $31/2$ """"       A $456-460$ $6.0$ $30.3$ $41/2$ """"       A $456-460$ $6.0$ $30.3$ $41/2$ """"       A $456-460$ $6.0$ $30.3$ $41/2$ """"       A $471-475$ $5.4$ $39.9$ $6$ """"       A $466-470$ $7.4$ $35.6$ $51/2$ """"       A $466-470$ $7.4$ $35.6$ $51/2$ """""       A $466-470$ $7.4$ $35.6$ $51/2$ """""       A $466-470$ $7.4$ $35.6$ $51/2$ """""       A $356-360$ $5.3$ $32.5$ $33/4$ """"""       A $356-360$ $5.3$ $32.5$ <td< td=""></td<>
""""       """ $441-445$ $6.1$ $26.7$ $31/2$ """"       A $451-455$ $5.9$ $31.3$ $5$ """"       0.4       B $396-400$ $5.5$ $26.2$ $31/2$ """"       A $456-460$ $6.0$ $30.3$ $41/2$ """"       A $456-460$ $6.0$ $30.3$ $41/2$ """"       A $456-460$ $6.0$ $30.3$ $41/2$ """"       A $471-475$ $5.4$ $39.9$ $6$ """"       A $466-470$ $7.4$ $35.6$ $51/2$ """"       A $466-470$ $7.4$ $35.6$ $51/2$ """"       A $466-470$ $7.4$ $35.6$ $51/2$ """"       A $461-465$ $5.7$ $35.4$ $43/4$ 1.10 $0.3$ $0.0$ B $321-325$ $6.7$ $33.2$ $31/2$ """""       """"       A $356-360$ $5.3$ $32.5$ $33/4$ """""       """"       <
"""       "A $451-455$ $5.9$ $31.3$ $5$ """       0.4       B $396-400$ $5.5$ $26.2$ $31/2$ """"       A $456-460$ $6.0$ $30.3$ $41/2$ """       A $456-460$ $6.0$ $30.3$ $41/2$ """       A $456-460$ $6.0$ $30.3$ $41/2$ """       A $471-475$ $5.4$ $39.9$ $6$ """       A $471-475$ $5.4$ $39.9$ $6$ """       A $466-470$ $7.4$ $23.5$ $51/2$ """       A $466-470$ $7.4$ $35.6$ $51/2$ """       A $466-470$ $7.4$ $35.6$ $51/2$ """       A $466-470$ $7.4$ $35.6$ $51/2$ """       Q.4       B $371-375$ $7.1$ $24.7$ $41/2$ """"       A $366-360$ $5.3$ $32.5$ $33/4$ """"       B $721-725$ $5.2$ $26.9$
"       "       0.4       B $396-400$ 5.5 $26.2$ $31/2$ "       "       "       A $456-460$ $6.0$ $30.3$ $41/2$ "       0.7       0.0       B $381-385$ $7.4$ $23.5$ $51/2$ "       "       "       A $471-475$ $5.4$ $39.9$ $6$ "       "       0.2       B $376-380$ $7.0$ $27.7$ $41/2$ "       "       0.4       B $371-375$ $7.1$ $24.7$ $41/2$ "       "       0.4       B $371-375$ $7.1$ $24.7$ $41/2$ "       "       0.4       B $371-375$ $7.1$ $24.7$ $41/2$ "       "       0.4       B $321-325$ $6.7$ $33.2$ $31/2$ "       "       "       A $356-360$ $5.3$ $32.5$ $33/4$ "       "       "       B $721-725$ $5.2$ $26.9$ $4$ "       "       0.2       "
""""       "A $456-460$ $6.0$ $30.3$ $41/2$ "0.7 $0.0$ B $381-385$ $7.4$ $23.5$ $51/2$ """       "A $471-475$ $5.4$ $39.9$ $6$ """       0.2       B $376-380$ $7.0$ $27.7$ $41/2$ """       "A $466-470$ $7.4$ $35.6$ $51/2$ """"       A $461-465$ $5.7$ $35.4$ $43/4$ 1.10 $0.3$ $0.0$ B $321-325$ $6.7$ $33.2$ $31/2$ """"       ""       A $356-360$ $5.3$ $32.5$ $33/4$ """"       ""       B $721-725$ $5.2$ $26.9$ $4$ """"       ""       A $361-365$ $5.9$ $29.3$ $4$
" $0.7$ $0.0$ B $381-385$ $7.4$ $23.5$ $51/2$ "       "       A $471-475$ $5.4$ $39.9$ $6$ "       " $0.2$ B $376-380$ $7.0$ $27.7$ $41/2$ "       "       "       A $466-470$ $7.4$ $35.6$ $51/2$ "       "       "       A $466-470$ $7.4$ $35.6$ $51/2$ "       "       A $466-470$ $7.4$ $35.6$ $51/2$ "       "       0.4       B $371-375$ $7.1$ $24.7$ $41/2$ "       "       A $461-465$ $5.7$ $35.4$ $43/4$ 1.10 $0.3$ $0.0$ B $321-325$ $6.7$ $33.2$ $31/2$ "       "       "       A $356-360$ $5.3$ $32.5$ $33/4$ "       "       "       B $721-725$ $5.2$ $26.9$ $4$ "       "       B $721-720$ $5.3$ $2$
"""       A $471-475$ $5.4$ $39.9$ $6$ """       0.2       B $376-380$ $7.0$ $27.7$ $41/2$ """       A $466-470$ $7.4$ $35.6$ $51/2$ """       A $466-470$ $7.4$ $35.6$ $51/2$ """       0.4       B $371-375$ $7.1$ $24.7$ $41/2$ """"       A $461-465$ $5.7$ $35.4$ $43/4$ 1.10       0.3       0.0       B $321-325$ $6.7$ $33.2$ $31/2$ """"       "       A $461-465$ $5.3$ $32.5$ $33/4$ """"       "       A $356-360$ $5.3$ $32.5$ $33/4$ """"       "       B $721-725$ $5.2$ $26.9$ $4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       A $361-365$ $5.9$ $29.3$ $4$ """"
"""       0.2       B $376-380$ 7.0 $27.7$ $4 1/2$ """       A $466-470$ 7.4 $35.6$ $5 1/2$ """       0.4       B $371-375$ $7.1$ $24.7$ $4 1/2$ """       A $461-465$ $5.7$ $35.4$ $4 3/4$ 1.10       0.3       0.0       B $321-325$ $6.7$ $33.2$ $3 1/2$ """"       "       A $461-465$ $5.7$ $35.4$ $4 3/4$ 1.10       0.3       0.0       B $321-325$ $6.7$ $33.2$ $3 1/2$ """"       "       A $356-360$ $5.3$ $32.5$ $3 3/4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       A $361-365$ $5.9$ $29.3$ $4$ """"       E $716-720$ $4.5$ $52.1$ $3 1/2$ """"       A $366-370$ $6.2$ $26.2$ $4$
"""       "A $466-470$ 7.4 $35.6$ $51/2$ """       0.4       B $371-375$ 7.1 $24.7$ $41/2$ """"       "A $466-470$ 7.4 $35.6$ $51/2$ """       0.4       B $371-375$ 7.1 $24.7$ $41/2$ """"       "A $461-465$ $5.7$ $35.4$ $43/4$ 1.10       0.3       0.0       B $321-325$ $6.7$ $33.2$ $31/2$ """"       ""       A $356-360$ $5.3$ $32.5$ $33/4$ """"       ""       B $721-725$ $5.2$ $26.9$ $4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       B $716-720$ $5.3$ $25.8$ $3$ """"       """       E $716-720$ $4.5$ $52.1$ $31/2$ """"       """"       A $366-370$ $6.2$ $26.2$ $4$
"       "       0.4       B $371-375$ 7.1 $24.7$ $4$ $1/2$ "       "       "       A $461-465$ $5.7$ $35.4$ $4$ $3/4$ 1.10       0.3       0.0       B $321-325$ $6.7$ $33.2$ $3$ $1/2$ "       "       "       A $356-360$ $5.3$ $32.5$ $3$ $3/4$ "       "       "       A $356-360$ $5.3$ $32.5$ $3$ $3/4$ "       "       "       B $721-725$ $5.2$ $26.9$ $4$ "       "       B $721-725$ $5.2$ $26.9$ $4$ "       "       B $721-725$ $5.2$ $26.9$ $4$ "       "       B $721-725$ $5.2$ $26.9$ $4$ "       "       B $721-720$ $4.5$ $52.1$ $3$ "       "       B $716-720$ $4.5$ $52.1$ $3$ $1/2$ "       "       D.4 <th< td=""></th<>
"       " $A$ $A61-465$ $5.7$ $35.4$ $43/4$ 1.10       0.3       0.0       B $321-325$ $6.7$ $33.2$ $31/2$ "       "       "       A $356-360$ $5.3$ $32.5$ $33/4$ "       "       "       B $721-725$ $5.2$ $26.9$ $4$ "       "       0.2       " $316-320$ $5.3$ $25.8$ $3$ "       "       "       A $361-365$ $5.9$ $29.3$ $4$ "       "       "       B $716-720$ $4.5$ $52.1$ $31/2$ "       "       0.4       " $311-315$ $8.2$ $40.2$ $3$ "       "       A $366-370$ $6.2$ $26.2$ $4$
1.10 $0.3$ $0.0$ $B$ $321-325$ $6.7$ $33.2$ $31/2$ """"       "A $356-360$ $5.3$ $32.5$ $33/4$ """"       "B $721-725$ $5.2$ $26.9$ $4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """"       A $361-365$ $5.9$ $29.3$ $4$ """"       ""       A $361-365$ $5.9$ $29.3$ $4$ """"       ""       B $716-720$ $4.5$ $52.1$ $31/2$ """"       0.4       " $311-315$ $8.2$ $40.2$ $3$ """"       ""       A $366-370$ $6.2$ $26.2$ $4$
1.10       0.3       0.0       B       321-325       6.7       33.2       3 1/2         "       "       "       A       356-360       5.3       32.5       3 3/4         "       "       "       B       721-725       5.2       26.9       4         "       "       0.2       "       316-320       5.3       25.8       3         "       "       "       A       361-365       5.9       29.3       4         "       "       "       D       716-720       4.5       52.1       3 1/2         "       "       0.4       "       311-315       8.2       40.2       3         "       "       A       366-370       6.2       26.2       4
"""       A $356-360$ $5.3$ $32.5$ $33/4$ """"       B $721-725$ $5.2$ $26.9$ $4$ """       0.2       " $316-320$ $5.3$ $25.8$ $3$ """       A $361-365$ $5.9$ $29.3$ $4$ """       E $716-720$ $4.5$ $52.1$ $31/2$ """"       D $311-315$ $8.2$ $40.2$ $3$ """       A $366-370$ $6.2$ $26.2$ $4$
""""       "B $721-725$ $5.2$ $26.9$ $4$ """       0.2       "316-320 $5.3$ $25.8$ $3$ """"       A $361-365$ $5.9$ $29.3$ $4$ """"       E $716-720$ $4.5$ $52.1$ $31/2$ """"       0.4       "311-315 $8.2$ $40.2$ $3$ """"       A $366-370$ $6.2$ $26.2$ $4$
""       0.2       " $316-320$ 5.3       25.8       3         ""       " $A$ 361-365       5.9       29.3       4         ""       " $B$ 716-720       4.5       52.1       3 $1/2$ ""       " $B$ 716-720       4.5       52.1       3 $1/2$ ""       " $A$ 366-370 $6.2$ 26.2       4
"       "       A $361-365$ $5.9$ $29.3$ $4$ "       "       " $B$ $716-720$ $4.5$ $52.1$ $31/2$ "       " $0.4$ " $311-315$ $8.2$ $40.2$ $3$ "       " $0.4$ " $311-315$ $8.2$ $40.2$ $3$ "       "       " $A$ $366-370$ $6.2$ $26.2$ $4$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
" " A 366–370 6.2 26.2 4
" " " B 711–715 4.7 53.0 2.1/2
" " " B 726-730 5.6 39 0 4 1/2
" $0.2$ " $331-335$ $4.4$ $29.2$ 3
" " A 346-350 6.1 35.0 A
"""B 731-735 5.4 22.3 4
" " 0.4 " 326-330 6.4 /0.1 3
" " A 341–345 5.2 48 9 4
" " " B 736-740 5.0 33.7 51/2

1.12

B15.
## PILOTED SIMULATION RUN LISTING Cont.

ľ

E

ľ

2 :

ź

1

1.

Ì 1

11

-

ļ

17

SEA STATE 6 HUD3 ATTITUDE COMMAND SYSTEM

T/W _{max}	τeng	Zw	Pilot	Run No.s	T.D.vel	Flight Time	P.R.
1.01	0.3	0.0	В	1051-1055	8.7	36.9	8
	**	0.2	11	1046-1050	5.7	30.0	7 .
. 11	11	0.4	11	1041-1045	6.6	29.6	6
	0.7	0.0	11	1056-1060	6.3	25.3	8
1 <b>11</b>		0.2	11	1061-1065	5.9	35.3	6 1/2
11	11	0.4	11	1066-1070	6.9	39.6	6
1.05	0.3	0.0	11	1026-1030	9.5	24.8	8 .
11		0.2	11	1031-1035	7.5	29.6	6 1/2
11	+1	0.4	11	1036-1040	4.8	35.9	5 1/2
11 -	0.7	0.0	11	1021-1025	8.7	27.9	8
11	11	0.2	11	1016-1020	9.9	22.2	7 .
анаран <mark>н</mark> ан ал		0.4	11	1011-1015	6.3	27.3	6
1.10	0.3	0.0	11	1081-1085	5.0	33.4	5
	j <b>H</b> .	0.2	11	1076-1080	6.8	34.8	5
**	• •	0.0	11	1071-1075	5.4	49.2	4 1/2
**	0.7	0.0	11	996-1000	7.3	23.0	7 1/2
11		0.2	11	1001-1005	6.7	31.6	6 1/2
H	11	0.4		1006-1010	6.7	29.0	6

## ABSTRACT

The problem of determining the vertical axis control requirements for landing a VTOL aircraft on a moving ship deck in various sea states is examined. Both a fixed-base piloted simulation and a non-piloted simulation were used to determine the landing performance as influenced by thrust-to-weight ratio, vertical damping, and engine lags.

The piloted simulation was run using a fixed-base simulator at N.A.S.A. Ames Research Center. Simplified versions of an existing AV-8A Harrier model and an existing head-up display format were used. The ship model used was that of a DD963 class destroyer.

Simplified linear models of the pilot, aircraft, ship motion, and ship air-wake turbulence were developed for the non-piloted simulation. A unique aspect of the non-piloted simulation was the development of a model of the piloting strategy used for shipboard landing. This model was refined during the piloted simulation until it provided a reasonably good representation of observed pilot behavior. Further refinement could lead to a model suitable for prediction of landing performance of VTOL aircraft on ships and as the basis of control logic for automatic landing.

A surprising result of this simulation was that, with a good station keeping control system and with statistical ship motion displayed on the head-up display, pilots could consistently perform safe landings in sea state 6, with handling qualities that were adequate at thrust-to-weight ratios greater than 1.03 and even

1

marginally adequate down to thrust-to-weight ratios of 1.01. These results should hold quite generally provided that a thrust-to-weight ratio of  $1 + \Delta$  is interpreted as meaning that the pilot always has the capability of accelerating the aircraft at  $\Delta g$  upward even in the presence of ground effect and hot gas reingestion.

11

No.



## **End of Document**