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1.0

INTRODUCTION

This report documents the engine «cycle simulation and
detailed thermal analysis for two operating points of the
Single Cylinder Test Engine. Both the c¢ycle simulation code
and the detailed heat transfer model are correlated to test
measurements. Basically, the analytical models are calibrated
using the test data for one operating point. The input
parameters are then changed to correspond to the second
operating point, and the new analytical results are then
compared to the test data fcr this second operating point.
The two operating points will be referred to as "Run 659" and

"Run 668", respectively.

The engine is an air-cooled, direct 1injection diesel
operating on a loop-scavenged, two-stroke cycle. The basic
engine geometry is summarized in Table 1. Figure 1 shows the
layout of the c¢ylinder, head insert and outer manifold ring.
The intake air is piped to two openings in the manifold ring,
each of which feeds three of the six intake ports. A third
opening 1in the manifold ring receives the gases from the
three exhaust ports. The exhaust gases are piped to a plenum
designed to create the back pressure that would be caused by
an exhaust turbine. A thin shroud covers the cooling fins, so
that the cooling air flow can be controlled and monitored. In

order to minimize temperature differences across the diameter



of the cylinder, cooling oil is circulated around the exhaust

ports through a passage in the c¢ylinder wall.

The cycle analysis 1is carried out using the Benson cycle
simulation code developed at the University of Manchester

Institute of Science and Technology (UMIST).

The detailed heat transfer analysis is carried out using an

ANSYS three-dimensional finite element model.



2.0

ENCINE CYCLE SIMULATION

The Benson code consists of a flow model, a combustion model,
and an associated heat transfer model. Heat is added to the
cylinder in accordance with the specified fuel burned
schedule, Heat transfer to the walls of the combustion
chamber 1is represented by the Annand correlation. The flow
model includes the air pipes leading from the int:ke plenum,
the ports with measured flow <coefficient wvalues, the
cylinder, and the exhaust piping extending to the exhaust

plenum.

The key engine operating variables represented in the Benson
code are separated into various ca egories of input para-
meters, output parameters and calibration parameters as shown

by the following outline:

Geometric Inputs

Bore, Stroke, Connecting Rod Length
Port Widths, FJrt Timing
Compression Ratio

Intake and Exhaust Piping

Inputs from Test Datca

Engine Speed
Supercharge Temperature and Pressure

Fuel Flow



Fuel Calorific Value
Fuel Burned Schedule

Instantaneous Port Flow Coefficients

Heat Loss Inputs

Annand Correlation Constants

Ssurface Areas and Temperatures for , Piston,
Cylinder

Qutput Parameters (for comparison to test data)

Engine Power Output

Indicated Specific Fuel Consumption (ISFC)
Air Flow

Exhaust Temperature

Cylinder Pressure

Heat Loss

Calibration Parameters

Annand Constants (adjusted to match measured heat loss)
Back Pressure (adjusted to match measured air flow)
Charge Purity

Ratio of Specific Heats for Intake Air (Yc)

Ratio of Specific Heats for Exhaust Gases (Ye)



The key output parameters were not found to be sensitive to
small variations in charge purity or specific heat ratios.
For all runs subsequent to the seasitivity study, N orae
purity is assigned a value of 0.8, and the cggecific heat
ratios are assigned the values: Yo = 1.390, and Te = 1.290.
Because the modeling of the exhaust system differs freom ' .o
actual test set up in certain respects, the back pressure is
adjusted in the «cycle simulation 1in order to match the
measure-. air flow. A5 shown in Tables 6 and 7, a reasonably
good correlation with the test data was obtained for both air
flow and the pressure ratio across the engine (intake/ex-

haust) .,

In the Benson code, the instantaneous rate of heat transfer
from the gas to the surface of the combustion chamber |is

represented by the Annand correlation:

~ a2 K b m_ 4 4
q a3 (Re) (T Tw) + c(T Ty )

where,

g = heat transfer rate, XW
k = thermal conductivity of fluid, KW/M-°K
D = cylinder bore, M

Re

Reynolds Number = oVD/u

o = density of fluiu, KGM/M3



V = mean piston speed, M/SEC

u = dynamic viscosity of fluid, KGM/M-SEC

-3
]

gas temperature, remote from wall, °K
T = surface temperature, °K
a,b = Annznd coefficients for convective term

¢ = Annand coefficient for radiative term, KW/M2 - °K4

The Annand coefficients a and b are constant for the entire
cycle. The radiative coefficient, ¢, 1is constant for the
combustion and expansion stages, and is set equal to zero for

the compression stroke.

Based on previous studies on two-stroke engines, the initial

values for the Annand coefficients were:

0.400

[J]
]

o
1]

0.700

0.3278-10, kW/mM% —ok?

Q
n

Only Annand coefficient "a"™ was treated as a calibration
parameter in matching the measured heat loss. The measured
heat loss for Run 659 was matched using a revised value of

0.480 for Annand "a". This value was left unchanged for

Run 668.



The heat loss calculated by the Benscen code is partially a
function of the combustion chamber surface temperature
distribution. Area-averaged constant temperatures are input
for the head, the piston cap, and several zones on the
cylinder bore. The program checks which cylinder zones are
exposed to the gas on a crank-angle-by-crank-angle basis. The
surface temperatures must be guecsed for the 1initial few
runs. The Annand contstant "a"™ is adjusted wuntil the
calculated heat loss matches the measured heat loss. The
results of the cycle simulation are then used to derive the
cycle-average boundary conditions for the detailsed ANSYS
finite element heat transfer model. The finite element model
is then run in order to determine the detailed temperature
distribution, which is then compared to the measured data. If
necessary, some of the heat sink boundary conditions, such as
the cooling air heat transfer coefficient, are adjusted to
achieve better correlation. The heat loss predicted by the
ANSYS model 1is then compared to the measured value. The
area-average surface temperatures are also compared to those
used 1n the latest cycle simulation. If the values do not
Tompare satisfactorily, the surface temperarurss used 1n the
Benson code cycle analysis are updated, the Annand constan-s
"a” 1is readjusted, and the entire process is repeated uncil

satisfactory agreement of both models and test data is



achieved, In this process, the heat losses to specific heat
sirks predicted by the ANSYS model are also compared to test

data.

The key output parameters of the c¢ycle simulation are
compared to measured data for the calibration run (Run 639)
in Table 6. The correlation is judged to be satisfactory for
all parameters except peak cylinder pressure, which is found
tc be cver-predicted by 27.4 percent. (A somewhat better
correlation is found on Run 668, where tle peak pressure 1is
over-predicted by 9.1 percent.) Assuming the méasu:ed value
is correct, the calculated pressure may reflect an over-pre-
diction of trapped mass by the Benson code. The over-predic-
tion of trapped mass could be caused by inaccuracies 1in
modeling the exhaust system, including the effect of delayed
port closing due to the top ring land clearance. Another
possible cause would be that the fuel burned schedule (also

experimental) overpredicts the burn rate near TDC.

The key Benson code output parameters are compared ¢to
measured data for Run 668 in Table 7. The Run 668 daza are
used to test the model calibration performed for Run 439.
Therefore, only one iteration is run with no adjustment of
Annand ccnstants to match measured heat loss. As shown 1n

Table 7, the Benson code predicts a slight increase 1in heact



loss and exhaust temperature, whereas the measured data show
a larger increase in exhaust temperature and a very large
reduction in heat loss. Hence, based on the test data, the
Annand constants have not been successfully correlated.
However, the reduction in experimental heat loss 1s suspecs
for the following reasons: (1) a drastic drop in the absolute
rate of heat loss as the result of changing to an operating
point with higher engine speed, fuel flow and power output 1is
not consistent with general operating experience; (2} a large
drop 1n the heat deposited in the combustion chamber should
lead to a drop in measured heat 1loss through the cooling
fins; however, there is essentially no measured change in the

rate of heat removal by the cooliing air.

As previously discussed, the modeling of the exhaust svsten
differs from the actual test setup in certain respects. A
number of different time-average "exhaust temperatures" are
found as a function of location in the exhaust piping portion
of the Benson model. Therefore, it was decided that the
calculated exhaust termgperatures as prnsented in Tables 6 and
7 should be derived from an overall energy balance on the
Benson model, The details of the energy balance calculation

are given 1in the Appendix.
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DETAILED THERMAL ANALYSIS

Description of Thermal Model

The detailed finite element thermal mcdel is depicted in
Figures 1 throuch 5. The cvlinder, head insert and manifold
ring are modeled using three-dimensicnal solid ¢’ -Tents
(ANSYS STIF70). The cooling fins are no. directly modeled,
but are represented by effective heat transfer coefficients.
A layer of solid aluminum at the base of the fins is included
in the model, as indicated in Figure 1. As shown in Figure 5,
the piston, piston cap and piston rings are represented by an
axisymmetric model using two-dimensional solid elements
(ANSYS STIFS55). Surface contact resistances, and radiative
and convective heat transfer in the enclosed spaces and
narrow annuli are modeled using convection link elements
(ANSYS STIF34). Convection link elements are also used to
model the thermal communication between the piston and the

cylinder.

Derivation of Thermal Boundary Conditions

The instantaneous gas temperatures ané heat transfer coeffi-
cients produced by the cycle simulation code must be
converted to equivalent steady thermal boundary conditions

for purposes of the finite element analysis. The egquivalent
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steady thermal boundary conditions are referred to as the
*cycle-average temperature,” and the “"cycle-average heat
transfer coefficient.® For a surface which is at all times
during the cycle exposed to the combustion gas, the cycle
average values (T,h) can be calculated from the instantaneous

values (T(¢),h(¢)) by the following relations:

360
P S
h = 360 [ h(s) doe
)
360
f h(s) T(e) do
360h
0
where,
¢ = crank advance (degrees)

For elements of surface area on the cylinder bore, the above
equations must be modified to account for sliding contact
with the piston and/or exposure to crankcase oil on a
crank-angle-by-crank-angle basis. For intervals corresponding
to sliding contact with the piston, h(¢) is equated to zero,
because heat input from the piston is accounted for by other
means (see below). Figures 3 and 4 show the values of h and T

as a function of axial location on the cylinrder bore.
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The heat flowing from the piston and rings to the cylinder
bore is represented by the use of convection link elements,

The governing equation for each convection link is:

g = hA (Ti-Tj)

where,

q = average rate of heat transfer from '1‘i to Tj
h = heat transfer coefficient
A = pyeat transfer surface area

T. = temperature of node on piston where convection
link originates

T. = temperature of node on c¢ylinder bore where
convection link terminates

The heat transfer area for each convection link is computed
from the following relation:

A= ATOT(wl-oz)/IBO

where,

ATcr = Total heat transfer surface area associated
with piston node where link originates

(°1'°2) = Crank angle interval during which the piston
node is thermally linked to the cylinder
node where the link terminates
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The factor (01-02)/180 represents the fraction of cycle time
that the piston node is linked to a particular cylinder node.
The heat transfer coefficient represents the resistance to
heat flow across the oil film between the piston and cylinder
(excluding friccion effects, which are handled separately).

The numerical values used in the model are shown in Figure 5.

Since the head and the piston cap are always exposed to the
gas, their forced convection cycle-average boundary condi-
tions are computed using the relations for T and h given
above, with T(¢) and h(e¢) being provided by the cycle
simulation code. T(¢) and h(e) are shown in Figqures 14, 15,
22 and 23. Values of T(¢) and h(¢) for the intake and exhaust
ports are developed uring a supplementary program which
post-processes the port gas data provided by the Benson code,
The port gas temperatures, mass flow rates .nd average
velocities are shown in Figures 16 through 21, and 24 through
29. The «cycle-average bcecundary conditicns for the head
insert, intake and exhaust ports, and manifold are given in

Table 9.

The total heat load due to piston ring friction is shown for
the two operating points in Table 9. The data represent
experimental values obtained by motoring the engine. The

friction heat load is represented in the model by specified
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heat generation rates at the nodes on the surface of the
piston rings and cylinder bore. In loading the model, the

friction heat is apportioned in the following manner:

Cylinder bore 50%
0il ring 25%
Top ring 12 1/2%
Other rings 12 1/2%

The exhaust port oil cooling is represented in the model as
illustrated in Figures 2A and 2C. The cooling rates, as shown
in Table 9, are derived from measured data. In the final
analytical runs, only 75% of the measured cooling rate was
used, because the full values <consistently caused an
underprediction of measured temperature data near the exhaust
ports. The exact reason for this lack of correlation is not
known. There is a possibility that the cycle average heat
transfer coefficients in the exhaust ports are too low. The
heat transfer coefficients are developed using correlations
for cturbulent high speed flow near the leading edge of a flat
plate. For portions of th: cyle where the ports are partially
open, the heat transfer coefficients for cthe lower port
surfaces are developed from correlations for heat transfer in

the wake region behind a flat plate.
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The effective heat transfer coefficients for the circumferen-
tial cooling fins are given in Table 10. Heat dissipated from

the wall area occupied by the fin is given by:

gq=eh S (Tw-TA)

where,
q = heat flow rate
e = fin efficiency
h = heat transfer coefficient between cooling air and

fin surface
S = total fin surface area
T, = temperature of wall area occupied by fin

TA = temperature of cooling air

Since the fins are spaced one thickness apart, an effective
heat transfer coefficient to represent the fins in the finite

element model can be calculated from the following relation:
heff = e h S/Aw,

with Aw equal to twice the wall area occupied by the fin. The

fin efficiency, e, is calculated by means of the following

relation (Reference 1):
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.. 2 Il(mrl)xl(mrt)-ll(mrt)Kl(mrl)}
mz(rt/r1+l) Io(mrl)xl(mrt)+Il(mrt)K°(mrl)

laJ
]

outer fin radius
r, = inner fin radius

n s JZh/kt

k = thermal conductivity of fin material
t = fin thickness

I ,K_= nth order modified Bessel functions of the first

and second kind, respectively

A supplementary program was developed to calculate the
effective heat transfer coefficients, The actual heat
transfer coefficient, h, is assumed to be counstant for all
the fins. 1Its value was adjusted as part of the overall
iterative process in order to match the measured heat flow
rate to the cooling air. The value used in the final runs is

0.405 Btu/in?~Hr-"F.

Thermal Analysis Results

The overall heat balance for the detailed heat transfer model

is given in Table 8. It is noted that the total friction heat
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load is dissipated by both the piston and the cylinder, with
the piston taking a somewhat larger share. It is also noted
that more than fifty percent of the total heat dissipated by
the piston is caused by ring friction. This is due largely to
the insulatinog effect of the air cavities under the piston

cap, which suppress heat loss from the combustion gases.

The temperature results are presented 1in the form of
color-coded temperature contour plots in Figures 6 - 8 for
Run 659, and Figures 9 - 11 for Run 668. A comparison of
calculated versus measured temperatures 1is presented in
Figures 12 and 13 for Runs 659 and 668 respectively. The
correlation between calculated and measured temperatures is
judged to be generally satisfactory, since almost all of the
calculated temperatures are within the expected range of
accuracy of the thermocouple readings. The largest deviations
occur for the thermocouples located near the interface
between the heat insert and the cylinder. However, the steep
thermal gradients in this area adverseiy affect the accuracy
of the temperature measurements. It is noted that the three
thermocouple readings nearest the manifold on the intake side
of the cylinder dropped significantly for Run 668. This
temperature drop 1is not predicted by the analytical model,
and no physical explanation <could be found other than

experimental error.
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CONCLUSION

The correlation of the cycle simulation results to experi-
mental data is considered to be very good with respect to
indicated power and airflow. The correlations for exhaust
Lemperature and peak cyclinder pressure are not unreasonable,
but do allow some room for improvement in the analytical
model, assuming that the test measurements are correct. The
heat loss was matched with the experimental value on Run 659
by adjusting the heat transfer correlation (Annand correla-
tion). But the correlation did not then predict the drop in
measured heat loss for Run 668. Some inaccuracy in the
experimental heat loss ralues is suspected. Normally, the
absolute rate of heat loss (not the rate of heat loss
expressed as a fraction of fuel energy) is expected to go up
for a higher power operating point. The experimental heat
loss is subject to inaccuracy due to the fact that it is a
relatively small percentage of the total energy, and its
value is indirectly determined by subtracting the exhaust
energy and indicated power output from the total energy.
Finally, a large drop in the heat deposited in the combustion
chamber should lead to a drop in measured heat loss to the
cooling air; however, there is essentially no measured change

in the rate of heat removed by the cooling air for Run 668,
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The measured ri¢.2 of heat removal by the cooling air was
matched within five percent bv the detailed thermal model

for both Runs 659 and 668.

The correlation of calculated temperatures to experimental
data 1is considered to be generally within the range of

experimental error.
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Figure 14 <Cylinder Gas Temperatures
Run 659
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Figure 15 Cylinder Gas Heat Transfer Coefficient
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Figure 16 Intake Port Gas Temperatures
Run 659
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Run 659
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Figure 20 Exhaust Port Mass Flow Rate
Run 659
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Figure 21 Exhaust Port Gas Average Velocity
Run 659
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Figure 22 Cylinéer Gas Temperatures
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Figure 24 Intake Port Gas Temperatures
Run 668
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Figure 25 1Intake Port Mass Flow Rate
Run 668
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Intake Port Gas Average Velocity
Run 668
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Fiqure 27 Exhaust Port Gas Temperatures
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Figure 28 Exhaust Port Mass Flow Rate
Run 668
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Figure 29 Exhaust Port Gas Average Velocity
Run 668

,_//
f
36 72 108 144 180 216 252 288 324 360

Crank Angle {(degrees)



Pressure (psi}

Figure 30 Cylinder Pressure
Benson Code Analysis
Run 659

2000

1800

160¢C

1400

1200

1000

800

600

400

200 %\

4 \
J/
95 131 167 203 239 278 311 347 383 419 455
Crank Angle {degrees}




Pressure (psi)

Figure 31 Cylinder Pressure
Benson Code Analysis

Run 668
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Table 1 Basic Engine Configuration

Engine type Single piston two stroke diescl
Cylinder bore 108 mm

Stroke 110 mm

Connecting rod length 220 mm

Nominal compression ratio 17.85

Height intake ports 31 mm

Height exhaust pocrts 43 mm

Exhaust ports open 85° BBDC (C.A. = 95°)
Exhaust ports close 85° ABDC (C.A. = 265°)
Intake ports open 71° BBDC (C.A. = 109°¢)
Intake ports close 71° ABDC (C.A. = 251°)




Table 2 Summary of SCTE Test Data

Run 659

Parameter {Units) Value
Engine Speed (RPM) 3004.00
Intake Temperature (°F) 222.00
Exhaust Temperature {°F) 957.00
Intake Pressure (In-Hg) 77.10
Exhaust Pressure (In-Hg) 72.00
Air Flow (Lb/Hr) 846.00
Fuel Flow {(Lb/Hr) 20.66
Cooling Air (Lb/Hr) 1403.19
Temp. Cooling Air in (°F) 104.00
Temp. Cooling Air out (°F) 234.00
Port 0il Flow (Lb/Hr) 398.46
Temp. Port 0il in (°F) 178.00
Temp. Port 0il Out (°F) 201.00
IHP 64.14
BHP 46.26
ISFC (Lb/IHP-Hr) 0.322
Peak Cylinder Pressure [(psi) 1550.0
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Table 3 Summary of SCTE Test Data

Run 668

Parameter (Units) vValue
Engine Speed (RPM) 3501.00
Intake Temperature (°F) 215.00
£xhaust Temperature (°F) 1006.00
Intake Pressure (In-Hg) 78.00
Exhaust Pressure (In-Hg) 70.00
Air Flow (Lb/Hr)} 974.48
Fuel Flow (Lb/Hr) 23.62
Cooling Air (Lb/Hr) 1416.06
Temp. Cooling Air in (°F) 108.00
Temp. Cooling Air out (°F) 238.00
Port O1l1 Flow {Lb/Ht) 3g2.31
Temp. Port 0il in (°F) 169.00
Temp. Port 01l out (°F) 197.00
IHP 76.15
BHP 52.34
ISFC (Lb/IHP-Hr) 0.310
Peak Cylinder Pressure (psi) 1750.0




Table 4 SCTE Energy Balance Derived from Test Data

HEAT RATE AS A PERCENT OF FUEL ENERGY

ITEM RUN 659 RUN 668
Crankcase 01l 8.94 7.98
Transducz- 0il 0.23 0.27
Port Cooling 0Qil 1.24 1.26
Cooling Air 1.65 10.28
Exhaust 43.97 47.80
BHP 30.81 30.48
Unaccounted 3.17 1.93

TOTAL 100.00 100.C0

Table 5 Indicated Heat Loss Derived from Test Data

AT RATE AS A PERCENT OF FUEL EYERGY
ITEM RUN 659 RUN 668
IHP 42.72 44.37
Exhaust 43.97 47.80
Heat Loss 13.31 7.83

TOTAL 100.00 100.00
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Table 6 Comparison of Key Engine Parameters
Benson Cycle Code Versus Test Data

Run 659
ITEM BENSON CODE TEST DATA

I8P 67.02 64.14
IS C (LB/IHP~-HR) 0.308 0.322
Airflow (LB/HR} 846.2 846.0
Exhaust Temperatuce (°F;} 921.0 957.0
Peak_cylindet Pressure 1975 1550

{psi)
Heat Loss

(Btu/He) 50910 50872
Pressure Re 1.104 1.07

(Intake/E..~ -
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Table 7 Comparison of Rey Engine Parameters
Benson Cycle Code Versus Test Data

Run 668
ITEM BENSON CODE TEST DATA

IHP 77.60 76.15
ISPC (L“/1BP/Hr) 0.304 0.310
Airflow (Lb/Hr} 959.2 974.48
Exhaust Temperature (°F) 933 1006
Peak Cylinder Pressure

(psi) 1910 1750
Beat Loss

(Btu/Hr) s2174 34218
Pregsure Ratio

(Intake/Exhaust) 1.15 1.11
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Table 8 Heat Balance for Finite Element Model

HEAT RATE (Btu/Hr)

SURFACE OR REGION RUN 659 RUN 668
Head 21446 21450
Cylinge-

(Combustion 20664 22516
Chamber & Gases)
Piston (Cap) 10460 10388
Piston (0il Spray) -22176 -23966
Piston (Ring Friction} 1716 13578
Cylinder (Ring Friction) 8984 10422
Cylinder and Manifolad
(Exhaust Gases) 3058 3372
Cylinder and Manifold 1
(Intake Ports) 1314 1384
Cylinder and Manifold _
(External Environment) >18 330
Cylinder (Cooling Air) -45248 -47302
Cylinder (Splash 0il) -6160 -7200
Cylinder (Exhaust Port
Cooling 0il) 3540 -4112
TITAL 0 0

Note: Negative sign indicates heat flow out of surface.
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Table 9 Forced Convection Boundary Conditions
and Specified Heat Rates

REGION ROUN 659 RUN 663
Head Insert and T = 2230.9 2153.5
Piston Cap (Combustion H=1.620 1.792

Side)

Exhaust Port: Top

Sides T =

Bottom T =

1018; # = 0.510
975; H = 0.400
1020; # = 0.293

1024; 4 = 0.560
989; H = 0.435
1032; H = 0.316

Intake Port: Top

660; H = 0.323

665; H = 0.350

Sides T = 583; H = 0.265 590; & = 0.288
Bottom T = 661; H = 0.187 672: H = 0.200
Manifold: Exhaust T = 856: H = 0.206 872; H = 0.224
Intake T = 438; H = 0.108 4S1; H = 0.120

Piston Ring Friction

20760 Btu/Er

24000 Btu/Hr

Port 0il Cooling

-3554 Btu/Hr

-4130 Btu/Hr

Piston (Crank ase Side) T =

191; H = 4.6

188; H = 5.27

Natural Convection and

Radiation to

External Environment

70; H = 0.018

70; # = 0.018

Note:

T = Bulk Flu.2 Temperature (°F)

H = Heat Transfer Coefficient (Btu/Ini-Hr-°7)




- 66 -

Table 10 Effective Heat Transfer Coefficient

for Circumferential Fins

Fin Pin Effective Heat Transfer Coefficient
Number Efficiency (Btu/In2-Hr-"F)

1 0.334 {(1.0) 6.179 (0.40%)
2 0.331 (1.0) 5.862 (0.405)
3 0.387 (1.0) 5.377 (0.405)
4 0.774 (1.0) 3.514 (0.405)
S 0.719 3.845

6 0.719 3.845

7 6.719 3.845

8 0.719 3.845

9 0.719 3.845

10 0.719 3.845

11 0.719 3.845

12 0.719 3.845

13 0.719 3.845

14 0.710 3.897

15 0.701 3.949

16 0.692 3.998
17 0.683 4.046
18 0.674 4.093
19 0.665 4.133
20 0.656 4.182
21 0.656 4,182

22 0.656 +.182
23 0.656 4 32
24 0.683 4.046
25 0.747 3.679
26 0.811 3.233

27 0.846 2.942

Note: The effect:ve heat transfer coefficient is based on the

actual heat transfer coefficient, the actual fin sur-
face area, the fin efficiency, and a fin spacing of
one thickness. The top four fins were broken off prior
to the test, so the actual heat transfer coefficient
is8 used with an efficiency of 1.0 in the finite element
model for fins 1 through 4. This value is shown in
parentheses. Based on the test data, an average cooling
air temperature of 169°F is used in the model
for Run 659 and Run 668.




- 67 -

Table 1l Free Convection, Radiation and Surface
Contact Heat Transfer Coefficients

HEAT TRANSFER

REGION OR PRIMARY MODE OF COEFFICIENT
INTERFACE HEAT TRANSFER (BTU/IN2-HR-°F)
Enclosed Space
between Cylinder Free Convection 0.011
and Manifold Ring
Head Insert/Cylinder:
Radiation and Conduction
Slots across Air Gap 0.1124
Lands Radiation and Conduction 3.0
across Contact Resistance .
Head Insert/Ring:
Radiation and Conduction
Uppec Land across Air Gap 0.384
Radiation and Conduction
Lower Land across Contact Resistance 3.0
Assumed coupled at
Ring/Cylinder interface due to -
interference fit
Piston Cap/Piston:
Air Cavities Radiation 0.106
Lands Surface Contact 3.0
Shank Portion of Cap Conduction/Radiation in Air 0.093

Gaps




- 68 -

Table 12 Values of Thermal Conductivity Used in
Detailed Heat transfer Model
CONDUCTIVITY
PART MATERIAL (Btu/Hr-In-°F)
Cylinder 1040 Steel 2.25
Fins Cast Aluminum Alloy 7.50
Piston Ductile Iron 2.07
Piston Press in Plug 304ss 1.03
Piston Cap 321ss 0.708
Piston Rings Ductile Iron 2.07
Head Insert 321ss 0.708
Ring Insert ‘4340 Steel 1.81
Manifcld Ring Mild Steel 2.08
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APPENDIX

Benson Code Exhaust Temperature

Calculation by Energy Accounting



1.0
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The following calculations assume 100% energy balance, and

then derive the resulting exhaust temperature.

Benson Code Energy Balance Calculation for Run 659

Fuel Heating Value = 18500 BTU/LB

Fuel Flow = 20.66 LB/HR; Fuel Temperature = 70°F

Intake Air Flow = 846 LB/HR*; Intake Air Temperature=222°F
Heat Loss = 13.32% of Fuel Energy*

IHP = 67.02*

‘Energy Added = (18500 BTU/LB)(20.66 LB/HR) = 382210 BTU/HR

Indicated Power = (67.02 HP)(2545.2 BTU/HP-HR)=170579 BTU/HR
Heat Loss = (0.1332)(382210 BTU/HR) = 50910 BTU/HR
Exhaust = 382210 - 170579 - 50910 = 160721 BTU/HR
TE = Exhaust Temperature
Exhaust = 160721 BTU/HR =

(0.264 BTU/LB-°F)[(846 LB/HR)(TE-222)+20.66 LB/HR)(TE-70)]
TE = 921°F

*Indicates value calculated by Benson Code
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2.0 Benson Code Energy Balance Calculation for Run 668

Fuel Heat Value = 18500 BTU/LB
Fuel Flow = 23,62 LB/HR; Fuel Temperature = 70°F
Intake Air Flow = 959.2 LB/HR*; Intake Air Temperature=215°F
Heat Loss = 11.94% of Fuel Energy
IHP = 77.60*
Energy Added = (18500 BTU/LB)(23.62 LB/HR) = 436970 BTU/HR
Indicated Power = (77.60 HP)(2545.2 BTU/HP-HR)=197507 BTU/HR
Heat Loss = (.1194)(436970 BTU/HR) = 52174 BTU/HR
Exhaust = 436970 - 197507 - 52174 = 187289 BTU/HR
TE = Exhaust Temperature
Exhaust = 187289 BTU/HR =

(0.264 BTU/LB-°F)([(959.2 LB/HR)(TE-215)+(23.62 LB/HR)(TE~70)]
TE = 933°F

*Indicates value calculated by Benson Code
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1.0

INTRODUCTION

This report documents the structural analysis of the Single
Cylinder Test Engine (S.C.T.E.) for tii. operating conditions
represanted by "Run 668" in Reference 1. For purposes of the
stress analysis, the finite element heat transfer model of
Reference 1 is converted to a structural mode' by changing
the thermal continuum elements to structural continuum
elements, and introducing the appropriate structural boundary
conditiong. As indicated in Figure 1, the boundary conditions
include the peak cylinder pressure (1910 psi) as calculated
by the Benson c¢ycle simulation code. The temperature
distribution (nodal temperatures) is obtained from the heat
transfer analysis of Reference 1. The interface between the
head insert and the cylinder is "double-noded"” so that the
mating surfaces may move in and out of contact. The solution
of the contact problem reguires the us< of bilinear contact
elements in an iterative process. As indicated in Figure 2,
the contact elements are defined on nodal circles represent-
ing the 1loads where contact may occur. Each individual
contact element is one-dimensional in that it operates in
either a vertical or a radial sense. The initial as-fabrica-
ted clearance, if any, is included in the formulation of the
contact e.cments. The stresses in the various parts are
caugsed by the interaction, or inter-ference, due to relative

thermal expansion,. the internal temperature gradients, ani
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1.0

INTRODUCTION

This report documents the structural analysis of the Single
Cylinder Test Engine (S.C.T.E.) for the operating conditions
representad by "Run 668" in P .ference 1. For purposes of the
stress analysis, the finite element heat transfer model of
Reference 1 is converted to a structural model by ch:inging
the thermal continuum elements to structural continuum
elements, and introducing the appropriate structural boundary
conditions. As indicated in Figure 1, the boundary conditions
include the peak cylinder pressure (1910 psi) as calculated
by the Benson cycle simulation code., The temperature
distribution (nocdal temperatures) is obtained from the heat
transfer analysic¢ oOf Reference 1. The interface between the
head insert and the cylinder is "doub’'e-noded- so that the
mating surfaces may move in and out of contact. The solution
of the contact problem requires the use of bilinear contact
elements in an iterative process. As indicated in Figure 2,
the contact elements are defined on nodal circles represent-
ing the loads where contact may occur. Each individual
contact element is one-dimensional 1in that it operates 1n
either a vertical or a radial sense. The initial as-fabrica-
ted clearance, if any, is included in the formulation of the
contact elements. The stresses in the sarious parts are
caused by the interaction, or interference, due to relative

thermal expansion,. the internal temperature gradients, and



the applied cylinder pressure. The assembly loads (bolt

preload) are not considered in this analysis.

A structural interaction mzdel, similar to that described
above, is also defined for the piston and piston cap. This

mnodel is depicted in Figure 3.

C- o

- -



2.0

STRUCTURAL MODEL DESCRIPTION

The cylinder, combustion dome insert, insert ring and
manifold ring are modeled using three-dimensional solid
elements (ANSYS STIF45S). The material properties for each
part are shown in Table 1. The cooling fins are represented
by thin shell elements (ANSYS STIF63) with effective material
properties. Contact elements (ANSYS STIF40) are used for the
surface interaction effects. The piston and piston cap are

modeled using axisymmetric solid elements (ANSYS STIF42).

The effective material properties for tne thin shell elements
representing the fins consist of the etfective coefficient of
thermal expansion (uased on the wall temperature), and the
effective elastic modulus (based cn the thickness of the
shell element and the stiffness of the fin). The mean fin
temperature (T) is related to the air temperature (TA)' the
wall temperature (T,). and the fin thermal efficiency (e)

through the following relation:

T=e(Tw-T)+TA

A

The effective coefficient of thermal expansion (ae) is
related to the artual material coefficient of thermal

expansion (e¢) by the following formula:



. e Tw + (l-e) TA - 70
G T @ T, - 70

In the above relation, Ty and e are obtained from Reference
1, and Tw is obtained from the ANSYS temperatures on the wall
outer surface where the thin shell elements are defined. The
radial stiffness of the circumferential fins is calculated
using equations (44) of Reference 2. The effective modulus is
then calculated based upon the thickness of the shell
elements and the fin spacing. This effective modulus is
specified 1n the circumferential sense only. The shell

elements are given a negligibly low modulus in the meridional

direction. The Poisson's ratio is assigned a value of zero.

The surface contact elements are assigned 1initial gaps
representing the as-manufactured clearances between the head
insert and the cylinder. The 1initial gap sizes (from

Reference 3) are as follows:

Vertical clearance between lands on 0.001 in.
head insert upper surface and cylind-

er.

Diametral clearance between head in- 0.025 in.
sert upper land and ring insert upper

land.

Diametral clearance betweean head in- 0.010 in.

sert lower land and ring insert lower
land.



3.0

STRUCTURAL ANALYSIS RESULTS

Stress distributions for the cylinder and head insert are
obtained for two loading conditions. The first loading
condition represents the effects of the peak cylinder
pressure, the temperature distributions of "Run 668", and the
head insert-cylinder interaction. The second load case
represents a "free thermal®” condition. The stresses for the
second case are caused by thermal gradients only, and do not
include the effects of interaction (interference) due to
relative thermal expansion of mating parts. The second load

case is run for comparative purposes only.

The stress results are summarized in the form of color-coded
stress contour plots (Figqures 4 through 12). The von Mises
effective stress distribution is shown for the cylinder,
insert ring, combustion dome insert and manifold ring in
Figures 4, 5 and 6. Comparison of these results with the free
thermal stresses, as shown in Figures 8 and 9, reveals that
the total stresses are largely associated with temperature
gradients. The thermal stresses in the combustion dome insert
are particularly high due to large temperature differences
through the thickness. In addition, a strong radial interac-
tion occurs between the head insert and the insert ring on
their lower land surfaces. The effect of this interaction on

the stresses can be seen hy comparing Figures 7 and 10. As



shown in PFigqure 10, the thermal gradients cause a free
thermal compressive stress of about -160 ksi near the top of
the combustion dome. As shown in Figure 7, the interaction
with the insert ring increases the compressive stresses over
the entire inside surface of the head, the largest value

being -232 ksi near the lower inside edge of the dome.

The head-insert ring interaction analysis shows that there is
a radial interaction cn the lower land, but not on the upper
land, except at the extreme upper corner. This contact status
is consistent with the modeling assumptions of the heat
transfer analysis of Reference 1. Reference 1 assured an air
gap on the upper land, and used a contact resistance on the
lower land. In the vertical sense, only the inner two rings
of contact elements on the head upper surface are closed.
This contact status is also basically consistent with the
therm2] analysis of Reference 1, because contact on the outer
rings could occur only on the surfaces of the very narrow
lands between the slots cut in the top of the head insert.
Bolt clamp-up could bring these outer lands into contact with
the cylinder:; however, bolt preload is not considered in the

current analysis.

The piston and piston cap 3tresses are shown in Figures 11
and 12. The largest stresses occur in the outer land of the
piston cap. As shown by Figure 12, these stresses are caused

by hoop tension due to the fact that the outer land is



relatively cold. The shank portion of the piston cap is also
relatively cold; however in this region, the tensile stresses
are partially relieved by the contact interaction between the
cap shank and piston. The interaction analysis shows that all
radially acting gap elements are closed on the cap shank. In
the vertical sense, only the gap elements on the outer land
are closed. Preload introduced by tightening of the retaining
nut may keep the inner load in contact: however, this effect

is not considered in the current analysis.



4.0

PISTON RING TEMPERATURE DISTRIBUTIONS

The temperature distributions in the piston rings are shown
in Figures 13 and 14 for "RUN 668" and "RUN 659" respective-
ly. The temperatures, as shown on each ring cross-section, do
not vary around the circumference because they are modeled
using axisymmetric elements. It is noted that the relative
temperatures of the five rings are a strung function of the
ring friction heat generation apportionment as given in

Reference 1.



S.o

CONCLUSION

A three-dimensional finite element stress analysis of the
Single Cylinder Test Engine has been performed €for i-he
pressure and temperature loadings of "Run 668" in Reference
l. The analysis shows that the highest stresses occur in the
head insert and the piston cap, and that these stresses are
largely associated with thermal gradients. Significant
amounts of plasticity and creep relaxation can be expected in
these two parts. A strong radial interference loading occurs
on the lower land of the head insert, which could be
eliminated by increasing the clearance between the head and
the ring insert. The analysis shows that stresses in the
deformation sensitive portion of the cylinder (below the
insert ring) are generally less than 16000 psi. Since the
temperatures in this region of the cylinder are less than

700 °F, plasticity and creep effects will not be important.
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Table 1 Material Property Values Used in Structural Models

COEFFICIENT

ELASTIC OF THERMAL
MODULUS EXPANSION

PART MATERIAL (psi) (IN/IN-°F)
Cylinder 1040 Steel 29000000 0.0000083
Fins Cast Aluminum Alloy 10300000 0.0000130
Piston Ductile Iron 17000000 0.0000058
Piston Press in Plug 304ss 22500000 0.0000090
Piston Cap 321ss 28000000 0.0000093
Piston Rings Ducti.e Iron 17000000 0.0000058
Head insert 321ss 28000000 0.0000093
Ring Insert 4340 Steel 29000000 0.0000081
Manifold Ring Mild Steel 29000000 0.0Q000075

Note: All materials are assumed to have a Poisson's ratio

of 0.3




Figure 1 Aircraft Diesel Single Cylinder Test Engine
Cylinder, Head, Manifold Ring Assembly
Three-Dimensional Structural Finite Element Model
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Figure 3 Piston - Piston Cap Structural Model

Peak Cylinder Pressure
{1910 psi)

Compression only
Contact elements between
piston and cap

|

Piston Cap
1321 Srainless ™™
Steel)

MV N 0
wwmwmm %
KRB ANy b god
R I R e »ﬁ"‘“ﬂﬂw"w*ﬂ

Press-In Plug
{304 Stainlegs =i
Steel

PR R 1
Tioh 5k 4

} Piston
{
i

e i

{puctile lron)

Axis ot Revolution for Axisymmetric Modsel

£



. INSERT

RN

5
3

-
«:
=
x
&l
-
o
@l
x
=
i
“
Ll
x
S
e
<<
&
-y

CYLIND' R
EFFE

-
*

FIGURE 4

CTIVE BTRESS (psi)

B2

a/25/83
1761
PLOT NO.

POSTI

ANSYS
AUTO SCALING

STRESS PLOT
HIDDEN
MX=89946

STEP=1
ITER=1
MN=210
8000
9R000

CYLINDER STRESS HUN 664




8616

PLOTNO. 8
POSTI

sooo PN | ]ssnoo
ad000 EXI
sooon [}

ITER=
STRESS PLOT
SIGE

MIDDLE

AUTO SCALING
DisT=6756
YFP=-— (0883
ANGL=70
HIDDEN
MX=B0048

a/25/83
STEP=1

ANSYS

T

|
|
Z
|
1
|
|
?

RMAL

EFFECTIVE STRESS (psi)

Bt
a1 Ensubug
AL TRty
Sy

»:
T

.
g A 555 Yo
B e o ot

KUN 6608

55

o
*

PEAK PRESSURE ¢ THE

CYLINDER

&
*:

YLINDER STRE

{

FICHRE 5




000 27 YT
oosz1zl___1
avovoz[
oosesi ]

0U0GLI
005701
0U0US !
005261
000621
00211
000001
00528

00062

00920

0000
GEEN 005.€
() ooose
L6881 =NK
£0¥812=XN
NAqaIH
08="TONV
9 6=d2
296 =4X
£2'2=1510
Z-=AZ
1-=AX
DNIIVOS 04NV

anis
LUId SBINLS
1 =MaUl
1=dals
1180d
£ ON L0d
L290°
ce/se/9
SASNY

N

L

Y

4,
f"!

7 L ]
|

099 NI SSAMES aVall

| ek o .,v.i&;m».ww%mw:,!; VO b0k R SRR Ay T
ﬂs&./.gvﬁuﬁ i, G S il ai% LB B asy o £ .} S
o Ay X ey X o
hnt;nm.%&f

N I A A A g

RN
s e

.,45 35

2
\

SeessRREaRRRRRET .,
NNy,
i immwwmwmﬁbap-Lliszanmmmmmeuu

e
o

Fadal i,
NREEEEERRER.

o o

L gt

—
oy
VLA

)

(15d) SSHELS HALLD3443
TYWNAHL + JUNSSAND Avad
LHASNI avaAH (9 ANNOILA

pUBR b ¢

|
|




2

g
g
O

10000 { 1 1 i 000
15000 f:} [ ] 75000
gonoo [ 1 EMsooco

8
a
o
D
o«

DIST=6.82
XF=107

2F=8.08
ANGL=B0

HIDDEN

2
w
-4
-

5000 HER [ jssooo

AUTO SCALING

STRESS PLOT
XVe-—1

MX=78801
MN=202

POSTI

STEP=|
ITER=1
V=-2

— bod ”m
. 20 N O e
ine I"l“#ﬁﬁﬁﬂ“ﬁn

tﬂﬂhﬁﬂl!“‘ﬂﬂlnw ﬂ‘ﬂuﬂﬂ&nﬂ*
8 AT O 0 0 YR RV R et RS WA ... V0 O U S 0 0
.40 0 AR u”unnnmm P S e i R e

C INRERBREREREREY,
intﬂnﬁtﬁﬁlﬁﬂt ,g‘gl
¢ S LR S R R b ll
ﬁlﬂﬁll)ﬂﬂlmh #
5 .00 0 09 O 5 8 0 U9 5 6
ﬂ»»ﬁniuuuum'mm
MR 1L S EREER
Mol dild s.ll bl
N b B i

i
34
F

ﬁﬂﬂ”‘gi"
IUN G6l

[

muﬁmunll"
x!*#—!ﬂ'?

S THERMAL,

FHEE

R

o
*

CYLINDE
55

%
%

FREE THERMAL
EFFECTIVE STRESS (psai)

%
*

CYLINDER ST

FIGURE 8:

*RECEDING PAGE BLANK NOT FILMED




UGl
000041
0ugLEl
0005l
oosail
000001
0058
0005
00529
00009
oooooc e (] oosie
ovgegt [T [] ooose

oovszt ] HHME vYosel
ErgS=NN

2E90681=XN
N3aa
06="TONV
g 6-42
€96 =4X

£2 ¢=4514
¢ —=AZ

f-=AX

ON[IVO8 olny

HuY Nl TVINNEILL daid

SEEMLS aval

4018

4071d BBaYLS

I=43L

1=dals

1180d

£ ON Wd
0862
£8/s2/9
SASNY

(1.9) SSAULS FALLS w349
TYWITAHL 3382
LYASNT UvaH

P e

6 AHNOI4

A T G i o s o 5 44 B A OO e et 1008 1 o v




L 0
B 005e1 -
ES3 ovvse -
[ ] oosee
3 0000S-
Sl oosen-
[} 000%s-
== 0048~
. 000001 -
[ jo09211~
oocccEmss [ joooser-
ooosz[] (1909461

00szt{ 1 N 000051~
119861 - =NW

2EGIE=XN
NAGaIH
06="TONV

Yo' 6=d7

296 ~dX

g e=I810

¢ ~=AZ
1-=AX
DNTIVOS 0Ny

£0IS
101d S53ULS
1=43Ll
1=ddis
1180d
Z ON Wod
8£02°
£8/92, 48
SASNV

499 N VAN dand

o L

(15d) SSINULS TYLIONINd HALLYOAN WOWINIW
TYWHIHL 3334
LHISNI aVaH

S5AMLE Vil

T01 A¥NOI1d

s




09U NOM  SSLLS AV NOISKE  NOLSH
000061 : f T J '

i
OnooY |
000081 . A
000021 .
60001 §
000001
00008
00008
0000
00009
00009
0000¥
0000€
00002
00001
k-
maamwuw” _L189) SSAULS IA1LOA43
IVHHIHL + JUNSSANd Avad
LL'2=4A d¥) NOLSId - NOLSId 11 3
90 1=dX
S0 £=1814
1=AZ
DNIIVOS 04NV

"
W T
-

. e 1 S PO R
1 P

01
L0ld 88448
9=Hall
1=43i8
1180d
£ ON 101
0rg12t
se/01/y
SASNY




. |
999 NN¥ - SSIILS VO NOLSE - NOJSH -

1l X

=2l D000ul L x A A M
[ 1 oosel 0 A w

[} voosal ]
00521l
700001
00648
00052
00529
00008
005LE
00052
00921
0
[ ousgi-
9652 =NN
Y9I PI=XN
LL'T=dA
901 =dX
50 £=1510
1=A2
ONIIVOS 04NV

(15d) sS3YLS
IVdIONINd FALLISOd WNWIXVH
TYWNAHL + AUNSSIUD AV
d¥D NOLSId - NOLSId gl d8no1d

0 B R
T

1018

101d S83ULS

g=4All

1=4318

1is0d A

i ONJLOId -
0496021
sp/01/y
SASNY

oy s
B2 95T L., S0 W
S

EEREENuES
2u
¥
¥
Bl e
e S0 20 . Yok W

S L T i

+ 1§ . W SRR W
W

};.: # -”t-‘”ﬁ T

¥

4 g
waih

sa¢
#,
1,

uagEy

paEL"

¥
4
Rar
T
1
f178
EPB
EEih Y
BREN..

R s e S S
i i g9 S o o AR SO RS A S A




vV 439 N
-

GaL

0oL

G449

sy

LA

008

I TAY

08%

$2%

009

GLY

0g¥

Ser

0o¥

SLE

0986
LeE=NR
6oL=XNK
01=4A
gl=dX
S =48I0
=42
DNFIVOS Hdsn

dnal
LU1d B534LS
1=H3L
{=dAlS
1180d
‘ON L01d
oLy 11
se/1i/y

: (ONIY 401)
SASNV | oNIN

899 NN L
{do) SIUNLVHALWIL ONIN NOLSId €1 980014




GL9
069
G2y
ﬁam i i ' 5 3
GLG i o . Ve dunan
05q . | " s
Gzg : y
00s
oL¥
oSy
G2
00¥
GLE
0se
g2E
22E=NI
299=XN
0l=d4
01=dX
§'=is10
1=AZ
HNTIYOS HASn

dNAL
1014 SE3ULS
1=Hall
1=dais
1480d

ON 1014
$221 01
se/iL/y

s {ON1d doL)
SASNV 1 Ny

659 ND¥
(do ) SHUNLVHIIWIL ONIY¥ NOLSId %1 340014




APPENDTIZX III

SECOND GENERATION SINGLE CYLINDER TEST ENGINE
PARTS LISTS
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1.

2.
3.

5.
6.
7.
8.
9.
10.
11.
12.
13,
14.
15.
16.
17.

APPENDIX II1

SECOND GENERATION SINGLE CYLINDER TEST ENGINE

PARTS LIST (INSULATED VERSION)

AIRCRAFT DIESEL ASSEMBLY SINGLE
CYLINDER TEST

INJECTOR NOZZLE & HOLDER ASSEMBLY
CYLINDER HEAD

CYLINDER BARREL

CYLINDER LINER

PLATE, ENGINE TOP DECK
INSERT, CYLINDER HEAD
PISTON CAP
INSULATIVE DISC, CYLINDER HEAD
INSULATION RING, CYLINDER HEAD
INSULATION DISC, PISTON CAP
NUT, INJECTOR NOZZLE HOLDER
PLATE, INJECTOR NOZZLE HOLD DOWN
COMFORMABLE SHIM, PISTON CAP

NUT, 12 POINT 3/8-24 (24 REQUIRED)
GASKET, CYLINDER HEAD

LINER ALIGNMENT TO CYL.

PIN, BARREL

ALSO USED ON

*B

*F

*C

*C

*D

*C

*A

*D

COOLED

DWG._SIZE 2ART NO,

EACD104L-002

EACD100-001
EACD101-007
EACD101-008
EACD101-009
EACD101-010
EACD101-011
EACD101. 112
EACD101-013
EACD101-014
EACD101-015
EACD101-016
EACD101-017
EACD101-018
EACD101-C19
EACD101-~020
EACD101-023

VERSION
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18.
19.
20.
21.
22,
23.
24.
25.
26.
27.
28.
29.
30.
31.

CONNECTING ROD ASSEMBLY

PISTON

STUD, 3/8 X 4.00 LG. (12 REQUIRED)
STUD, 3/8 X 2.25 LG. (12 REQUIRED)
PISTON REWORK

WASHER, FLAT

BOLT (SCREW) (PISTON CAP)

DISC SPRING (BELLVILLE WASHER)
NUT, JAM 3/8-34

SCREW 3/8-16 (2 REQUIRED)

DHG. SIZE PART NO.

*D
*C

*B

T W W w

O'RING, INJECTCR TO NUT (2 REQUIRED) *

O'RING, PLATE TO CRANKCASE

*

O'RING, CYLINDER LINER TO BARREL (LOWER)*

O'RING, CYLINDER BARREL TO PLATE

* ALSO USED ON COOLED VERSION

*

EACD102-009
EACD102-010
EACD102-018
EACD102-019
EACD1uv2-020
EACD104-910
EACD104--01.
EACD104-012
EACD104-013
MS90725-73
MS9388-016
MS9388--168
MS9388-248
MS9388-255



LITLE DWG. SIZ.
1. AIRCRAFT DIESEL ASSEMBLY SINGLE R
ZYLINDER TEST
2. INJECTOR NOZZLE & HOLDER ASSEMBLY *B
3. CYLINDER HEAD *P
4. PLATE, ENGINE TOP DECK *F
5. INSULATION DISC, CYLINDER HEAD *C
6. INSOULATION RING, CYLINDER HEAD *C
7. NUT, INJECTOR NOZZLE HOLDER *D
8. PLATE, INJECTOR NOZZLE HOLD DOWN *C
9. NUT, 12 POINT 3/8-24 (24 REQUIRED) *A
10. GASKET, CYLINDER HFAD *D
11. CYLINDEL oARREL F
12. CYLINDER LINER P
13. PIN, LINER ALIGNMENT TO CYL. BARREL *B
14. INSERT, CYLINDER EEAD D
15. JACKET, CYLINDER HEAD COOLING F
16. PISTON *C
17. CONNECTING ROD ASSEMBLY *D

APPENDIX III

SECOND GENERATION SINGLE CYLINDER TE"T ENGINE

PARTS LIST (COOLED VERSION)

* ALSO USED ON CERAMIC VERSION

- ALT NO,

EACP104L-003

EACD100-001
EACD101-007
EACD101-C10
EACD101-013
EACD101-014
EACD101-016
EACD101-017
EACD101-919
EACD101-020
EACD101-021
EACD101-022
EACD101-G23
EACD101-024
EACLC1C1-025
EACD102-010
E2CD102~-005



PAGE 2

TIILE DWG. SIZE PART NO,

18. STUD., 3/8 X 4.00 LG. (12 REQUIRED) *B EACD102-018
19. STUD, 3/8 X 2.25 LG. (12 REQUIRED) *B EACD102-019
20. PISTCN CAP D EACD104-004
21. PISTON REWORK C EACD104-0C5
22. DISC, SPRING (BELLVILLE WASHER) B EACD104-006

{4 REQUITZD)

23. NUT, JAM 1/2-13 UNC~-28 B EACD104-007
24. SPACER (PISTON CAP) B EACD104-008
25. INSULATION DISC, PISTON CAP C EACD104-009
26. SCREW, 3/8-16 X 3.75 LG. (2 REQUIRED) * MS90725-73
27. O'RING, INJECTOR TO NUT (2 REQUIRED) * MS9388-016
28. O'.ING, PLATE TO CRANKCASE * MS9388-168
29. O'RING, CYLINDER LINER TO BARREL (LOWER)* MS9388-248
30. O'RING, CYLINDER LINER TO BARREL MS9388-251
(3 REQUIRED) (UPPER)
31. O'RING, CYLINDER BARREL TO PLATE * MS9388-255
32. O'RING, COOLANT JACKET TO CYLINDER HEAD MS9388~262

* ALSO USED ON CERAMIC VERSION
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1.0

INTRODUCTION

The objective of the engineering effort reported herein is to
provide design guidance and feasibility assessment, through
detailed thermal and structural analysis, in the development
of a low hea- rejection configuration of the Teledyue
lightweight diesel engine for aircraft applicatinn. This
phase of the overall development activ..y involves investiga-~
ting a single cylinder engine which lends its~lf to testing
of components plus establishing performance and emissions

data.

The report presents the insulated single cy.liader test engine
configurations investigated followed by detailed descriptions
of the thermal and stress analyses and presencation of their
results. In the thermal analysis section, a description of
the analytical model and the method of analysis is provided
along with the boundary conditions used. The stress analysis
section covers the structural assessment of the head,
cylinder liner, and piston cap. The last section of the
report addresses conclusions from the analytical results and
recommendations with respect to a baseline configuration to

be tested.



2.0

INSULATED TEST ENGINE CONFIGURATIONS

The low heat rejection, monolithic ceramic insulated, single
cylinder test engine combustion chamber configuration 1is
illustrated in Figure 1. As can be seen in the figure, the
cylinder and head have been significantly changed from the
air cooled one piece design. This was done both to facilitate
testing of a number of components plus the need to
accommodate the monolithic ceramic inserts. The metal portion
of the bolt-on head is relatively massive to provide room for
the head bolt circle plus sufficient hoop 1integrity to
maintain a press fit on the combustion bow insert. The press
fit is necessary to overcome the thermal induced tensile
stresses on the back side (cold side) of the ceramic
combustion bowl insert. The cylinder portion of the engine
allows for easy replacement of cylinder liner assemblies. The
outer cylinder block provides a bolting flange for the head
with the intake/exhaust manifold torodial structure accommo-
dated just under the flange. The liner assembly insert
consists of a metal reinforcing outer cylinder and a ceramic
inner «cylinder. A radial interference between the parts
provides retention of one to the other while reducing the
pressure and thermal induced tensile stresses in the ceramic.
The piston assembly is made up of a two piece ceramic cap and
a cast iron base. The cap is broken up into twec parts in

order to reduce the tensile stresses caused by through



thickness thermal gradients. The upper mushroom shaped cap is
retained by a radial press fit at its base. The ceramic disk
is retained by being trapped between the metal base and upper
cap. There is a small ledge to keep the disk from moving in
some radial direction., Note that in this design the piston is
fully covered by ceramic insulation on its combustion surface
face. This is typically not the case in the more classical
low heat rejection diesel with the combustion bowl in the top
of the piston and valves in the head. Full coverage of the
top of the piston is important both from a heat loss point of
view and the need to keep the rings cool. The thermal shield
under the ceramic cap is optional. It is used to reduce the

heat loss to the oil lubrication heat sink.

The configuration illustrated in Figure 1 was assessed using
zirconia and alumina as the ceramic insulator material. Upon
turning to silicon nitride as the ceramic, it was necessary
to face the fact that press fits could not be counted upon
due to the small thermal expansion coefficient for silicon
nitride in comparison to metal. Figure 2 illustrate: the
modified low heat rejection, monolithic ceramic insulated,
single cylinder test engine combustion chamber configuration.
As indicated 1in the figure, the cylinder liner assembly has
been replaced by a single piece ceramic cylinder of 3ilicon

nitride., This was done to eliminate an assembly problem, In



addition, the metal ouvter reinforcement structure would not
be in contact with the cylinder at operating temperatures due
to coefficient of thermal expansion differences. The upper
ledge of the cylinder insert was moved up towards the top,
near the gasketed joint, to reduce problems with maintaining
preload in the joint. This problem is the result of the axial
differential growth of the liner versus the block, again due
to expansion mismatch. The combustion bowl insert was
increased in outer diameter and an insulating intermediate
ceramic disk placed above it to help reduce the thermal
induced tension stresses on the bowl's upper surface, The
thermal shield under the piston cap was again used to reduce
heat 1loss to the lubrication oil, since the silicon nitride

is a much better conductor than the zirconia.



3.0

3.1

THERMAL ANALYSIS

Presentation of the thermal analysis is broken into four
parts. First, the method of analysis is addressed and it is
followed by a presentation of the ANSYS based finite element
models. Next, the detailed boundary conditions used are
illustrated. Last, the resulting component temperatures for
three (zirconia, alumina, and silicon nitride) ceramic

insulation configurations are presented.

Analytical Methodology

In the overall thermal analysis of the single c¢ylinder
engine, the;e are two coupled analyses which must be carried
out. It is important to note that thermal distribution is far
more important in an insulated engine than in a conventional
engine since the temperature variation is what fails the
ceramic. The first of the analyses is a c¢ycle simulation
which provides the thermodynamics of the combustion chamber
gas, It is necessary in this cycle simulation to specify the
combustion chamber wall temperatures. Temperatures to be
specified are combustion bowl inner surface, piston cap top
surface, and cylinder liner inner surface. Next, using the
cycle simulation temperatures of the combustion gas as a
function of crank angle, a cycle average thermal analysis of

the overall engine is carried out. The resulting combustion



surface temperatures are compared with those which were used
in the cycle simulation analysis. If there is a significant
difference, the new surface temperatures are input into the

cycle simulation and the ccupled analysis is repeated.

The cycle simulation analyses were carried out using the
Benson program. The cycle simulation converged results were
made available to Teledyne but are not included in what

follows.

The combustion chamber temperatures can be calculated on a
steady state basis provided that the effective steady state
thermal boundary conditions are represented in the analytical
model. In the case of the inner surface of the combustion
chamber, the effective boundary conditions are called the
"cycle-average temperature,” and tae "cycle-average heat
transfer coefficient.” The cycle-average temperature and the
cycle-average heat transfer coefficieut are the steady
boundary values which cause the same total heat to cross the

inner surface of the combustion chamber as the engine cycle,

The pistoa also dissipates heat in an unsteady process by
virtue of its motion in the cylinder. The cylinder bore has a
large axial thermal gradient, the upper portion being heated
by the combustion gases and the lower portion being cooled by
the mixture of air and oil in the cran’' case. As the piston

and rings slide up and down in the «cylinder, they are



alternately exposed to the high and low cylinder termpera-
tures. In addition, the thermal boundary conditions on the
cylinder bore are unsteady by virtue of the piston motion, as

well as the unsteady conditions in the combustion chamber.

The purpose of this part of the report is to present the
theoretical basis and methodology for reduction of the
combustion chamber heat transfer analysis to fully steady
state problem. This permits calculation of temperatures in
the piston, cylinder, head, and other engine components by
means of steady state three-dimensional finite element
models.

Computation of Cycle Average Conditions in the Combustion
Chamber

In deriving the effective steady state boundary conditions,
the basic approach 1s to write down the unsteady equations
governing the physical process and the steady equations
governing the analytical model, then to combine the equations
SO as to conserve the total heat transferred during the

engine cycle,

Equations (1) and (2) below are unsteady and the steady
forms, respectively, of Newton's convective heat transfer
equation as applied to the combustion chamber surface. The

steady factors in equation (1) are the convection area, A,



and the surface temperature, T, , which we approximate as a
constant in relation to the extremely unsteady gas tempera-

ture, T, (¢). The unsteady factors are expressed as functions

g
of c¢rank angle, ¢, rather than time to make the equations
independent of engine speed. The rate of heat transfer is
then measured per degree of crank angle, CA, rather than per

unit time,.

(1) q(e) = hle) A [Tg(s) - Tg]
where,
g(¢) = rate of heat transfer (BTU/CA)
h(¢) = heat transfer coefficient, or unit thermal
~onductance (BTU/CA-Ft?-~°F)
A = heat transfer area (Ft?)

Tg(o)= gas temperature ( °F)

Ty = surface temperature (°F)
® = crank angle (deg.)
(2) g =ha [Tg - Tgl
where,
g = cycle average rate of heat transfer (BTU/CA)

=i
f

cycle average heat transfer coefficient
(BTU/CA-Ft? - "F)



A = heat transfer area (Ft?)
Tg = cycle average temperature (°F)
T, = surface temperature (°F)

In order to conserve the total heat transferred during the

cycle, Q, we must satisfy the following relation:
360

(3) Q=3607¢ =f ql(e) do
0

Hence, the cycle average rate of heat transfer is defined by

equation (4).
360

(4) 3=§%5fq(¢)do
]
Similarly, the cycle average heat transfer coefficient is

defined by equation (5).

L 360

(5) h=3—6-6fh(o) do
]

Integrating equation (1) over the cycle, and dividing by 360,
we obcain:

350 360 360

1 A ' 3
(6) m/q(o)ch =mfh(o)Tg(o)d¢-m/h(0)Ts do
] 0 ¢

Combining equations (4), (5), and (6) we obtain:

60
(7) atfg"ﬁ‘/jh(o)Tg(o)da-EATs
0

Comparing each term in equation (7) with the corresponding

term in equation (2), it is evident that,



-~ 10 -~

360

= = _ _A

(8) AT, =55 [ hie) 7, (e) do
0

solving equation (8) for TE, we obtain the definition of the

cycle average temperature:
360
1

(9) Tg = 3605’/““ Tg(@) dn
0

By means of equations (5) and (9) we can calculate the cycle
average boundary conditions for use irn the steady state heat
transfer model. The unsteady boundary conditions, h(¢) and
Tg(v), are generated in a tabular format by the engine cycle
simulation program. These data are then integrated numerical-
ly according to equations (5) and (9). Hence, h and Tg can be
calculated on any convection area, A, for wuaicl: the unsteady

conditions, h(¢) and fg (¢) are given.

Mode._ing of Piston to Cylinder Heat Transfer

The problem of piston-to-cylinder heat transfer is similar in
that it 1is an unsteady, cyclic process, which must be
analytically reduced to an equivalent steady state process.
However, in the previous case we were concerned only with
forced convection, whereas in this case, we need to thermally
link the piston (and rings) to the cylinder. In the finite
element model, this thermal linkage is achieved by means of

convection link elements. The governing equation for each



- 11 -

convection link is as follows:

(10) g=haA [Ti - Tj]

Each convection 1link provides a heat conduc:ion path of
thermal conductance, hA, between node i and node j a*
temperatures 'ri and Tj respectively. If node i is a node oun
the piston outer surface which slides past a node j on the
cylinder bore, as the piston travels up and down, then a
convection link element will need to be defined between nodes
i and j. In this manner, a set of convection links will
thermally iink each piston node to an axial line of nodes on
the cylinder extending from the TDC position of the piston
node to the BDC position of the piston node. This is

illustrated in Figure 3.

If both the piston and cylinder are modeled three-dimension-
ally, several hundred--if not several thousand--such links
will be required. The problem then becomes one of finding the
correct conductance, hA, for each 1link. As a matter of
analytical convenience we separate the total conductance into
its two factors, h and A, and assign each a different
physical significance. The unit surface conductance, h, is
treated as a steady factor, a measure of the quality of the
contact between the piston, or ring, and the cylinder. For

example, the model will usually have a relatively high h in



the links originating on the compression rings. The unsteaqdy
component of the conductance is embodied in the second
factor, A. The derivation of the convection link areas is

discussed below.

In order to calculate the correct heat transfer areas for the
convection links, we adopt the same general approach as in
the previous part. That is, we write down the unsteady and
steady forms of the heat transfer equations, and then combine
the equations so as to conserve the total heat transferred.
The unsteady form, equation (1l1l), applies to the actual
physical process, whereas the steady form, equation (1l2),

applies to the analytical model.

(11) q(e) = h A[Tp - T (e)]
where,
g(¢) = rate of heat transfer out of area A on the
piston surface (BTU/CA)
Tp = temperature of the surface A (°F)

Tc(o)= temperature of the cylinder surface to which

heat is rejected as the piston travels (°F)
In equation (11), gq(e¢) and Tc(°) vary with ¢ by virtue of the
axial temperature gradient in the cylinder and the motion of

the piston.
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(12) q=nh Al(Tp - Ty h AZ(Tp - T,) + ...
+ h An(Tp - Tn)

g = average rate of heat transfer out of area A on
the piston surface (BTU/CA)

A=A, +A, + ... + A = piston heat transfer area
1l 2 n (Ft?)

ARy, .. A areas associated with temperatures T,;.,T,, ...

Ty

To

Ty,Ty,...T, = temperatures at discreet points (nodes) on the
cylinder bore (°F)

temperature of the surface A (°F)

In combining equations (l1l) and (12) we need to consider only
one stroke (0 < ¢ < 180°) instead of both strokes
(0° < ¢ < 360°). The crank advances through the same number
of degrees as the piston descends from A to B on the
downstroke as it does when the piston ascends from B to A on
the wupstroke. Furthermore, the piston “"sees"™ the same
temverature history on the cylinder from A to B as it does
from B to A, only in reverse sequence. Hence, the cycle-

average rate of heat transfer can be defined as follows:

180

O/qm)m

0
Integrating equation (l1) over one stroke and dividing by

|-

(13) g = I

o]

180, we obtain:
80 180

1
L - DA -
(14) 18Oj‘q(o) de 180,0/[Tp Tc(a)]do
0
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In the physical process Tc(o) is a continuous function. How-
ever, in the finite element model, Tc(¢) must be approximated
by a step function (because there is a finite number of con-

vection links in the model):

T2,02 ¢ < ¢

tA

A

3
(15) T.(e) = . .
< <
To ¢ 0q = ¢ = 0
% = 0°
0., = 180°

Combining equations (13), (14), and (13), the £{ollowing

relation is obtained:

g=ha - - - - -
(16) 3 [180 7, - (o, o) 7 - gy - 0y T,

~ 180
cer = lopy mep) Tn]

upon re-arranging,
-¢ ¢ 0
(17) 3=ha I:(°2 1)(T-T)+(3 2)(T-—T)
P 1 P 2

180 180

0. -9
+ .+ (2l nlp p
180 P n

Comparing each term in equation (17) with the corresponding

term in equation (12), it is evident that,
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5.~ ¢
3 2
A_.= A
(18) 2 (180)

Equations (18) are used to calculate the heat transfer areas
SR DY 9 for the convection links. Examination of
equations (18) permits a simple physical interpretation of
the convection areas. If 180’ represents the total time that
it takes for the piston node associated with surface area A
to travel throughr one stroke, then each interval °i+1 f°§¢i
represents the time that the piston node is thermally linked
to cylinder node i during the stroke. The ratio Ai/A is the

fraction of cycle time that the piston node is linked to

cylinder node i.

The piston nodal areas are computed as a function of the
piston finite element mesh. The sum of the areas associated
with all the nodes on the surface of the piston is equal to
the total piston surface area. Only those areas and nodes
which are in sliding contact with the c¢ylinder bore are

included in the convection link areas.
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<
+1
finite element mesh as well as the crank radius and con-

The intervals oi 0 o, are a function of the c¢ylinder
necting rod length. As the piston descends from TDC to BDC
each piston node inscribes an imaginary axial line on the
cylinder surface. This line is broken up into a series of
contiguous segments whose end-points lie mid-way between
consecutive cylinder nodes. Each segment corresponds to an
advance of the crank from ¢; to ¢,,,. The change in crank
angle as a function of piston travel is calculated by the

following equation:

-1 1 - X,
(19) ¢ = cos 1‘(3}(1/(14‘1/4) -—xl]

where,
¢ = angle through which crank has advanced from TDC

x = distance through which piston has descended
from TDC

2 = crank radius
. = connecting rod length

X, = fraction of stroke from commencement = x/22

Piston travel a2nd piston velocity as functions of crank angle
are illustrated in Figure 4 for a piston assembly with

4/~ = 3.5,
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Computation of Cycle Average Conditions on the Cylinder Bore

The cycle average heat transfer coefficients and cycle
average temperatures on the cylinder bore can be calculated
by equations (S) and (9). In general, however, the integra-
tions must be carried out over separate intervals correspond-
ing to exposure of the particular heat transfer area to
crankcase conditions, sliding contact with the piston, and
combustion chamber conditions. For intervals corresponding to
sliding contact with the piston, Tg(o) and h(¢) are set equal
to zero, because the heat input from the piston is already

accounted for. Typically, h and Tg are computed for each

element face on the cylinder bore.

Finite Element Models

The detailed temperature distribution in the combustion
chamber components was determined using an ANSYS based finite
element model. The overall engine model consists of four
major components: piston, head, block and cylinder assembly
insert. Each of these components was substructured and used
in the assembled analysis. Figure 5 presents the piston
assembly which has been treated as axisymmetric. For the
thermal analysis, the interfaces at A, B and C have been
coupled, which means there is an assumed perfect condition.

The same piston model was used in all three engine
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configuration cases considered. These various cases involve a
change in the material properties for the ceramic parts only.
Table I tabulates the thermal conductivity property for the
materials of construction considered. Figures 6A and 6B
present the axisymmetric model of the two head assemblies
considered. Again, the interfaces D, E and F were assumed to
be coupled. The block and insertable liner assembly were both
modeled fully three dimensionally in order to be able to
assess what happens in the intake and exhaust ports. Figures
70 and 7B present the inside and outside view of the
insertable liner assembly, respectively. This assembly
consists of a stainless steel outer reinforcing cylinder with
a ceramic inner sleeve. The cylinders are assembled with an
interference fit. The interference boundary G is assumed to
be coupled. Figure 8 is an outside view of the solid
monolithic ceramic liner. From a model standpoint, the solid
monolothic liner is nothing but the liner of Figure 7 with
the materials being the same and the upper ledge moved closer
to the bolted joint. Figures 9A and 98 present the fully
three dimensional ANSYS based thermal and structural model of
the test engine block. Figure 10 illustrates the modification
of the block model to accommodate the movement of the liner

support ledge up close to the bolted joint.
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The four basic structures presented were individually
developed as substructures and then used in an overall

thermal analysis.

Detailed Thermal Boundary Conditions

The combustion surface gas temperatures and associated forced
convection heat transfer coefficient were obtained using the
procedure set forth in section 3.1, For an all 2zirconia
insulated engine, the cycle average film coefficient along
the cylinder wall and the cycle averaged gas temperature are
illustrated 1in Figures 1lA and 11B, respectively. 1In
developing this information it was also necessary to have a
convection coefficient on the crank case side of the engine,
The value used for zirconia and alumina is 7 BTU/HR-FT2-°F
with an oil mist temperature of 300 °F. For the silicon
nitride engine a value of 423 BTU/HR-FT?!-'F was used with an
oil mist temperature of 300 °F. The significant change in
this boundary condition relates to shifting from an adiabatic
concept to a low heat rejection concept with conventional
lubricated rings. Figures 12A and 12B illustrate the
convection coefficient and gas temperature, respectively, for
alumina. Figures 13A and 13B present the same information for

silicon nitride.
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The convection coefficient and cycle average gas temperature
which applies to the combustion bowl surface and top surface
of the piston cap are the values presented in Figures 11
through 13 at top dead center. The conduction coefficients
between the piston side walls and cylinder and the ring/ring
groove interface were developed based upon information
presented in the public domain literature. Figure 14 shows
the values used in all three configurations. The conduction
coefficient is highest between the piston rings and cylinder.
Also note that for a given ring the conduction is highest on
the lower interface. This is due to the gas pressure forcing
the ring against the lower ring groove face. As noted in
Section 3.1, these conduction coefficients which pass between
the piston and cylinder must be distributed due tc movement
of one surface relative to the other during the cycle. Figure
15 illustrates the time weighting function values for one of
the points on the piston relative to the cylinder wall. Note
that the ring to ring groove conduction is not time weighted

because they are always in contact.

The effect of heat generation at the rings was included in
the analysis. A power loss of 7 horsepower (5BTU/SEC) was
considered. The top ring generated thirty percent of the heat
and the rest was evenly distributed to the remaining four
rings. The air gaps between the piston cap and metal portion

of the piston plus the combustion bowl and metal portion of
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the head were treated considering both conductior and
radiation. The conduction accounted for the air conductivity.
Radiation was modeled using the ANSYS radiation, so it was
directly calculated in the overall solution. As noted
earlier, all contacting interfaces between ceramic and metal
parts were coupled. This means zero contact resistance was

used.

The head was thermally coupled to the cylinder insert and
block at the contact surfaces. Conduction and radiation was
accounded for between the head and injector. An air gap of
0.075 inches used with conduction and radiation modeled. The
injector coolant was assumed to be at 55 °F. The convection
and radiation to test cell ambient was determined for both
the head and block. The convection coefficient was computed

using the vertical cylinder correlation

h = 0.555 % (¢ p)t
(o4 y L r r’ °

A surface temperature of 1000 °F was used for the engine.

Radiation was added to the convection.

The heat transfer across the gap between the insert cylinder
liner and the block was modeled as conduction with an air gap
of 0.010 inches. In the area of the ports the two structures

were coupled. The exhaust and intake ports gas temperatures
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were developed from the cyle simulation data. The heat
transfer coefficient for the ports was computed using the
mass flow rate, port temperatures, and pressure data with a

correlation for turbulent tube flow:

(20) h = c.p%2p"8 q-0.53,0.8
C = _EU__
ReOJ
D = effective port diameter
T = gas temperature
V = gas velocity

P = gas pressure

Temperature Distribution Results

For the three different ceramic insulation configurations of
the basic test engine, the converged cycle averaged tempera-
tures in the entire engine have been found. As noted earlier,
this requirea an iterative process between the cycle

simulation and the detailed engine temperature analysis.

Figures 16A, 16B and 16C present the temperature fields in
the head assembly for zirconia, alumina, and silicon nitride,
respectively. From these illustrations of the temperatures,
it can be seen that the maximum ceramic temperature is

dropping as the ceramic materials conductivity increases. The
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2059 °F for the zirconia is outside the temperature range
which this material can withstand for an extensive service
time. That range is about 1800 °*F. The silicon nitride is
losing more heat than one would 1like, but this can be
adjusted in two ways. First, the intermediate disk can be
replaced with zirconia and second, the outer surface of the

head asscmbly can be insulated as needed.

Figures 17A, 178 and 17C provide the detailed temperature
distribution for the piston assembly for zirconia, alumina,
and silicon nitride. Again, the zirconia is for hotter than
the material can withstand. The maximum temperature for all
three materials 1is greater on the piston than the head
because the piston ceramic has been isolated more from the
heat sinks. In all three cases the rings are running for
hotter than any lubrication will allow. In the future, the
crank case o0il must be allowed to cool the ring area by
cemoving the thermal shield (see Figures 1 and 2). Note that
the stress in the ceramic will increase because the gradient
in the material will significantly increase. The target for
ring and adjacent metal temperature should be 600 °F to

800 °F.

Figures 18A and 18B present the ceramic liner temperatures,

Figures 19A and 198 present the metal reinforcing cylinder
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temperatures, and Figures 20A and 208 present the block
temperatures for the 2zirconia insulated engine. Figures 21,
22 and 23, respectively, do the same for the alumina
insulated engine. For the solid ceramic (silicon nitride)
cylinder insert configuration, Figqures 24A and 24B present
the detailed temperature distribution. The associated block

temperatures are provided in Figures .34 and 25B.
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STRESS ANALYSIS

Based upon experience with a number of ceramic lined
(insulated) diesel engines, the significant loading condition
to - sider in assessing the feasibility of a given design
configquration is assembly plus thermal plus peak cylinder
pressure, all applied at one time. The finite element models
used to establish the stresses are the same as those used in
the thermal analysis {(see PFigures S through 10). While the
overall thermal analysis was carried out us ag a complete
combined model, the stress analyses were carried out using
the various individual assemblies. From a screening analysis
standpoint this is acceptable, but when working on a baseline
final type design, it would be highly desirable to carry out

an overall structural interaction analyses.

For the head assembly stress analysis, Figure 26 depicts the
mechanical boundary conditions used. The contact elements
note¢ in the figure transmit compressive loads across
structural interfaces but unhook for tension. Friction has
been set to zero on all contact surfaces. Figures 27A, 27B
and 27C present the radial axial and hoop stress for the
ceramic combustion bowl in, respectively. the =zirconia,
alumina, and silicon nitride insulated engines. In Figure 27A
the large radial and hoop tensile stresses on the top surface

of the bowl insert (cold side) are a direct result of the
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large through thickness temperature gradient in the part (see
Figure 16A). The radial press fit (0.010 inches diametral)
between the bowl and head reduces this tensile stress. It is
important to note that increasing the press fit is good for
the ceramic, but hard on the metal head. This is especially
true when creep relaxation of the press fit is considered.
The tensile stresses in the axial direction along with the
press fit boundary are thermal induced. The large compressive
" stress 1in the same area is a passions effect. The large
compressive stresses on the combustion surfaces are a result
of press fit and thermal adding., This surface also sees a
temperature change over the cycle, but at no time does the
surface experience tension while operacing. The peak pressure
terds to increase the radial tensile stress on the upper
surface of the bowl because it forces the bowl to contact the
head. This contact reduces the amount of curling up the bowl

can do, which in turn increases the radial tensile stress.

All the same things can be said for the alumina insulated
engine head assembly (see Fiqure 27B). When moving to the
silicon nitride head assembly, two modificaticns to the
design occurred. First, an intermediate disk was placed
between the bow. and head. The reason for this was to reduce

the through thickness gradient in the bowl, which in turn
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reduces the radial and hoop tensile stresses on the bowl to.
surface. Second involved increasing the diameter of the bowl
insert and having it sit on the cylinder liner. This was
necessary because the radial press fit is lost at temperature
due to the large thermal expansion difference between 410
stainless steel and silicon nitride (see Table I). From
Figure 27C, it can be seen that the significant tensile
stresses on the top surface of the bowl have been eliminated.
This is due to both the design change and the material
properties of silicon nitride. Note that the head tempera-
tures have increased significantly (see Figure 16C). Figure
28 illustrates the radial, axial and hoop stress in the
intermediate disk for the silicon nitride insulation con-

figuration.

Figures 29A, 29B and 29C present the stresses for the metal
portion of the head for the loading condition noted above.
The large stresses at the press fit boundary are relieved by
plasticity. The vertical lines in the hoop stress figures are
due to the modeling of the bolt holes. This was done by
gsetting the hoop elastic modulus to zero in the area of the
bolt hole and adjusting the axial and radial modulus on an

area basis.
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The structural boundary conditions applied to the piston
assembly are illustrated in Figure 30. The axiai restraint of
the bottom of the piston 1is necessary to carry the axial
pressure induced load which actually passes out through the
rod. This modeling is acceptable, since it is only the upper
portion of the assembly, which is being assessed from a
feasibility standpoint. Figures 31A, 31B, and 31C present the
radial, axial and hoop stresses in the piston cap for the
zirconia, alumina and silicon nitride, respectively. The
large tensileA stresses, both radial and axial, on the
underside of the cap are similar in nature to those on the
cold side of the combustion bowl. Axial retention of the cap
is provided by the press fit on the cap stem. In the case of
silicon nitride, this 1is not possible because of thermal
expansion differences. Also, if the silicon nitride cap is
retained axially on the stem, there is a large axial stress
induced due to expansion mismatch. A prcperly tapered surface
on the stem will reduce these problems. Figures 32A, 32B and
32C present the stresses in the piston intermediate insula-
tion disk. The large stresses at the inside of the disks are
a result of interaction with the centering lip on the metal
piston., By providing a small initial clearance between the
two parts, these stresses will be significantly reduced.

Figures 33A, 33B and 33C provide the stresses in the upper
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region of the metal part of the piston assembly. These
figures also show large stresses at the centering lip which
will be eliminated with an easy design modification. The
nominal stresses in the cast iron piston are important
because of the relatively high temperature seen at operating

conditions.

figures 34 and 35 present the maximum and minimum principal
stress in the 2zirconia cylinder 1liner for maximum power
thermal induced loading and 0.0l10 inches of diametral
interference. From these stress contour results it can be
seen that the stresses around the intake and exhaust ports
are relatively low. Even though the finite element model is
coarse with respect to identifying peak stresses in the
ports, it is adapco's opinion that the low stress level
predictions are representative of what is happening. The
large tensile stresses at the top of the ceramic liner are
due to through thickness temperature gradients. The hoop
tensile stresses at the top are countered by the press fit.
The axial tensile stresses on the cold side are largest some
distance down the cylinder due to the free edge at the top of
the ceramic. Figures 36 and 37 provide the same information
for the alumina inserted ceramic liner. The silicon nitride
cylinder is not a liner backed up by a metal cyclinder and a

press fit. It is basically a free standing solid ceramic
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cylinder which has sufficient thickness to carry the pressure
loads. Figures 38 and 39 provide the maximum and minimum
principal stress contours in the silicon nitride cylinder for

maximum power induced thermal loads.



5.0

- 31 -

CONCLUSIONS AND RECOMMENDATIONS

From the thermal and stress analysis results presented above
plus adapco's experience on other low heat rejection concepts
involving monolithic ceramics, it 1is adapco's opinion that
the insulation of the Teledyne lightweight diesel has a high
probability of success. To date, the major problem in
insulating low heat rejection engines has been the piston. In
the case of the Teledyne engine, the elimination of the
combustion bowl and giving it a spherical domed shape
pr-vides a corfiguration which has a high probability of not
failing. In addition, the entire surface is covered. This is
important from both a heat loss standpoint and being able to

keep the rings cool.

The one problem identified in the thermal analysis 1is the
high temperature (above 1750 °F) at which the =zirconia
insulated engine configuration is operating. This problem is
important, since it is adapco's opinion that zirconia should
be used as the insulator due to its high thermal expansion.
Present 2zirconia cannot be used at temperatures above 1700?
to 1800 °F. To provide some cooling while at the same time
reducing cost, it has been recommended by Teledyne that the

cylinder be metal. adapco agrees with this approach.
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Figure 3 Piston to Cylinder Thermal Linkage
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Figure 94 Engine Block - Thermal
and Stress Model
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Fioure 98 Engine Block - Thermal
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Figure 10 Modified Engine Block -~
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Shown here is the conduction coefficient and
weighting factors between the tap of the piston
and the cylinder nodes it contacts during the
stroke. Similar weighting of the conduction was
done for 32 points along the length of the piston.
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Pigure 15 Conduction Between the ‘ston and Cylinder Liner
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FPigure 17A Piston Assembly Temperatures -
Maximum Power -~ All Zirconia
Insulation
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Figure 178 Piston Assembly Temperatures -
Maximum Power = All Alumina
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Figure 17C “iston Assembly Temperatures -
Maximum Power - All Silicon
Nitride
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Figure 188 2irconia Liner Insert
Temperature - Magimum
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Figure 19A Metal Reinforcing Cylinder
Temperatures -~ Maximum Power -
All 2irconia Insulated
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Figure 198 Meral Reinforcing Cylinder
Temperatures - Maximum Power -
All Zirconia Insulation
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figure 20A Block Temperature - Maximum
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Figure 21A Alumina Liner Insert
Temperature - Maximum
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Figure Z21B Alumina Liner Insert
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Figure 224 Metal Reinforcing Cylinder

Temperatures =~ Maximum Pover
All Alumina Insulation
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Meral Reinforcing Cylinder
Temperatures - Maximum
Power ~ All Ailuminas
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Figure 244 Silicon Nitride Insert
Temperatures - Maximum
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Figure 24B Silicon Nitride Insert
Temperatures - Maximum
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Figure 25A Block Temperatures -
Maximum Power - All
Silicon Nitride Insulation
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Figure 27A Combustion Bowl Stresses - Maximum Power -
All Zirconia Insulated
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Figure 27C Combustion Bowl Stresses - Maximum Power -
A1l Silicon Nitride Insulated
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Figure 28 Head Intermediate Insulating Disk Stresses -
Maximum Power - All Silivon Nitride Insulated
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Figure 31A Piston Cap Stressos - Maximum Power
All Zirconia Insulated

Rodial Stoess

ol SN Maximum Srresy = BETIY pgy
s Minamun Stress o owx 2TOHIE pa;
- Sontour Imterval w o TOUNG me:

AXcal Brrfexs

WA LMUN Srveny e D T 3
Wit Sreass * w5336 pay
CONTONL Intervalia AD00 pEy

MDD Srrese

L ERR B e X *ENTI4 mey
Minimum Stress e 263589 oy
Lantous lanerval w0 8000 sy




i3
Lh ]

Figure 31 Piston Cap Stresses - Maximum Power -
All Alumina Insulated
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Figqure 31C Piston Cap Stresses - Maximum Power -
All Silicon Nitride Insulated
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Figure 32B Piston Intecrmediate Insulation Disk Stresses
Maximum Power - All Alumina Insulation
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Figure 32C Piston Intermediate Insulation Disk Stresses -
Maximum Power - All Silicon Nitride Insulation
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Figure 33A Piston Stresses - Maximum Power -
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All Zirconia Insulated
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Figure 338 Piston Stresses - Maximum Power -
A1l Alumica Insulated
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Figure 33C Piston Stresses - Maximum Power -
All Silicon Nitride Inszulatrion
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£igure 33 Ceramic Cylinder Liner - Minimum Principal Stress Due to
Maximum Power Thermal and 0.010 Inch Diamerral Interferencs

All Zirconia Insulation
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Siocure 36 Ceramic Cylinder Liner - Maximum Principal Stress
Due to Maximum Power Thermal and 0.010 Inch
Diametral Interference - All Alumina Insulation
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Fioure 37 Ceramic Cylinder Liner - Minimum Prxga;pa tro
Due to Maximum Power Thermal and 0.06.0 Inch

Diametral Interferen-e - ail Alumina Insulation
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Ceramic Cylinder Insert - Maximum Principal Stress
Due to Maximum Power Thermal ~ All Silicon
Nitride Insulation
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SUBJECT

is a final project report summarizing the work which was done under

Contract 70410 to build and test electronically controlled fuel injection
systems for use by Teledyne Continental Motors, General Products Division
(TCM-GPD). The project was initiated to support work being done by TCM-GPD
in their NASA Lewis Research Center Contract NAS3-22218, "Two-Stroke Diesel,
Single-Cylinder Technology Enablement".

BACKGROUND

The original technical proposal, EP007, May 1, 1981, (Ref. 1) proposed a
high pressure, intensifier type, electronically controlled fuel
injection system for use on the TCM-GPD single-cylinder technology
demonstration diesel aircraft engine. The injector design was to be a
modification of the Garrett AiResearch CCTE unit, scaled up to inject
the required 90 mm? per stroke. Table 1 shows a comparison between the
engine specifications of the CCTE and TCM-GPD diesel engines. The need
for such an injector in the TCM program was clearly established:
conventional mechanical diesel fuel injection systems did not have the
flexibility to optimize engine performance by varying irjection timing
and duration during operation.

The original project plan outlined in report 4045, REV. 1, February 5,
1982, (R-°. 2) called for the new unit to be manufactured in the
Experimencal Machining Department in Sidney with a 44-week delivery
after receipt of order (Fig. 1). Communications with TCM showed their
displeasure with the projected delivery time. They were requesting a
26-week delivery period. Concern was also expressed over the
suitability of the Garrett CCTE design injectors in view of the problems
vhich were encountered during development.

As a result of the latter concern, report 4071, May 12, 1982 (Ref. 3)
was written to address each problem and the subsequent solutions. A
literature survey of the Garrett contract reports was made along with
personal contacts with the Garrett project people and M. Gage of Bendix.
The survey showed that the reasons for all of the problems were
understood and satisfactory solutions were found.

In regard to the objectionable 44-week delivery period, the entire plan
to design a higher capacity version of the CCTE unit was rethought. The
risk of getting involved in a development program after the unit was
designed and built seemed great. Even if the unit were merely scaled up
there would be some risk, but because of the configuration of the
air-cooled cylinder head more design changes would have to be made to
the compact injector to adapt it.

An alternative proposal was prepared (EP021, May 24, 1984 (Ref. 4)) that
seemed to solve these problems. The capacity of the existing "John
Deere" injector design was shown to be suitable for the TCM diesel
program with some minor design modifications to allow the unit to adapt
to the TCM cylinder head and to provide a passage for needle lift
measurement. The advantages of this unit over the CCTE design, which is
functionally equivalent, were that outsource vendors were already in
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place to manufacture all the component parts, no great amourt of design
time would be needed, the "John Deere" unit had undergone "hundreds of
hours of testing on test benches and multi-cylinder engines at D.E.C.
under Ted Watson's group, and was capable of performing to the TCM
diesel's fuel delivery and speed specifications.

Prior to suggesting the use of the "John Deere" unit as a tool for ti-
TCM-GPD development program, one of the original injectors, with a
one-piece primary/intensifier piston assembly that had been used as a
display model, was taken to the lab and operated at speeds up to 9,600
injections per minute to prove that speed was not a limiting factor
(Fig. 4). That, and reassurances from D.E.C. that they saw no reason
why the unit would not be satisfactory for the job in its present state
of design, led us to propose its use with what turned out to be a great
degree of overconfidence.

In fact, most of the D.E.C. operation had been on a four-stroke-cycle
engine at considerably slower speeds (one injecticn per two engine
revolutions) than required for the two-stroke aircraft diesel.

As to the operation on Jet A fuel, no particular problems were
anticipated. As a straight-run middle distillate with an even narrower
distillation curve temperature range than diesel #1, one would not have
suspacted there would be any more difficu‘ty in operation on Jet A than
on diesel #1. Past experience has shown that Jet A fuel would run
successfully with conventional mechanical fuel injection equipment, as
does diesel #1.

EPO21 was submitted to TCM in June, 1982, as an unsolicited proposal
with a total program cost of $81,000, all of which was to be paid by
TCM. The delive~v time of 44 weeks was reduced to 12 weeks based on
vendor quotes for the parts.

On December 3, 1983, we received approval to go ahead with the revised
proposal work outlined in EP021. See Table 2 for an historical summary
of events leading up to contract award.

THE PROGRAM PLAN

Figure 1 shows the revised program plan. Had the program gone according
to plan, the first unit would have been delivered in mid-March of 1983.

All purchase orders were prepared and sent out on time (12/8/82) but
even by mid-March all the parts still had not been received. Parts

inspection delays in Sidney and the need to rework parts pushed testing
out to mid-May.

THE DEVELOPMENT PROGRAM

There wasn't supposed to be a development program on this project, and
that's the reason the work was eventually halted in June, 1984. At the
outset, careful investigation of historical testing including problems
that had cropped up with the "John Deere" injectors seemed to indicate
that there would be no problem with the units as supplied by the
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vendors. Finally, when the parts did arrive and were, in some case,
reworked to print, we encountered a series of vexing problems.

Bottom Intensifier Body Failures - The first prcblem encountered
involved the cracking of the bottom intensifier bodies at the ball check
valve hole which allowed high pressure fuel to leak from the unit. A
check with Ted Watson and his people at D.E.C. showed they had never had
this problem before. (The injector was originally designed in Sidney
and D.E.C. had mace many changes in design and materials since then).
Reducing ball check 1ift to reduce seating stresses and retempering the
body did not work. The material was analyzed and found to be correct
per gh?) print (although different than the original Sidney design
material).

Eventually, the probable cause of these failures was traced to a
combination of improper heat treat and a poor design tolerance spacified
on the drawing which permitted two intersecting holes to bs drilled
beyond the point of intersection thereby weakening the area under the
ball check seat as shown in Figures 2 and 3. The original Sidney design
had a very thick section between the ball check seat and the
intersecting fuel supply holes. The redesigned D.E.C. version reduced
this section considerably to reduce injector length. The drawing was
changed to prevent overdrilling of the intersecting holes, the seat
section was thickened by 0.10 inches, the material was changed from the
A2 to the AISI, Type D3 tool steel with a heat treat specification to
give maximum toughness at some small sacrifice in hardness. That solve.
the problem.

Piston Seizures - One of the requirements of the TCM statement of work
was that the units be capable of operating on Jet A fuel. Now that we
had a runnable unit, we switched from operation on VISCOR test fluid to
Jet A fuel. On Jet A, there was almost immediate seizure of the
intensifier piston in its bore.

In several consultations with two authorities on the subject, one from
General Motors Research Labs and one from Kodak, we learned that the
problem stemmed from the poor compatibility of the D3 tool steel running

. against itself under conditions of marginal boundary lubrication, Jet A
being a poorer lubricant than VISCOR or #2 diesel fuel. At the same
time, in a conversation with Ted Watson of D.E.C., he revealed that they
had just received a set of seized pistons from Volvo in Sweden who had
been testing a set of identical injectors. It turned out after a later
inquiry that they had been using a less viscous fuel as well--something
similar to #1 diesel fuel.

The suggested solution to the problem was to change one of the materials
to something more compatible with the high chromium (12%) D3. It was
decided to make the pistons from SAE 52100 steel ( 2% Cr) and to plate
them with a copper flash followed by 10-mfllionths of an inch of silver.
This solved the problem 50 we could concentrate on endurance and
performance testing. An agreemert with TCM was reached to the effect
that 10 hours of durability on each uoit would be suificient, if the
disassembled parts showed no sign of distress afterwards.

FORM # FNP.1
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Cavitation Erosion - Further endurance running uncovered a third

problem--cavitation erosion of the spool valve. The debris from the
erosion would cause the operation of the injector to cease as a result
of the spool valve hanging up. Once disassembled and cleaned, however,
the valve would again function normally. The cavitation was s;ymmetric
and confined to a thin annular ring near the edge of the valve land that
controls supply pressure flow to the top of the primary piston.
Although the magnified area appears to be cavitation erosion, there is
some doubt, no other cause being apparent in explaining the damage while
running on Jet A fuel.

Needle Seat Fatigue - The nozzles designed for this unit are of the low

sac volume type, the nozzle holes being located on the needle seat area
just downstream of the needle seat contact area instead of in a large
sac volume. This provides a sharper start and end of injection with
little afterspray. What appears to be surface fatigue occurred on the
needle seat after extended running on Jet A fuel.

Needle End Fatique - The hemispherical end of the needle where it

contacts the spring button showed signs of surface fatigue. This might
be due to a combination of high Herzian contact stress and poor
lubrication since no force reversals are available to permit fuel to
enter the area and provide a squeeze film to protect the parts. The
hemispherical needle end also may not provide enough surface area to
reduce the contact stresses to an acceptable value.

Coil Epoxy Swelling - A -~henomenon called "rungut" had plagued the

program from the beginning. At higher speeds and loads the operation of
the unit would cease in an exponentially decreasing manner over a period
of a couple of seconds or less. The problem was avoided at first by
running at Tlow speeds. Eventually, when enough of the problems
described earlier had been solved to run for longer periods at higher
speeds and loads, the problem could no longer be avoided. The problem
was tracked to a heat buildup in the coil. Although the coil is fuel
cooled with the residual fuel used to move one end of the spool valve,
at higher loads the increased temperatures caused the epoxy to swell,
decreasing the gap between the coil and armature. Several suggestions
were proposed to provide either temporary or permanent solutions. Among
the solutions were plans to externally liquid cool the coil, increase
the coil-to-armature gap, reduce the coil current and reces: the epoxy
by 1/32" from the face of the coil. A coil redesign was also proposed
for a more permanent long term fix. The redesign might include
integrated external cooling means and a coil with smaller gauge wire and

more turns. Don Louden was studying the problem and was to prepare a
report on the subject.

CONCLUSIONS AND RECOMMENDATIONS

The latest version of the "John Deere" injector, that had been used
during the strobe testing work to further characterize the quality of
the spray, had come a long way toward meeting the TCM objectives. Some
problems with the unit had been solved and the remainder were clearly
identified as to cause, and changes were suggested necessary to permit
the unit to operate successfully as originally fntended.
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in spite of th- apparent lack of success in fulfilling the requirements
of the 7CM contract, it is important to note that a great deal of
orogress was made in advancing the state-of-the-art with this injector.
o other high speed, electronically controlled diesel fuel injection
unit capable of operation on fuels lighter than diesel =2 has yst bSeen
made public.

The unit in its present state has teen capable of operatinn of st A
fuei {and tnerefore, presumabiy, on ciesel =i as weil). 4&lso, it iz --e
censiderea cpinion of the engineers wno participated in :nis “4z3iing
that the remaining proolems are amenaple to engineering soiutions.
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TABLE 1
m zuu‘: e S2DMISON OF §
sarrett ~1eGPD :
Type of Diesel c-stroke cycia l=sTroke Crn.z
Scavenging Curtiss .cc .oP2iss LIt
Displacement Per Culinder (1n3) i6.64 -3.5: ;
Sore {inches) 2.53 I.2e :
Serake (inches) 2.35 DS
Jore-3iroke Ratio 3,81 Ll
icroression Ration, iominal 5.00 R
Cffective £.80 238
Scavenge Ratio 1.452 1,380 i
#aximum Rated Soeea (rom) 3000.0 1380.0 g
“ean Piston Speed (7t/min) 2930.0 .238.6
¥aximum [ndicated HP Per Cyl. 111.64 33,36
IMEP (psi) 332.0 €23.2
Jaximum Cylinder Pressure (psia) 4500.0 13C0.0
Fuel Volume Per Injection (m°) 47.0 €0.0
Fuel-Air Ratio (ibm/1bm) 0.02%7 3.0354
Curation of Injectio. (crank angle degrees) 19.2 It.3s f
Duration of Injection (ms) 0.4 L.+8 ;

ENEMm # cvo.9
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TABLE 2 - History of Bendix EnPD/TCM-GPD/NASA Involvement Prior to Contract

Initial contact by TCM indicating interest in Bendix fuel injection
system similar to that developed for Garrett/AiResearch.

Joint Bendix/TCM/NASA meeting in Sidrey to discuss Bendix'
capabilities. Received preliminary copy of fuel injection spec.

TCM requested "Ball Park” quote of electronic fuel injection system
for single cylinder diesel engine.

Bendix quoted budgetary price estimate of $64,000, 6-8 months ARO for
2 electronically controlled fuel injectors and system support
equipment. Total cost of program $87,000 ($23,000 absorbed by
Bendix).

Bendix prepared Project Plan per Engineering Report #4045,

TCM requested a firm quotation.

Bendix Technical proposal EP007 was prepared and dated 5/1/81.
Disclosure agreement between Bendix and TCM was negotiated.

Firm quotation for work covered by EP007 was given to TCM - quoted
$82,000 and 44 weeks delivery. Progress payments to be negotiated at
time of order.

TCM advised NASA is on verge of approving 2 1/2 year program to
continue work on aircraft diesel engine program.

Bendix submitted revised proposal EP02] based on use of existing
"John Deere" design injector. Program total cost reduced to $81,787
and time to 12 weeks.

Go-ahead received from TCM.
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INTRODUCTION:

A 4.252" 9 piston ring set was received for evaluation when scuffing occurred after
running at full load for 1/2 hour in Teledyne's two-cycle aircraft diesel test engine
in Muskegan, Michigan. Prior to scuffing, the engine ran successfully for 12-1/2
hours at partial load. The cylinder liner surface is chrome plated and the trp and
second compression rings are plasma coated with K-1000F. The five ring piston set
consisted of the following:

TOP_RING: Crown Plasma K-1000F Keystone Compression Ring Bevel Back
K-28, P/N B-7792.
SECOND RING: Plasma Coated K-1000F Crown Face Bevel Back K-28 Compression

Ring, P/N B-779%.
THIRD & FOURTH RINGS: Crown Face Bevel Back K-Iron Compression Ring, P/N B-7793.
OIL RING: Conformable K-28 0il Ring, P/N B-7796.

Teledyne's end clearance and free gap measure-.nts before and after the test are
documented on Attached Sheet B.

OBJECT:

Document the conditior of the ring set and, if possible determine the cause of
scuffing.

CONCLIJSIONS:

1. An end clearance of (.024") on the top compression ring apparently was too
tight to accommodate the high temperatures of a full load operation. Butting of
the top compression ring resulted in scuffing and an end clearancz change of
.029",

2. Distress on the ring joints of the second and third compression rings indicates
contact with the liner intake/exhaust ports. The current point protrusion
specification for these rings is +.0007 to - .0005.

3. The fourth compression ring had a AEC of .002" as compared to a AEC of .014"
for the third compression ring. Although both rings are manufactured from
K-Iron material, the difference in wear is attributed to the fact that ti.=

fourth ring is always below the intaxe/exhaust ports and therefore is not gas
loaded.

4. The K~-28 ductile iron oil ring experienced extremely heavy 0.D. wear resulting
in a AEC .040" and localized heavy wear at the joints. The cause of the heavy
0il ring wear is suspected as being the very tight end clearance of .014" which
may have caused ring butting.

RECOMMENDATIONS :

1. 1Increase ring end clearances as indicated below:

PART NUMBER END CLEARANCE
Top Ring B-7792 .040 - ,050
Second Ring B-7794 .030 - .040
Third Ring B-7793 .030 ~ .040
Fourth Ring B-7793 .030 - .040
0il Ring B~7796 .025 ~ 035

2. 1Increase the amount of negative point protrusion on the second and third
compression rings to 0.000 to -.0017.

3. Reduce Unit Pressure on oil ring from 225 psi to 175 psi.
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SUMMARY OF RESULTS:

1-

All five rings show varying degrees of abrasive wear across the 0.D. surface.
The heaviest wear 1s noted on the plasma coated top compression ring (AEC .029")
and the fifth K-28 oil ring (AEC .040"). The plasma coating on the top com-
pression ring is severely scuffed and pulled out. Carbon is noted in the areas
of coating pullout. Heavy abrasive face wear due to metal-to-metal contact
caused sharp edges and burrs along top/bottom 0.D. rails. Wear on the plasma
coated second compression ring is similar to (but not as severe as) that of

the top ring with evidence of port clipping at the ring joint areas. However,
the plasma coating has not chipped or spalled in this location. Second
compression ring had .003" AEC. Abrasive wear patterns are noted on the third
(AEC .014") and fourth (AEC .002") K-Iron compression rings and the K-28 oil
ring (AEC .040"). All three rings exhibit varying degrees of localized wear

at the joint areas. Reference Sheet A documents the condition of the ring set.
Sheet B shows Teledyne's free gap and end clearance measurements before and
after engine test.

Photographs on Sheet C are believed to be typical of the wear experienced by
this ring set.

A close examination of the top compression ring reveals a build-up of heavily
packed carbon at the left joint end which indicates that the ring butted and
caused the coating to scuff and pull out. (Sheet D).

Port clipping is evident on the second compression ring being most prominent
on the top O.D. surface. It is interesting to note that the coating has not
chipped or spalled as a result of joint clipping. Joint ends of ring show
burnished areas that indicate a ring butting condition, Sheet E.

Heavy localized wear at the joint area of the third (K-Iron) compression ring
is believed to be due to port clipping. Photographs presented on Sheet F
indicate wear to be more pronounced along the top 0.D. surface. The heavy
0.D. wear (AEC .014") on this third compression ring may be attributed to the
softer K-Iron material wearing against the distressed liner surface caused by
top ring scuffing.

The fourth K-Iron compression ring (AEC .002") shows only slight evidence of
localized wear at the joint areas; however, burnished spots on joint ends
indicates that the ring may have butted, Sheet G.

The K-28 oil ring shows evidence of very heavy abrasive wear around 0.D.
circumference (AEC .040") and heavy localized wear at the joint areas. A
photograph of the ring near 180° indicates that wear was heavy enough to
cause burrs on the edges of the 0.D. rails, being most prominent on the
bottom rail, Sheet H. Since the motion of the piston is such that the oil
ring does not traverse the intake/exhaust ports, the heavy distress noted
at the joint cannot be attributed to port clipping. Therefore, it is
believed that the heavy 0.D. wear may have been caused by the tight original
end clearance of .0l4" that could not accommodate the thermal expansion of
the ring. It should be noted that at full load the exhaust temperatures
were reported to be approximately 1000°F and the top turn-around point of
the oil ring is close to the vicinity of the exhaust ports.
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SUMMARY OF RESULTS - CONT'D.

8. A close examination of the oil ring indicates that the top rail width varies
around the ring circumference due to off-centered venting operation, Sheet I.

9. The microstructure of the plasma coated top and second comression rings is
presented on Sheets J and K. Despite the heavy wear experienced, the K-1000F
plasma coating exhibits good adhesion along the base metal interface. Porosity
is within acceptable limits. Coating thickness is also within a specified
tolerance of .004" - .009" for P/N B7792 and P/N B-7794.

Microstructure of ring base material consists of spheroidal graphite (100%
types 1 and 2) in a matrix of tempered martensite. Hardness of the top ring
is 43.5 - 43.8 and for the second ring 44.6 - 44.8 HRC within a specified
tolerance of 40 - 46 HRC. Both the top and second compression rings are con-
sidered to be manufactured from good ductile iron material.

10. The microstructure of the third and fourth K-Iron compression rings consists
primarily of flake type graphite (100% type AC*), Sizes 6,7 and 8. The
matrix is pearlite with a non-continuous network of steadite. Hardness of
both rings ranges from 80 - 82 HRG and is within manufacturing specification
of 77.5 - 91 HRG according to their ring dimensions. (See Sheet L).

11. Photomicrographs presented on Sheet M, further confirm the heavy abrasive 0.D.
wear that caused plastic deformation on the oil ring rails. The ring's
microscructure consists of spheroidal graphite (1002 types 1 and 2) in a
matrix of tempered martensite with a hardness of 42 - 43 HRC within a specified
range of 40 - 46 HRC for K-28 ductile iron.

12. 0.D. profile traces were obtained on the compression rings (particularly top
and second rings) in an area where the face wear was not too severe. Sheet N
shows ihe top ring to have a wear profile exhibiting top edge bearing with a
19 tap’: ~n the top side near 270° from the right joint.

The second compression ring shows a wear profile indicating slight wear toward
the bottom side near 90°.

At 180°, both the third and fourth compression rings have a wear profile exhibit-
ing bottom edge bearing.

DISCUSSION:

An end clearance of (.024") which was too tight to accommodate the high temperatures
of a full load operation, apparently caused the top compression ring to butt result-
ing in scuffing and heavy wear (.029" AEC).

Distress on the ring joints of the second and third compression rings indicate
contact with the liner intake/exhaust ports. The current point protrusion specifi-
cation for these rings is +.0007 to -.0005. Burnished areas on the joint ends

of these rings indicate evidence of a butting condition.

The fourth compression ring had a AEC of .002" as compared to a AEC of .014"

for the third compression ring. Although both rings are manufactured from

K-Iron material, the difference in wear is attributed to the fact that the fourth
ring does not traverse the intake/exhaust ports.
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DISCUSSION - CONT'D.

The K-28 ductile iron oil ring experienced extreme1§ heavy 0.D. wear resulting in

a AEC of .040" and localized heavy wear at the joints. The cause of heavy ~il

ring wear is believed to be related to the very tight end clearance of .0l4' which
may have caused ring butting. Since the manufacture of these rings Teledyne has

run a test with a top ring end clearance of .045". This test ran successfully for
35 hours until another component failure shut the engine down. For any future tests
it is recommended that the minimum allowable end clearance be increased to .040" for
the top ring, P/N B-7792, .030" for the second, third and fourth rings, P/N B-7794,
P/N B-7793 and .025" for oil ring, P/N B-7796.
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RM 1652
Sheet B

FREE GAP AND END CLEARANCE ME. SUREMENTS BEFORE AND AFTER TEST

MEASUREMENTS AS REPORTED BY TELEDYNE

FREE GAP (INCHES)

RING IDENTIFICATION BEFORE AFTER
Top,  P/N B-7792 .547 .406
Second, P/N B-7794 .390 343
Third, P/N B=-7793 .546 .531
Fourth, P/N B~7793 .547 *,640
011, P/N B-7796 .266 .234
KOPPERS SPECIFICATIONS
P/N B-7792 .58 Approx.
P/N B-7794 .42 Approx.
P/N B-7793 .73 Approx.
P/N B-7793 .73 Approx.
P/N B-7796 .32 dax.

(WHEN CLOSED Tu 4.250" ¢)

END CLEARANCE (INCHES)

BEFORE

0Za
.021
.020
.017

.015

.010/.023
.010/.020
.010/.020
.010/.020

.010/.025

AFTER

.053
.024
.034
.019

.055

*Increase in Free Gap is believed to be due to an error in recording.
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K~1000F PLASMA COATED RING SET

PHOTOGRAPHS APPROX. 3.4X%

RIGHT JOINT LEFT JOINT

180°

Entire ring set shows the effects of heavy wear. Scuffing is evident on the
K~1000F plasma coated top and second compression rings. Carbon is packed in

the areas of pullout. The third and fourth K-Tron compression rings and the K-28
oil ring all show heavy abrasive wear.




RM 1652
Sheet D

PLASMA COATED TOP COMPRESSION RING, P/N B-7792

ALL PHOTOGRAPHS APPROX. 14X

0.D. SURFACE

Right Joint Lefr Joint
Photographs show heavy abrasive and adhesive wear au the rirg joint area.

Plasma coating has been pulled out and some of the voids are packed with
carbon.

Joint Tip Ends

Photograph shows carbon build-up at ring
joint ends. Black arrow indicates notch

at right joint. Small areas (white arrows)
of heavy carbon build-up on left joint end
indicates that the ring may have butted and
caused plasma coating to scuff and pull out.
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K-1000F PLASMA COATED SECOND COMPRESSION RING, P/N B-7794

PHOTOGRAPHS APPROX. 14X

Right Joint Left Joint

Port clipping appears to be most evident along top 0.D. surface as indicated by

arrows. It is interesting to note that coating has nmot chipped or spalled at
joint area as a result of port clipping.

Joint ends of ring before cleaning Joint ends of ring after cleaning .
show light carbon build-up on the Burrs on notched end of right joint

surface. (white arrow) and high spot on bottom

side at 1.D. interface are burnished
and indicate that ring may have butted.
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Sheet F

THIRD (K-TRON) COMPRESSION RING - P/N B-7793

PHOTOURAPHS APPROX. 14%

0.D. SURFACE

Right Joint Left Joint

Heavy localized wear at the ring joint area is believed to be due to port
clipping. Arrcows indicate wear to be more pronounced along the top 0.D.
surface. Abrasive scoring extends across ring face.

Burnished spots and burrs on
joint ends of third compression
ring indicate the ring may have
butted.
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FOURTH (K-TRON) COMPRESSTION RING, P/N B-7793

PHOTOGRAPHS APPROX. 14X

Right Joint

0.D. surface of ring shows abrasjve scering and

some slight evidence of localized
wear at the Soint area.

Burnished cpots on joint ends
of fourth compression ring
indicates that ring may have
butted.

Arrow indicates notch at right
ioint.
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Sheet H
0.D. RAILS OF K-28 OIL RING, P/N 8-7796
PHOTOGRAPHS APPROX. 14X

Kight Joint Left Joint

Wear on oll ring rails appears to be most evident aloug bottowm rail.

Right Joint End

Heavy abrastve wear caused Bures on
edges of rails.  Condition most

; 0
evident along bottom rail near 1807,

Photographs on the right show the 1cft and
right joint ends of the ofl ring. High
gpots and burrs on the surface may have
been caused by butting.

et hvint Ead
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Sheet 1

0.D. RAILS OF (X-28) OIL RING, P/N B-7796

Top rail width varies

around the ring circumference
due to off centered venting
operation.

Approx. 9X

A different area around
the ring 0.D. at a higher
magnification shows the
same type of condition
described above.

Approx. 14




RM 1652
Sheet J

PHOTOMI CROGRAPHS OF (K-1000F; TOP COMPRESSION RING

Bottom

Right joint (0%9) area of ting - coating thickness .004". Heavy abrasive
wear caused a burr on the edge of the top base metal shoulder. Bottom
shoulder does not show this type of condition.

Coating shows good adhesion along base metal interface. Porosity is within
acceptable limirs. Coating thickness is on the low side, but still within
new ring specification of 004" - .009", P/N B-7792.

Microstructure of base material shows a good dispersion of spheroidal graphite
onsisting of 100% types 1 and 2. Hardness is 43.5 - 43.8 RC within a sr cified
tolerance of 40 - 46 RC for K-28 ductile iron.
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PHOTOMICROGRAPH UF (K-1000F) SECOND COMPRESSION RING

Coating thickness is .009"
along top 0.D. surface near
right joint.

Coating thickness specifications:
.004 - .008", P/N B~7794

Coating thickness is .007"
along top 0.D suiface near
90”7 from the right joint. Top
base metal shoulder shows
uniform wear with no evidence
of a burr at the top edge.

Etched condition of ring's

base material shows a matrix

of tempered martensite with a
hardness of 44.6 - 44.8 HRC,
within a specified range of

40 - 46 HRC for K-28 ductlle
iron. Both the top and second
compression rings are considered
to be manufactured from good
piston ring material.




MICROSTRUCTURE OF K~IRON COMPRESSION RINGS

TYPICAL STRUCTURE OF THIRD AND FOURTH RINGS, P/N B-7793

Graphite structure along 0.D.
wear surface consists of
flake type graphite.

(100% AC*), sizes 6,7, & 8

0.D. WEAR SURFACE Matrix is
pearlite with a non-continuous
network of steadite.

Hardness of both rings is

80 ~ 82 HRG within manufactur-
ing specifications of

77.5 - 91 HRG according to
ring dimensions.
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Sheet M
PHOTOMICROGRAPHS OF K-28 OIL RING, P/N B-/797
0.D. SURFACE

&

Top Lail 100% Bottom Rail

Heavy abrasive wear caused burrs on the edges of the 0.D. rails

This ring is considered to be manufactured from good quality ductile iron.
Spheruidal graphite consists of 100% types 1 and 2.

0.0, Surface of Rail

A nital etchant reveals smeared metal on
the 0.D. rail caused by severe abrasive
wear.

The matrix consists of tempered martensite.
Hardness is HRC 42-43 witnin HRC 40-46
specifications for this ductile iron
material.

400X
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0.0, PRO..LE TRACES OF COMPHRESSION RINGS

RM 1652
Sheet N
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APPENDTIX vII

EVALUATION OF TELEDYNE 4.252" DIAMETER
RINGS AND PISTON WITH STEEL CROWN AND ALUMINUM SKIRT



ENGINEERING REPCRT #150
December 2, 158%

EVALUATION CF TELEDYNE 4.252" DIAMETER
RINGS AND PISTON WITH STEEL CROWN AND ALUMINUM SKIRT

INTRODUCTION

A recent test of Teledyne Continental Motor's U4,252" diameter two cycle diesel
engine scuffed after Just eight hours of runcing at half load (U5 HP) and 3500
RPM. The cylinder bore was chrome plated. The compressicn rings were coated
with Soppers K-1000F plasma ccating. The ring set consisted of part number
BTT92 Lo the top groove, part number BTT94 {in the 2ad and 3rd grooves, part
oumber B7793 in the Lth groove, and part oumber BTT9S in the oil ring groove.

PURPQSE

To determine the cause of scuffing.

CONCLUSIONS

1. A "pinching in" effect of the top riang groove when hot resulted in the top
ring standing "proud” causing it to scuff. This "piaching in" effact is
caused by the high rate of thermal expansion of the aluminum skirt forsing
“he bottom side of the steel groove up while at the same time the thermal
sxpansion of the steel crown is forcing the top of the groove down (Figure
7).

2. The piston lands below the 2nd ring and below the 4th ring are distressed
reflecting contact with the cylinder liner. This zay have contribuced to
the scuffing of the rings by removing the lubricating oil films from the
sylinder liner.

RECC2{ENDATION

If the aluminum skirted piston is used again, the top ring side clearance
oe izcreased and the piston lands below the 2ad and 4th rings should be cu

DISCUSSIM

The scuffing appears to have criginated with the top compressioa ring. This is
indjicated by the fact that the top ring has the heaviest amount of coating pull-
out and the wear measursements show that it experienced the heaviest wear of all
the rings (Teble 1). There is also evidence that the top ring was not precess-
ing freely in its groove. This is reflected by the very localized carbon stain-
ing on the piston land below the top ring (Figure 1) caused by the top ring end
clearance dwelling in one place. In additionm, the 0.D. surface of the ring bas
several very distinct aress vhere there is no coating pull-out (Figure 2). The
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width of these areas (approxima.ely .270") correspond to the <idth of <ze pors
bridges in the liner. This effect, more commonly referred t. s por% =aiiling,
also indizates that tue top ring waesn't precessing freely in the groove. Al-
though the top ring wasa’t stuck in its groove when removed from the eagine, it
appears that vhea the piston is hot the ring becomes stuck in its groove. Zx-
saination of the top and bdottom sides of the top ring reflect localized areas
of unusually bheavy vear after just eight hours of running. On the top side of
the ring several shiny spots between 180° (from the jJoiat aotch) and 2T0° are
indicative of coatact with the top side of the groove (Figure 3). On the bot-
toa side, a shiny wear band i{s evident at the 0.D. edge of the rimg for 300°.
This i{s generally a desirable condition indizating e good bottom side seal and
a8 front edge bearing condition.- Howrever, examination of the bottom side wear
pattern under magnification in the same region correspoanding to the localized
vear noted .2 the top side of the ring shovs that there was heavy plastic de-
formation and vear of the ring surface (Figure 4). This is clearly illustrated
by the profile trace of the bdottom side of the ring shown in Figure 5. Tke
.00045" depth c2 wear cear the 0.D. is extremely heavy for just eight aours of
ruaning. A profile trace of the bottom side avay from tRte region of heavy wear
is showa in Figure 5 ana is more typical of what {3 normally seen after eight
tours. The piston top ring groove was inspected and found to be withia the 3i-
mensions alloved by the specification. Also, the width of the top riag was
checited and found to be slightly thin in several places (Table 2). This is as-
tridbuted to the fact tikat the width of the ring vas checked in the region of
vear aear the O0.D. of the riag. Jhese measurements show that the sile cleara
ance of the ring ia the piston groove was not any less than what was allowved by
the desiga. The calculated mean side clearance according to the nominal values
of the design is .0065 and is typically sufficient side clearance for a keystine
top ring in a two cyecle application. It is suspected that the piston 1esizn
vith a steel crown threaded onto an aluminum skirt results in the top riag g-ocve
closing up when hot. It i3 thought, as i{llustrated {n PFigure 7, that as the aiu-
ainum sikirt expands it forces the bottom side )f the top groova up while at she
same time the expansion of the crown causes the top side of the grogve %o closa
down. This conditioca would result in a reduction of the ring side clearance such
that as the piston rocks over from combustion, the ring could stand "zroud” :ia
the groove causu scuffing.

/t,/QC@ \)Clu.u

George Sauter
KQPPERS COMPANY, INC.
December 2, 19837l.
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FIGURE 1

Note carbon formation just below the top ring
groove and the carbon staining on the aluminum
land just above the second ring.
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FIGURE 2

Area on 0.D. of top ring .270" wide
indicative of port milling.
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FIGURE &

Bottom side of ring showing region
at 0.D. where heavy wear occurred.
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EXPANSICN OF STEZL CRCWI CUZ
/ TO TEMPERATURES OF COMBUSTION

~

STEEL CROWN
‘-~\\-S;‘-§.~ "5~.~.

DEFLECTION OF STEEL
BELOW GROOVE CAUSED
BY THE HIGHER THERMAL
EXPANSION QF ALUMINUM

& ZXPANSION 7
ALUMINUM CUT
TO TEMPZRATURES
OF CCMBUSTICH

I

l
I

I
|

I
|

I
I

I
I

l
I

l
I
!
I
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ALUMINUM SKIRT

PIGURE T

Dlustration showing the closing
down of the top ring groove due
to thermal expansion.



TABLE 1

RING WEAR
END CLEARANCE END CLEARANCE CHANGE IN
PART NUMBER BEFORE AFTER END CLEARANCE
Top Ring BT792 046 .063 .017
2nd Ring BTT9% .038 .02 .00L
3rd Ring BTT94 .034 L0L3 .009
Leh Ring BTT93 .020 .025 .005

O0il Ring BTT96 .025 .03k .009



APPENDIX VIII

PUBL AND LUBRICATING OIL SPECIFICATIONS



Engine testing was conducted at the Teledyne Contintental
Motors engine laboratories over a period of years. Numerous
batches of fuel and o0il were used over that time period, and
detailed fuel analysis for each batch is not available.
Specifications for the fuel and oils used throughout the
program include:

EUEL:
1. Military diesel fuel VV-P=-800B
2. Commercial jet fuel Jet A

(Similar to military) JP=-5

Q1L
1. Military lubricating oil MIL-L-2104C
2. Stauffer 0il Company Propritary

Lubricant

The following tables are included for these specifications.
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OF POOR QUALITY VV-F-8008
TABLE I. Physical and chemical requirements
Values
‘Grade OF-2:

Properties Grzde DF-A Grade DPF-1 CONGS OCONUS
Gravity, °API Report Report Report 32.9 to 41.0
Plash poine, °F(°C) min. 100(37.8) 100(37.8) 128(51.7) 133(56)
Cloud point, °PF(°C) max. -60(-S1) 1 g 2/
Pour poine, *F(°C) max.  Report iﬁpm port ¥y
Eisematic viscosity @

100°P.(37.8°C), cSt 1.2 to 2.5 1.4 to 3.0 2.0 to 4.3 1.8 to 9.5
Distillation, °F(°C):

SO\ evsporated Report Report Report Report

90% evsporated, max. $50(288) $50(288) 640(338) 675(357)

End point, max, . $72(300) 626(330) 700(371) 700(371)
Carbon residue on 10%

bottoms, § we., max.%/ 0.10 0.15 0.35 0.20
Sulfur, % we., @ax. 0.25 0.50 0.50 0.70
Copper strip corrasiom,

3 hrs. 0122°F(50°C)

max., rating 3 3 3 1
Ash, § wt., ma.. 0.01 0.01 0.01 0.02
Water § Sediment, T aax. 0.01 0.0l 0.01 0.01
Accelerated stability,

total {asoluble

ug/100 al, wax 1.5 1.5 1.3 1.5
Neutralization number,

TAN, asx. 0.05 .- oo 0.10
Particulate coutamina-

tica, mg/licer, max. 8 8 8 8
Cstane number, min. 40 43 43S &5

1/ See Appendix [ for limiting temperature value.

Z/ DF-2 destined for Europe and S. Korea shall have a maximm limit of 9°F (-13°C).
Fori‘o';hot OCONUS areas, the maximum limit must be specified by the procuring
m ty.

3/ DF-2 destined for Europe and S. Korea shall have s maximum 1limit of 0°F(-18°C).
For :;hor OCONUS areas, the maximm limit must be specified by the procuring
activity.

4/ See Appendix II. The maximm limits do not apply for samples containing cetane
mvm. In those instances, the test must be performed on the base Suel

S/ This requirement is spplicable only for milicary bulk deliveries incended for
tactical, OCONUS, or long term stcrage (greater than six months) applications
(1.e., Aruy depots, etc.).
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TABLE IV. CHEMICAL AND PHYSICAL REQUIREMENTS AND TEST METHODS

ruel !Test Method
AST™
“squirements Grade JP-4 | Grade JP-S| Standardis
Total acid number, ag KCH/g, max 0.015 €.015 2974 1/
Aromatics, vol percent, max -25.0 25.0 D1319
Olefins, vol percent, max 5.0 5.0 D1319
Mercaptan sulfur, weight percent, max 2/| 0.001 0.001 D121¢ or
D1325
Sulfur, total, weight percent, max 0.40Q 0.40 D12%6 ot
D2622
Distillation temperature, deg F (deg C): D86 3/
Initial boiling pcint &/ 4/
10 percent rscovered, max temp 4/ 400 (204)
20 percent recovered, max temp 290 (143) | &/
SO percent reccvered, max tamp 37¢ (188) [ &/
90 percent recovered, max temp 170 (243) | 4/
End point, zax temp 4/ 550 {238)
Residue, vol percemt, max 1.5 1.5
Loss, vol percont, 1.5 1.3
Percent recoverad - J°F (204°C) 4/ - -
Exploszveness ce*cmt, max - - SQ 5/
Flash point, deg F (deg C), min - - 140 (59) 093
Gravizy, °API, mia (sp gr, max) 45.0 36.0 D287
70.8GC2) (0.835)
Gravity, °API, ra: (sp gv, min) s7.0 48.0 0287
2 (0.751) 0.738)
Vapor pressure, 100°F, psi (g/c2“), .0 - - 0323 ¢
ain (140.6) D2351
¥ por pressure, 100°F, psi (g/ca?), 3.0 - - D323 or
max (210.9) D2ss1
Freezing poinr, deg £ (deg (), azx -72 (-53) =31 {-18) 02386
Viscosity, ceazistokes at -30°F - - 16.5 D445
('3‘.0» nax
tdeating value, Aniline-gravity 5,250 4,500 D140S
producs, min or Net heat of
Combustion, 3TY/1lb, nin 18,400 18,300 D240 ov
2382
Luwiinometer number, min 60 30 D170
or Smoke poim:, mm, min - 19.¢ D1322 &/
0T Smoke voiazility index, min 52.0 - - T/
Copper strip corrisiom, 2 hr at 1y 1b ) 0 B
212°F (100°C), aax
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